Dynamic games applied to common resources: modeling and experimentation - preliminary analysis

Murielle Djiguemde, Dimitri Dubois, Mabel Tidball and Alexandre Sauquet

18th International Symposium on Dynamic Games and Applications - Grenoble

July 9-12, 2018

ntroduction Motivation Motivation

Motivation

- Without regulation, Common Pool Resources (CPR) are subject to overexploitation (Hardin, 1968)
- Ex : forest, earth, groundwater, fish stocks.
- To correctly anticipate the effect of regulation, we need to understand how agents take decisions

ntroduction Motivati

Objectives

- Clarify some ambiguities between discrete and continuous time, and the time horizon chosen for lab experiments
- What type of behavior will the experimental subjects exhibit: feedback, myopic, open-loop or social optimum?
- Continuous time can be approched by discrete time ⇒ confront theory with experimentation

troduction Motivati

Outline

- Introduction
 - Motivation
 - Literature
- The theoretical model
 - Infinite horizon modeling
 - The optimal control
 - The game

- Theory and experimentation
- Econometric analysis in continuous time
 - Preliminary results continuous time
- Discussion and conclusion
- Further works

troduction Literatu

Literature

 Theoretical article : Rubio & Casino (2003) ⇒ continuous time, infinite horizon

- Lab experiment : Janssen & al. $(2010) \Rightarrow$ spatial aspect
- Theoretical with lab experiment :
 - Herr & al. (1997) \Rightarrow discrete time, finite horizon
 - $\bullet~$ Oprea & al. (2014) \Rightarrow compares continuous and discrete time
 - Tasneem & al. (2017) \Rightarrow continuous time, infinite horizon

Model

- Infinite horizon framework
- Study the exploitation behavior of a renewable groundwater table by 2 identical and symmetrical farmers ⇒ optimal control and game
- the **continuous time** problem:

$$\max_{w_i(t)} \int_0^\infty e^{-rt} \left[\underbrace{aw_i(t) - \frac{b}{2}w_i(t)^2}_{Gross\ profit} - \underbrace{\underbrace{c_t(H(t))\ w_i(t)}_{Total\ cost}} \right] dt \tag{1}$$

st
$$\begin{cases} H(t) = R - \alpha w_i(t) : \text{the optimal control} \\ H(t) = R - \alpha \sum w_i(t) : \text{the game} \\ w_i(t) \ge 0 \\ H(t) \ge 0 \end{cases}$$

 $H(0) = H_0$, and H_0 given **ISDG**

Model

Calibration :

$$a = 2.5$$
; $b = 1.8$; $\alpha = 1$; $R = 0.56$; $c_0 = 2$; $c_1 = 0.1$; $r = 0.005$; $H_0 = 15$

The unitary cost is such that :

$$c_t(H(t)) = \begin{cases} (c_0 - c_1 H(t)) & \text{if } 0 \leq H(t) < 20 \\ 0 & \text{if} \end{cases} \begin{cases} (2 - 0.1 H(t)) & \text{if } 0 \leq H(t) < 20 \\ 0 & \text{if} \end{cases}$$

illustrations: extraction behaviors

FIGURE - The game : feedback, myopic, open-loop and social optimum

Model

the discrete time problem :

$$\max_{w_{i,n}} \sum_{n=0}^{\infty} \underbrace{(1-r\tau)^{n}}_{\beta^{n}} \left[aw_{i,n} - \frac{b}{2}w_{i,n}^{2} - c_{n}(H_{n})w_{i,n} \right] \tau$$

$$\text{st} \begin{cases} H_{n+1} = H_{n} + \tau \left(R - \alpha w_{i,n} \right) : \text{the optimal control} \\ H_{n+1} = H_{n} + \tau \left(R - \alpha \sum w_{i,n} \right) : \text{the game} \\ w_{i}(t) \geq 0 \\ H(t) \geq 0 \end{cases}$$

$$H(0) = H_0$$
, and H_0 given

 Continuous & discrete time : availability of all formulas for the optimal control and the game

illustrations: continuous and discrete time comparison

FIGURE – Feedback : groundwater table H(t) convergence for $\tau = 1$

Experimental design

Experimental design

- No contextualization
- common knowledge experimentation with full information

Subject were informed that...

« You initially have 15 resource units. At any time, you can take a quantity between 0 and 2.8 resource units, with a precision of two decimal places. You are free to choose the quantity you want to take, namely 0, 0.01, 0.02...2.79, 2.8»

Preliminary results - continuous time

Game Feedback Myopic Optimal | Type Total Other | Optimal Myopic | 19 26 control Optimal | 5 l 13 Total | 26 11 40

FIGURE – Behavior in the optimal control and the game

Discussion and conclusion

We found that:

- Continuous time model \equiv discrete time model when $\tau \rightarrow 0$
- But $\tau = 1$ also works \Rightarrow easy to understand in experimentation

The question is...

Which model best represents the reality?

- Subjects who were myopic in optimal control mostly played feedback in the game
- ullet Econometric analysis not complete \Rightarrow correct time-series treatments

Further works

First of all:

- Dicrete time lab experiment
- Experimentation : continuous time vs discrete time model

Then:

- Test the game without the optimal control
- Modify the given information ⇒ dynamics of the resource vs dynamics
 __of costs

Thank you for your attention!!

