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Université Paris Saclay, F-78350
Jouy-en-Josas, France
Full list of author information is
available at the end of the article
†Contributed equally.ˆTo whom
correspondence should be
addressed: sylvain.foissac@inra.fr
and elisabetta.giuffra@inra.fr.

Abstract

Background: Functional annotation of livestock genomes is a critical step to
decipher the genotype-to-phenotype relationship underlying complex traits.
As part of the Functional Annotation of Animal Genomes (FAANG) action,
the FR-AgENCODE project aims at profiling the landscape of transcription
(RNA-seq) and chromatin accessibility and conformation (ATAC-seq and
Hi-C) in four livestock species representing ruminants (cattle, goat),
monogastrics (pig) and birds (chicken), using three target samples related to
metabolism (liver) and immunity (CD4+ and CD8+ T cells).
Results: Standardized protocols were applied to produce transcriptome and
chromatin datasets for the four species. RNA-seq assays considerably
extended the available catalog of protein-coding and non-coding transcripts.
Gene expression profiles were consistent with known metabolic/immune
functions and revealed differentially expressed transcripts with unknown
function, including new lncRNAs in syntenic regions. The majority of
ATAC-seq peaks of chromatin accessibility mapped to putative regulatory
regions, with an enrichment of predicted transcription factor binding sites in
differentially accessible peaks. Hi-C provided the first set of genome-wide
maps of three-dimensional interactions across livestock and showed
consistency with results from gene expression and chromatin accessibility in
topological compartments of the genomes.
Conclusions: We report the first multi-species and multi-assay genome
annotation results obtained by a FAANG pilot project. The global consistency
between gene expression and chromatin structure data in these four
livestock species confirms previous findings in model animals. Overall, these
results emphasize the value of FAANG for research on domesticated animals
and strengthen the importance of future meta-analyses of the reference
datasets being generated by this community on different species.

Keywords: functional annotation; livestock; RNA-seq; ATAC-seq; Hi-C

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/316091doi: bioRxiv preprint first posted online May. 11, 2018; 

mailto:elisabetta.giuffra@inra.fr
http://dx.doi.org/10.1101/316091
http://creativecommons.org/licenses/by/4.0/


Foissac et al. Page 2 of 35

Background
The majority of complex trait-associated loci lie outside protein-coding regions,

and comparative genomics studies have shown that the majority of mammalian-

conserved and recently adapted regions consist of non-coding elements [1–3]. This

evidence prompted the first large-scale efforts into genome annotation for human

and model organisms [4–6]. The genome-wide annotation maps generated by these

projects helped to shed light on the main features of genome activity. For example,

chromatin conformation or transcription factor occupancy at regulatory elements

can often be directly tied to the biology of the specific cell or tissue under study

[3, 7, 8]. Moreover, although a subset of core regulatory systems are largely con-

served across humans and mice, the underlying regulatory systems often diverge

substantially [9–11], implying that understanding the phenotypes of interest re-

quires organism-specific information for any specific physiological phase, tissue and

cell.

The Functional Annotation of Animal Genomes (FAANG) initiative (www.faang.

org) aims to support and coordinate the community in the endeavor of creating

reference functional maps of the genomes of domesticated animals across different

species, tissues and developmental stages, with an initial focus on farm and compan-

ion animals [12, 13]. To achieve high quality functional annotation of these genomes,

FAANG carries out activities to standardize core biochemical assay protocols, co-

ordinate and facilitate data sharing. It also establishes an infrastructure for the

analysis of genotype-to-phenotype data (www.faang.org, www.faang-europe.org).

Substantial efforts are being dedicated to farm animal species, as deciphering the

genotype-to-phenotype relationships underlying complex traits such as production

efficiency and disease resistance is a prerequisite for exploiting the full potential of

livestock ([12]).

Here we report the main results of a pilot project (FR-AgENCODE) launched at

the beginning of the FAANG initiative. The broad aim was to generate standardized

FAANG reference datasets from four livestock species (cattle, goat, chicken and pig)

through the adaptation and optimization of molecular assays and analysis pipelines.

We first collected a panel of samples from more than 40 tissues from two males and

two females of four species: Bos taurus (cattle, Holstein breed), Capra hircus (goat,

Alpine breed), Gallus gallus (chicken, White Leghorn breed) and Sus scrofa (pig,

Large White breed), generating a total of 4,115 corresponding entries registered at

the EMBL-EBI BioSamples database (see Methods). For molecular characteriza-

tion, three tissues were chosen to represent a “hub” organ (liver) and two broad

immune cell populations (CD4+ and CD8+ T cells). This allowed obtaining a par-

tial representation of energy metabolisms and immunity functions, as well as the

optimization of the protocols for experimental assays for both tissue-dissociated and

primary sorted cells. In addition to the transcriptome, we analyzed chromatin acces-

sibility by the assay for transposase-accessible chromatin using sequencing (ATAC-

seq, [14]), and we characterized the three-dimensional (3D) genome architecture by

coupling proximity-based ligation with massively parallel sequencing (Hi-C, [15])

(Figure 1). Using this combination of tissues/assays, we assessed the expression of

a large set of coding and non-coding transcripts in the four species, evaluated their

patterns of differential expression in light of chromatin accessibility at promoter re-

gions, and characterized active and inactive topological domains of these genomes.
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The integrative analysis showed a global consistency of all data, emphasizing the

value of a coordinated action to improve the genomic annotation of livestock species.

Results and discussion
High-depth RNA-seq assays provide gene expression profiles in liver and immune
cells from cattle, goat, chicken and pig
For each animal (two males, two females) of the four species, we used RNA-seq to

profile the transcriptome of liver, CD4+ and CD8+ cells (see Methods, Figure 1

and Table S1). Briefly, stranded libraries were prepared from polyA+ selected RNAs

longer than 200bp, and sequencing was performed on an Illumina HiSeq3000 (see

Methods). Between 250M (chicken) and 515M (goat) read pairs were obtained per

tissue, of which 94% (chicken) to 98% (pig) mapped on their respective genome

using STAR (see Methods and Tables S2-S4). As an initial quality control step,

we processed the mapped reads with RSEM to estimate the expression levels of

all genes and transcripts from the Ensembl reference annotation (hereafter called

“reference” genes/transcripts/annotation) (Figure S1, Supplementary data file 1).

As expected, a large majority of the reads (from 62% in cattle to 72% in goat) fell in

annotated exons of the reference genes (Figure S2). In spite of the specialized scope

of this initial study limited to liver and immune cells, a large share of all reference

genes were detected (from 58% in chicken to 65% in goat) with an expression level

higher than 0.1 TPM for the same transcript isoform in at least two samples (see

Methods and Table 1).

For each species, we explored the similarity among samples using the expression

profiles of the reference genes. Principal component analysis (PCA) revealed quite

consistent patterns across species, where the first principal component (explaining

84 to 91% of the variability among samples) clearly separated samples according to

their tissue of origin (liver vs. T cells). A more moderate yet systematic separation

was observed between CD4+ and CD8+ T cells on the second principal component

(Figure S3). The consistency of these patterns across species supports the reliability

of our RNA-seq data.

As expected, the gene expression ratio in males versus females was globally uni-

form genome-wide, with the exception of the sex chromosomes (Figure 2). Dosage

compensation (leading for instance to X chromosome inactivation in mammals) can

indeed be observed in all species but chicken, which is consistent with previous re-

ports on dosage compensation in mammals but not in avian species [16] (Figure 2).

To get insight into the pattern of gene expression across species, we hierarchically

clustered our samples using the expression of 9,461 genes found to be orthologous

across the four species (see Methods and Supplementary data file 2). We observed

that, regardless of the species, all liver samples clustered together while immune

cell samples clustered first by species and then by type (i.e. CD4+ separately from

CD8+) (Figure 3). For most species and tissues, samples also clustered by sex

(Figure 3). This observation confirms the higher conservation of liver compared to

blood gene expression across vertebrates, and highlights the fact that when RNA-

seq is performed on multiple tissues and species, samples could primarily cluster by

either [17].
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Most of the known reference genes are differentially expressed between liver and
T cells
To provide functional evidence supporting our RNA-seq data, we performed a dif-

ferential gene expression analysis across tissues per species. The number of exonic

reads was first counted for each gene of the reference annotation and was then

TMM-normalized ([18], see Methods). Taking into account the specificities of our

experimental design, in which samples from different tissues come from the same

animal, we fitted generalized linear models (GLM) to identify genes with differential

expression in:

1 All pairwise comparisons between liver, CD4+ and CD8+

2 Liver vs. T cells globally

3 Males vs. females in liver and in T cells.

As expected, liver and T cells were characterized by the largest differences in their

respective RNA composition. In all species, the comparison between both tissue

types yielded the majority of differentially expressed genes identified (from 7,000

genes in chicken to 10,500 genes in goat), while fewer differentially expressed genes

were detected between CD4+ and CD8+ samples (Table S5 and Supplementary

data file 3). In addition, Gene Ontology (GO) analysis provided results in line with

the role of liver in metabolism and of T cells in immunity for all species (Figures

S4-7 and Methods).

Due in part to the limited number of male and female replicates, fewer genes

could be revealed by the sex-specific differential analysis (Table S5). Among them,

we identified 12 orthologous genes that showed consistent overexpression either in

males or females across all the mammalian species, with various degrees of agree-

ment considering the literature. We could indeed find previous reports of sex-specific

effects or functions for 6 of these 12 orthologous genes (PLA2G7, L1CAM, PG-

LYRP2, THBS2, MYBL1 and IGF2BP3 ) but not for five others (PATJ, CRYAB,

NREP, PSAT1 and MCM2 ), [19–24]. For instance, the MYBL1 transcription fac-

tor, which is consistently overexpressed in female T-cells in our data, is described

in mammals as a master regulator of meiosis in males [25]. Interestingly, the last of

the 12 genes, CUX2, which was overexpressed in liver vs. T cells, was consistently

overexpressed in males, as seen in human but not in mouse, where overexpression

was observed in females [26, 27].

As an additional control, we performed hierarchical clustering of RNA-seq samples

by focusing on a manually curated list of T cell- or liver-related transcription factors

(TF) (Supplementary data file 4). As expected, this also led to a clear separation

between liver and T cells in all cases (Figures S8-S9).

Few immune genes differentiate CD4+ and CD8+ cell populations
In line with the results of the hierarchical clustering (Figure 3), most orthologous

genes found to be differentially expressed in CD4+ versus CD8+ within species

showed high variability of expression levels across species (not shown). This vari-

ability is likely caused by the natural heterogeneity in the relative proportions of

cell subtypes among the different species, as already reported between mammals

[28, 29]. Nevertheless, 39 orthologous genes could consistently differentiate CD4+

and CD8+ in the four species, including both mammals and chicken. Among those,
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10 and 29 genes showed significant overexpression in CD4+ and in CD8+ cells re-

spectively (Table S6). We searched for these genes in the baseline expression dataset

of human CD4+ and CD8+ αβ T cell subsets generated by the Blueprint Epigenome

Project [30, 31] and considered their relative enrichment in either cell subset (Table

S6). With one exception (ACVRL1 ), all genes were found to be expressed in human

CD4+ and/or CD8+ αβ T cells and 25 of them show relative enrichment in CD4+

(or CD8+) human cells, which is consistent with our data across the four species.

Out of these 25 genes, six and eight genes could be respectively associated with

CD4+ and CD8+ T cell differentiation, activation and function (Table S6).

The limited number of genes composing the common signature of CD4+ and

CD8+ T cell functions is primarily caused by the limited resolution of the sorting

strategies (see Methods), leading to heterogeneity in the relative proportions of cell

subtypes among the different species. As an example, the sorting of porcine CD8α+

cells included TCR-γδ T cells [28, 32], an important subpopulation which is known

to be present at higher frequency in pigs and ruminants (15-60%) compared to mice

and humans (<5%) [29]. Despite these limits, and considering that only partial

knowledge is available across the farm species used in this study, our results are in

agreement with studies in human and model species: despite global transcription

profiles that are conserved between corresponding immune cell lineages between

human and mouse, several hundred genes show divergent expression [33].

Analysis of new transcripts improves and extends gene structure annotation
In order to test if our data could improve the reference gene annotation for each

species, we used STAR and Cufflinks to identify all transcripts present in our sam-

ples and predict their exon-intron structures. We then quantified their expression

in each sample using STAR and RSEM (Methods, Figure S1) and only retained

the transcripts and corresponding genes expressed in at least two samples with

TPM ≥ 0.1. We identified between 58,000 and 85,000 transcripts depending on

the species (Table 1, Supplementary data file 5), hereafter called “FR-AgENCODE

transcripts”.

To characterize these FR-AgENCODE transcripts with respect to the reference

ones, we grouped them into four positional classes (see Methods): (1) known: a

FR-AgENCODE transcript whose exon-intron structure is strictly identical to a

reference transcript (i.e. exact same exons and introns); (2) extension: same as (1),

but the FR-AgENCODE transcript extends a reference transcript by at least 1 bp on

at least one side; (3) alternative: a FR-AgENCODE transcript that shares at least

one intron with a reference transcript but does not belong to the previous categories

(only spliced transcripts can be in this class); and (4) novel : a FR-AgENCODE

transcript that does not belong to any of the above categories. We found that the

majority of the FR-AgENCODE transcripts were of the alternative class, therefore

enriching the reference annotation with new splice variants of known genes. We

note that the proportion of completely novel transcripts is relatively high for cattle,

which may be due to the lack of RNA-seq data in the Ensembl gene annotation

pipeline of the UMD3.1 version, leading to a less complete reference annotation

(Figure S10A-C, Table 1 and Table S7).

In order to further validate the FR-AgENCODE gene annotation and identify

interesting new transcripts involved in immunity and metabolism, we performed a
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gene expression analysis similar to the one performed on reference genes (see above

and Methods). PCAs were highly similar to those previously found, with a clear

separation between liver and T cell samples on the first component and a weaker

separation on the second component between the two types of T cells (Figure S11).

Using the same approach as that used for the reference genes, we performed a

differential expression (DE) analysis on the FR-AgENCODE genes (see above and

Methods). As expected, the number of DE genes between T cells and liver was

again higher than between CD4+ and CD8+ cells (Table S8 and Supplementary

data file 6). The proportion of DE genes was smaller than for the reference genes

(Table S5), which is expected given their globally lower gene expression levels. We

also found a high level of consistency between the sets of DE genes found for the

reference versus the FR-AgENCODE genes (more than 88% of the DE reference

genes correspond to a DE FR-AgENCODE gene). Among the DE genes of the FR-

AgENCODE set, between 202 (chicken) and 1,032 (goat) of them have at least one

transcript that is classified as coding mRNA and does not overlap any reference

gene on the same strand. This highlights the potential to identify novel interesting

candidates for further functional characterization.

Identification, classification and comparative analysis of lncRNAs
Using the FEELnc method [34] trained with mRNAs from the reference annota-

tion as the coding set and shuffled mRNA sequences as the non-coding training set

(Methods), we identified 22,724, 13,864, 7,502 and 12,587 putative lncRNA tran-

scripts for cattle, goat, chicken and pig, respectively (Tables S9-10 and Supplemen-

tary data file 7), many more than compared to the reference (Ensembl and NCBI)

annotations (0, 4,483, 4,643 and 875 lncRNAs respectively). The smaller number

of lncRNAs found in chicken was due to the larger number of non-assembled small

scaffolds in that genome, and can be extended to include the 2,718 additional un-

classified lncRNAs located on them (217, 707 and 83 for the other species). Con-

sistent with previous reports in several species including human [35], dog [34], and

chicken [36], the predicted lncRNA genes were much less expressed than the refer-

ence protein-coding genes (Figure S12). The structural features of these predicted

lncRNA transcripts were consistent between the four species: lncRNAs are spliced

but with fewer exons (1.5 vs. 10) and higher median exon length (660 vs. 130bp)

compared to mRNAs (Figure S12). lncRNAs are also smaller than mRNAs (1800

vs. 3600bp). Notably, the lower number of exons and consequent smaller size of

lncRNAs compared to mRNAs could also be due to the weaker expression of lncR-

NAs, which makes it more difficult for computational methods to properly identify

their structure [37].

In addition to the coding/non-coding classification, FEELnc can also categorize

lncRNAs as intergenic or intragenic based on their genomic positions with respect

to a provided set of reference genes (usually protein coding genes), and considering

their transcription orientation with respect to these reference genes. Table S10 shows

this distribution for all species. Similarities were observed between species with, on

average, 6% to 12% intragenic lncRNA genes and more than 88% intergenic lncRNA

genes, as observed in human [35] and chicken [36], respectively.
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We and others previously showed a sharp decrease in sequence conservation of

lncRNAs when the phylogenetic distance increases [35, 36, 38], in particular be-

tween chicken and human that diverged 300M years ago. We therefore analyzed

lncRNA conservation between the four livestock species using a synteny approach

based on the orthology of protein-coding genes surrounding the lncRNA and not

on the lncRNA sequence conservation itself ([36], see Methods). We found 73 such

conserved lncRNAs across cattle, goat and pig, 19 across cattle, chicken and pig,

and 6 across all four species (Supplementary data file 7). All were expressed in these

species and located in the same orientation with respect to the flanking ortholo-

gous genes. An example of such a conserved lncRNA, hitherto unknown in our four

species, is provided in Figure 4. In human, this lncRNA was named CREMos for

“CREM opposite sense” since it is in divergent position with respect to the neigh-

boring CREM protein-coding gene. The synteny is conserved across species from

fishes to mammals. Interestingly, the CREMos lncRNA is overexpressed in T cells

while the CREM protein-coding gene is overexpressed in liver in goat, cattle and

chicken (Figure 4).

Finally, we performed a comparative transcriptomic approach, using the 73 and 19

lncRNAs conserved between three species “cattle-goat-pig” and “cattle-chicken-pig”

respectively. The clustering obtained with these two gene sets shows a clear tissue

separation between liver and T cells but does not separate species according to their

evolutionary distance, as was observed with the 9,461 orthologous protein-coding

genes from the four species (Figure S13). Such results, in line with studies using

multiple tissues from 11 tetrapod species [39], probably reflects a faster evolution

of lncRNA sequences with less constraints than protein coding sequences and a

specific pattern of expression.

RNA-seq mapped reads can confirm transcript 3’ end positions
In order to confirm the 3’ end positions of the annotated transcripts, we looked for

non genomic stretches of As in RNA-seq mapped reads that could originate from

unmapped polyA tails (see Methods). After filtering for internal priming and other

artefacts, we obtained from 150,000 (chicken) to 250,000 (pig) distinct positions of

potential polyA sites (Table S11 and Supplementary data file 8). Neighboring sites

in the same orientation were further merged into 58,000 (chicken) to 108,000 (pig)

polyA clusters, among which 81% contain a single polyA position. Despite their

weak coverage that involved less than 0.02% of the genomic space in all species,

these clusters tended to fall close to transcription termination sites (TTS). Approx-

imately 11-14% of the reference and FR-AgENCODE transcripts had at least one

polyA cluster near their TTS on the same strand (Table S11). The distribution

of polyA clusters around reference and novel genes showed a clear peak at the 3’

end of genes in all species (Figure 5 and Figure S14), indicating that predicted

polyAs might help support TTS positions. A quantitative analysis correlating the

number of polyA-supporting reads 1Kb around the TTS of reference genes and

the total number of RNA-seq reads in their exons showed only a moderate corre-

lation (around 0.5, data not shown). Notably, most of the largest polyA clusters

were found in the mitochondrial chromosome, where the cluster density was sev-

eral orders of magnitude higher than genome-wide (from 11 to 30/Kb vs. 0.04 to
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0.06/Kb). This suggests a high abundance of internally polyadenylated truncated

mRNAs that may represent prematurely terminated transcripts or stalled degra-

dation intermediates, as previously suggested from observations in human [40, 41].

Mitochondrial polyadenylation thus appears to be prevalent across a wide range of

vertebrates, from mammals to birds.

ATAC-seq peaks allow the characterization of accessible regions of chromatin in
the four species
We used ATAC-seq to profile the accessible chromatin of liver and of CD4+ and

CD8+ immune cells in animals from the four species. Between 480M (chicken) and

950M (pig) ATAC-seq fragments were sequenced per species, and were processed

by a standard pipeline: reads were trimmed, mapped to the genome (requiring a

MAPQ higher than 10) and filtered for mitochondrial and PCR duplicate reads

(see Methods). Most reads were filtered out by the MAPQ 10 and PCR duplicate

filters (Figure S15). Peaks were then called in each tissue separately (see Methods),

resulting in between 26,000 (pig, liver) and 111,000 (pig, cd8) peaks per tissue (Ta-

ble S12). Those peaks were further merged into a unique set of peaks per species,

resulting in between 75,000 (goat) and 149,000 (pig) peaks (Table S12 and Supple-

mentary data file 9), and covering between 1 and 5% of the genome. The average

peak size was around 600 bp for all species, except for chicken where it was less

than 500 bp. Merging tissue peaks did not result in much wider peaks (Figure S16).

Similarly to GWAS variants associated to human diseases [3], the vast majority

of our ATAC-seq peaks were either intronic or intergenic (Figure S17, Methods and

Supplementary data file 9). In particular, from 38% (goat) to 55% (cattle) of the

peaks lie at least 5Kb away from any reference gene (Figure S17). These peaks

potentially represent many new candidate regulatory regions that could be further

correlated with genetic variants known from previous studies to be associated with

phenotypes. Focusing on the promoter regions of the genes, we noted that around

15% of the ATAC-seq peaks lie at 5Kb or less from a reference TSS (Transcription

Start Site). More precisely, the ATAC-seq peak distribution within and around

reference genes showed a clear signal at the TSS for all species, thereby supporting

the quality of both the reference gene annotation, and of our ATAC-seq data and

processing (Figure 5). Repeating the distribution analysis of the ATAC-seq peaks

within and around the FR-AgENCODE transcripts that were not in the reference

annotation (i.e. not from the known class; Figure S14E-H) resulted in a similar

enhanced 5’ signal (Figure S14A-D). This supports the quality of the structural

annotations we propose, and the fact that ATAC-seq peaks can be used to support

TSS prediction.

The ATAC-seq peaks of each species were quantified in each sample and resulting

read counts were normalized using a loess correction (see Methods). Differential

analyses similar to those used for RNA-seq were then performed on normalized

counts (see Methods). The number of Differentially Accessible (DA) peaks between

T cells and liver per species was between 4,800 (goat) and 13,600 (chicken), and,

with the exception of pig, there were roughly as many more accessible peaks in T

cells than in liver (Table S13 and Supplementary data file 10).

As accessible regions of the chromatin can contain regulatory sites for DNA bind-

ing proteins, we computed the density of transcription factor binding sites (TFBS)
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in ATAC-seq peaks genome-wide. Interestingly, the TFBS density was significantly

higher in ATAC-seq peaks with a differential accessibility (p-value < 7.10e-4 for

goat and < 2.2e-16 for chicken and pig, Wilcoxon test, see Methods). This was

also observed for distal ATAC-seq peaks, at least 5kb away from promoters (not

shown). This suggests that differentially accessible peaks are more likely to have a

regulatory role than the others.

Integrative analysis of RNA-seq and ATAC-seq data suggests complex regulatory
mechanisms of gene expression
We then investigated the correlation between chromatin accessibility and gene ex-

pression by comparing RNA-seq and ATAC-seq data. Given the specific distribution

of the ATAC-seq signal, we initially focused on the gene promoter regions and con-

sidered proximal chromatin peaks (at a maximum distance of 1Kb from the TSS)

to assign a promoter accessibility value to each gene.

Within each sample, genes with highly accessible promoters showed higher expres-

sion values globally (Figure S18), as already reported in mouse and human for in-

stance [42]. In pig and goat, the number of available samples allowed us to compute

for each gene the correlation between promoter accessibility and gene expression

across all samples (Figure S19 and Methods). Interestingly, while the distribution

of the correlation values appeared to be unimodal for non-differentially expressed

genes, a bimodal distribution was obtained for differentially expressed genes, with

an accumulation of both positive and negative correlation values (Figure 6, Fig-

ures S19-20). This pattern suggests the existence of different types of molecular

mechanisms involved in gene expression regulation.

Hi-C reveals topological aspects of the genome in the nucleus
In order to profile the structural organization of the genome in the nucleus, we

performed in situ Hi-C on liver cells from the two male and the two female samples of

pig, goat and chicken. The in situ Hi-C protocol was applied as previously described

[43] with slight modifications (see FAANG protocols online and Methods). Reads

were processed using a bioinformatics pipeline based on HiC-Pro [44] (Methods).

From 83 to 91% of the reads could be genomically mapped depending on the sample,

and after filtering out all inconsistent mapping configurations we obtained a total of

185, 266 and 260M valid read pairs in goat, chicken and pig respectively (Table S14

and Figure S21). These sequencing depths allowed us to build interaction matrices

(or Hi-C contact heatmaps) at the resolution of 40 and 500Kb in order to detect

Topologically Associating Domains (TADs) and A/B compartments (Figure S23).

We identified from ≈ 5,400 (chicken) to 11,000 (pig) TADs of variable sizes (150

to 220Kb on average, Table S15 and Supplementary data file 11), with a 79-86%

genome-wide coverage. In order to validate the relevance of the predicted domains,

obtained by maximizing the interaction densities across different resolutions [45]

(see Methods), we used two approaches. First, we used the original TAD-finding

metric called the Directionality Index (DI) to quantify the degree of upstream or

downstream interaction bias for any genomic region [46]. As expected, the average

DI along TADs showed a bias for downstream interactions at the beginning of the

domains and for upstream interactions at the ends of the domains for all species
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(Figure 7). Secondly, since TADs are known to be flanked by the CTCF insulating

factor, at least in model organisms [46], we investigated if this could be detected by

a prevalence of CTCF binding sites at the boundaries of our TADs. We observed

that the density of in silico predicted CTCF sites (see Methods) consistently peaked

at TAD boundaries (Figure 7), in agreement with previous reports on experimental

data in human [43, 46]. Altogether, these findings show a global consistency of our

topological annotation with previous results and support the generality of the 3D

structural organization across animals, ranging from mammals to birds.

Considering a higher-order topological organization of the chromosomes in the

nucleus, we then investigated the partition of the genome into “A” and “B” com-

partments [15]. By applying the original method described in [15] as described in

Figure S23 (see also Methods) we divided the genomes into “active” (A) and “inac-

tive” (B) compartments and obtained from ≈ 580 to 700 compartments per genome

with a mean size between 1.6Mb (chicken) and 3.4Mb (goat) (see Table S15 and

Supplementary data file 11). To assess the robustness of the A/B compartment

calling, we performed the same analysis on the interaction matrix of each replicate

separately and compared the four resulting partitions within each species. About

80% of the informative loci (genomic bins of the matrix) were assigned to the same

compartment in each animal of the three species (Figure S23), emphasizing the

stability of the detected signal in liver cells.

Considering functional aspects of genome topology, it has been proposed that A

compartments represent genomic regions enriched for open chromatin and transcrip-

tion compared to B compartments [46]. A higher gene expression and chromatin

accessibility should therefore be expected in A versus B compartments. In all species

for which we have Hi-C data, such a pattern was indeed observed, as both the aver-

age RNA-seq gene expression values and ATAC-seq chromatin accessibility values

in liver samples were significantly higher in A than in B compartments (Figure 8,

p-value < 2.2e-16 for each comparison, Wilcoxon test). This result highlights the

high consistency and coherence among the three types of data we have generated

and validates the general relevance of the annotation we propose.

Conclusion
We report the first multi-species and multi-assay genome annotation results ob-

tained by a pilot FAANG project. The main outcomes were consistent with our

expectations:

• Despite that only three tissue samples were used, a majority of the reference

transcripts could be detected. Moreover, the new identified “FR-AgENCODE

transcripts” considerably enrich the reference annotations: the transcript

repertoire is augmented by about 50% in all species but cattle, where it is

more than tripled.

• Differential analyses of gene expression in liver and T cells yielded results

consistent with known metabolism and immunity functions.

• As expected, ATAC-seq results revealed an abundance of potential regulatory

regions. When integrated with RNA-seq data, these results suggest complex

regulatory mechanisms of gene expression.
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• Hi-C experiments provided the first set of genome-wide 3D interaction maps of

the same tissue from three livestock species. Beyond the chromosome topology

annotation, the analysis shows high consistency with the gene expression and

chromatin accessibility results.

As such, the FR-AgENCODE group has delivered a strong proof of concept of a

successful collaborative approach at a national scale to apply FAANG guidelines to

various experimental procedures and animal models. This notably includes the set

up of a combination of sequencing assays on primary cells and tissue-dissociated

cells, as well as a large collection of documented tissue samples available for further

characterization. It also confirmed, in line with several studies in model species [4–

6, 8] the value of combining molecular characterizations on the same samples to

simultaneously identify the transcriptional output of the cell and investigate the

underlying regulatory mechanisms.

In the context of the global domesticated animal genome annotation effort, lessons

learned from this pilot project confirmed conclusions drawn by the FAANG com-

munity regarding the challenges to be addressed in the future [12]. As all possible

combinations of experimental assays, tissues, developmental stages and phenotypes

cannot be undertaken by a single project on all species, standardized procedures for

both data production and analysis need to be widely adopted [47]. Furthermore, the

mosaic nature of a global annotation effort that gathers contributions from various

partners worldwide emphasizes the challenge of translating recent advances from the

field of data science into efficient methods for the integrative analysis of ‘omics data

and the importance of future metanalysis of several datasets. Altogether, these an-

notation results will be useful for future studies aiming to determine which subsets

of putative regulatory elements are conserved, or diverge, across animal genomes

representing different phylogenetic taxa. This will be beneficial for devising efficient

annotation strategies for the genomes of emerging domesticated species.

Methods
Animals, sampling and tissue collections

Animals and breeds

Well-characterized breeds were chosen in order to obtain well-documented samples.

Holstein is the most widely used breed for dairy cattle. For goat, the Alpine breed is

one of the two most commonly used dairy breeds, and for pigs, the Large white breed

is widely used as a dam line. For chickens, the White Leghorn breed was chosen as

it provides the genetic basis for numerous experimental lines and is widely used for

egg production.

Four animals were sampled for each species, two males and two females. They all

had a known pedigree. Animals were sampled at an adult stage, so that they were

sexually mature and had performance records, obtained in known environmental

conditions. Females were either lactating or laying eggs.

All animals were fasted at least 12 hours before slaughter. No chemicals were

injected before slaughtering, animals were stunned and bled in a licensed slaughter

facility at the INRA research center in Nouzilly.
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Samples

Liver samples of 0.5 cm3 were taken from the edge of the organ, avoiding proximity

with the gallbladder and avoiding blood vessels. Time from slaughter to sampling

varied from 5 minutes for chickens to 30 minutes for goats and pigs and 45 minutes

for cattle. For the purpose of RNA-seq, samples were immediately snapfrozen in

liquid nitrogen, stored in 2ml cryotubes and temporarily kept in dry ice until final

storage at -80°C.

For mammals, whole blood was sampled into EDTA tubes before slaughter; at

least one sampling took place well before slaughter (at least one month) and another

just before slaughter, in order to obtain at least 50 ml of whole blood for separation

of lymphocytes (PBMC). PBMC were re-suspended in a medium containing 10%

FCS, counted, conditioned with 10% DMSO and stored in liquid nitrogen prior to

the sorting of specific cell types: CD3+CD4+ (“CD4”) and CD3+CD8+ (“CD8”).

For chicken, a specific procedure was implemented to separate spleen cells from red

blood cells, in order to get a population of immune cells without any contamination

with platelets, prior to CD4+ and CD8+ sorting.

All protocols for liver sampling, PBMC separation, splenocyte purification and

T cell sorting can be found at ftp://ftp.faang.ebi.ac.uk/ftp/protocols/

samples/

Experimental assays and protocols

All assays were performed according to FAANG guidelines and recommendations,

available at http://www.faang.org. All detailed protocols used for RNA extraction

and libraries production for RNA-seq, ATAC-seq and Hi-C are available at http:

//ftp.faang.ebi.ac.uk/ftp/protocols/assays/.

RNA extraction

Cells and tissues were homogenized in TRIzol reagent (Thermo) using an ULTRA-

TURRAX (IKA-Werke) and total RNAs were extracted from the aqueous phase.

They were then treated with TURBO DNase (Ambion) to remove remaining ge-

nomic DNA and then process to separate long and small RNAs using the mirVana

miRNA Isolation kit. Small and long RNAs quality was assessed using an Agilent

2100 Bioanalyzer and RNA 6000 nano kits (Agilent) and quantified on a Nanodrop

spectrophotometer.

RNA-seq

Stranded mRNA libraries were prepared using the TruSeq Stranded mRNA Sample

Prep Kit -V2 (Illumina) on 200 ng to 1µg of total long RNA with a RNA Integrity

Number (RIN) over 8 following the manufacturer’s instructions. Libraries were PCR

amplified for 11 cycles and libraries quality was assessed using the High Sensitivity

NGS Fragment Analysis Kit DNF-474 and the Fragment Analyser system (AATI).

Libraries were loaded onto a High-seq 3000 (Illumina) to reach a minimum read

numbers of 100M paired reads for each library.
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Hi-C

In situ Hi-C libraries were performed according to [43] with a few modifications.

For all species, fresh liver biopsies were dissociated using Accutase, and each re-

sulting cell suspension was filtered using a 70 µm cell strainer. Cells were then

fixed with 1% formaldehyde for 10 minutes at 37°C and fixation was stopped by

adding Glycine to a final concentration of 0.125M. After two washes with PBS,

cells were pelleted and kept at -80°C for long term storage. Subsequently, cells were

thawed on ice and 5 million cells were processed for each Hi-C library. Cell mem-

branes were disrupted using a potter-Elvehjem PTFE pestle and nuclei were then

permeabilized using 0.5% SDS with digestion overnight with HindIII endonuclease.

HindIII-cut restriction sites were then end-filled in the presence of biotin-dCTP

using the Klenow large fragment and were religated overnight at 4°C. Nuclei in-

tegrity was checked using DAPI labelling and fluorescence microscopy. Nuclei were

then lysed and DNA was precipitated and purified using Agencourt AMPure XP

beads (Beckman Coulter) and quantified using the Qubit fluorimetric quantification

system (Thermo). Hi-C efficiency was controlled by PCR using specific primers for

each species and, if this step was successful, DNA was used for library production.

DNA was first treated with T4 DNA polymerase to remove unligated biotinylated

ends and shared by sonication using a M220 Covaris ultra-sonicator with the DNA

550pb SnapCap microtube program (Program length: 45s; Picpower 50; DutyF 20;

Cycle 200; Temperature 20°C).

Sheared DNA was then sized using magnetic beads, and biotinylated fragments

were purified using M280 Streptavidin Dynabeads (Thermo) and reagents from the

Nextera Mate Pair Sample preparation kit (Illumina). Purified biotinylated DNA

was then processed using the TrueSeq nano DNA kit (Illumina) following the man-

ufacturer’s instructions. Libraries were amplified for 10 cycles and then purified

using Agencourt AMPure XP beads. Library quality was assessed on a Fragment

Analyser (AATI) and by endonuclease digestion using NheI endonuclease. Once val-

idated, each library was sequenced on an Illumina Hi-Seq 3000 to reach a minimum

number of 150M paired reads per library.

ATAC-seq

ATAC-seq libraries were prepared according to Buenrostro et al. (2013) with a few

modifications. For liver, cells were dissociated from the fresh tissue to get a single

cell suspension. Cells were counted and 50,000 cells were processed for each assay.

Transposition reaction was performed using the Tn5 Transposase and TD reaction

buffer from the Nextera DNA library preparation kit (Illumina) for 30 minutes at

37°C. DNA was then purified using the Qiagen MinElute PCR purification kit.

Libraries were first amplified for 5 cycles using custom-synthesized index primers

(see supplementary methods) and then a second amplification was performed. The

appropriate number of additional PCR cycles was determined using real-time PCR,

permitting the cessation of amplification prior to saturation. The additional number

of cycles needed was determined by plotting the Rn versus Cycle and then selecting

the cycle number corresponding to one-third of the maximum fluorescent intensity.

After PCR amplification, libraries were purified using a Qiagen MinElute PCR

purification kit followed by an additional clean-up and sizing step using AMPure
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XP beads (160 µl of bead stock solution was added to 100 µl of DNA in EB

buffer) following the manufacturer’s instructions. Library quality was assessed on

a BioAnalyser (Agilent) using Agilent High Sensitivity DNA kit (Agilent), and

libraries were quantified using a Qubit Fluorometer (Thermo).

Bioinformatics and Data Analysis
All software used in this project along with the corresponding versions are listed

in Table S3. The reference gene annotation was obtained from the Ensembl v90

release. Since Capra hircus was not part of the Ensembl release, we used the NCBI

CHIR 1.0.102 annotation (see Table S2).

RNA-seq pipeline

Prior to any processing, all RNA-seq reads were trimmed using cutadapt ver-

sion 1.8.3. Reads were then mapped twice using STAR v2.5.1.b [48, 49]: first on

the genome indexed with the reference gene annotation to quantify expression of

reference transcripts, and secondly on the same genome indexed with the newly

generated gene annotation (FR-AgENCODE transcripts) (see below and Figure

S1) [50]. The STAR --quantMode TranscriptomeSAM option was used in both

cases in order to additionally generate a transcriptome alignment (bam) file. Af-

ter read mapping and CIGAR-based softclip removal, each sample alignment file

(bam file) was processed with Cufflinks 2.2.1 [51, 52] with the max-intron-length

(100000) and overlap-radius (5) options, guided by the reference gene annotation

(--GTF-guide option) ([50], Figure S1). All cufflinks models were then merged into

a single gene annotation using Cuffmerge 2.2.1 [51, 52] with the --ref-gtf option.

The transcript and gene expressions on both reference and newly generated gene

annotation were quantified as TPM (transcripts per million) using RSEM 1.3.0 [53]

on the corresponding transcriptome alignment files ([50], Figure S1). The newly

generated transcripts were then processed with FEELnc version 0.1.0 [34] in or-

der to classify them into “lncRNA”, “mRNA” and “otherRNA” (Figure S1, Tables

S9-10, Figure S10). The newly generated transcripts with a TPM value of at least

0.1 in at least 2 samples were called FR-AgENCODE transcripts and kept as part

of the new annotation. The 0.1 threshold was chosen knowing that the expression

values of polyadenylated transcripts usually go from 0.01 to 10,000 [54] and that we

wanted to simultaneously capture long non coding RNAs that are generally lowly

expressed and reduce the risk of calling artefactual transcripts.

PCA based on gene expression

Principal Component Analysis (PCA) was performed using the mixOmics R package

[55] on the RNA-seq sample quantifications of each species. This was done using

the expression (TPM) of two different sets of genes: reference genes with TPM 0.1

in at least two samples (Figure S3) and FR-AgENCODE genes with TPM 0.1 in at

least two samples (Figure S15).

Annotated gene orthologs

We used Ensembl Biomart [56] to define the set of orthologous genes across cattle,

chicken and pig. Only “1 to 1” orthology relationships were kept (11,001 genes,
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Supplementary data file 1). Since goat was not part of the Ensembl annotation,

goat gene IDs were added to this list using gene name as a correspondence term.

The resulting 4-species orthologous set contained 9,461 genes (Supplementary data

file 1).

RNA-seq sample hierarchical clustering

Based on the expression of the 9,461 orthologous genes in the 39 RNA-seq samples

from the four species, the sample-by-sample correlation matrix was computed using

the Pearson correlation of the log10 gene TPM values. We then represented this

sample by sample correlation matrix as a heatmap where the samples were also

clustered using a complete linkage hierarchical clustering (Figure 3).

RNA-seq normalization and differential analysis

To perform the differential analysis of gene expression, raw read counts were first

measured by counting the number of RNA-seq reads overlapping the exonic regions

of each gene in each library using bedtools [57]. RNA-seq library size normalization

factors were calculated using the weighted Trimmed Mean of M-values (TMM) ap-

proach of [58] as implemented in the R/Bioconductor package edgeR [18]. The same

package was used to fit three different per-gene negative binomial (NB) generalized

log-linear models [59].

• In Model 1, the expression of each gene was explained by a tissue effect;

because all three tissues (liver, CD4, CD8) were collected from each animal,

an animal effect was also included to account for these repeated measures:

logµgi
si

= βg,tissue(i) + γg,animal(i),

where µgi represents the mean expression of gene g in sample i, si the

TMM normalization factor for sample i, tissue(i) ∈ {liver, CD4, CD8} and

animal(i) ∈ {1, 2, 3, 4} the tissue and animal corresponding to sample i, and

βg,tissue(i) and γg,animal(i) the fixed tissue and animal effects, respectively, of

gene g in sample i. Hypothesis tests were performed to identify significantly

differentially expressed genes among each pair of tissues, e.g.

H0g : βg,liver = βg,CD4.

• Model 2 is identical to the previous model, where gene expression was mod-

eled using both a tissue and an animal effect, with the exception that the CD4

and CD8 tissues were collapsed into a single group. In this model, the only

hypothesis of interest is thus between the liver and global CD cell group:

H0g : β
g,liver = βg,CD.

• In Model 3, the expression of each gene was explained using a nested factorial

model, which included a sex effect as well as tissue and animal effects nested

within sex:

logµgi
si

= βg,sex(i) + γg,sex(i):tissue(i) + δg,sex(i):animal(i),
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where µgi and si are as in Model 1, sex(i) ∈ {M, F}, tissue(i) ∈
{liver, CD4, CD8}, and animal(i) ∈ {1, 2}, respectively represent the sex,

tissue, and animal nested within sex corresponding to sample i, βg,sex(i) is the

sex effect for gene g in sample i, and γg,sex(i):tissue(i) and δg,sex(i):animal(i)
are the nested interaction effects of tissue and animal with sex. Note that

this model enables comparisons between sexes to be made between animals,

while comparisons among tissues are performed within animals. Specifically,

we focused on two sets of hypothesis tests: 1) pairwise comparisons of tissues,

after correction of the sex effect; and 2) comparisons of differences between

males and females within each tissue. For the former, in any of the pairwise

tissue comparisons or any of the four species, 50% to 85% of reference genes

(56% to 90% of the FR-AgENCODE genes) identified as DE in Model 1 or 3,

were commonly identified as DE by both Models 1 and 3.

All hypothesis tests were performed using likelihood-ratio tests and were corrected

for multiple testing with the Benjamini-Hochberg (FDR, [60]) procedure. Genes

with an FDR smaller than 5% and an absolute log-fold change larger than 1 were

declared differentially expressed. Due to the small number of available samples and

the fact that Model 3 was only possible for a subset of species due to incomplete

designs, we primarily focused on the simpler but more robust Models 1 and 2 by

default, and only used Model 3 to investigate the sex effect.

GO analysis of differentially expressed genes

For each species, GO term enrichment analysis was performed on the genes found

to be over-expressed in liver versus T cells, and reciprocally. This analysis was done

separately for each species (Figures S4-S6) and then on genes present in all species

(Figure S7), using the three following ontologies: biological process (BP), molecular

function (MF) and cell compartment (CC), and using the GOstat R/Bioconductor

package [61]). This analysis tests the differential genes against all the genes, and

here we always restricted analyses to genes with a human ortholog.

Sample and gene hierarchical clustering based on T cell and metabolism

Transcription Factors

Manually curated lists of T cell and metabolism related Transcription Factors (TF)

were established (Supplementary data file 3). As a quality control we performed in

each species and for both T cell and metabolism related TFs, a double hierarchical

clustering of RNA-seq samples and TF genes, using one minus the squared Pearson

correlation on the base 10 logarithm of the TPM as a distance and the complete

linkage aggregation (Figures S8-9).

FR-AgENCODE transcript positional classification

The FR-AgENCODE transcript models were first classified according to their po-

sition with respect to reference transcripts:

known the FR-AgENCODE transcript is strictly identical to a reference

transcript (same intron chain and same initial and terminal exons)

extension the FR-AgENCODE transcript extends a reference transcript

(same intron chain but one of its two most extreme exons extends

the reference transcript by at least one base pair)
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alternative the FR-AgENCODE transcript corresponds to a new isoform (or

variant) of a reference gene, i.e. the FR-AgENCODE transcript

shares at least one intron with a reference transcript but does not

belong to the above categories

novel the FR-AgENCODE transcript is in none of the above classes

FR-AgENCODE transcript coding classification

The FR-AgENCODE transcript models were also classified according to their coding

potential. For this, the FEELnc program (release v0.1.0) was used to discriminate

long non-coding RNAs from protein-coding RNAs. FEELnc includes three consec-

utive modules: FEELncfilter, FEELnccodpot and FEELncclassifier. The first mod-

ule, FEELncfilter, filters out non-lncRNA transcripts from the assembled models,

such as transcripts smaller than 200 nucleotides or those with exons strandedly

overlapping exons from the reference annotation. This module was used with de-

fault parameters except -b transcript_biotype=protein_coding, pseudogene

to remove novel transcripts overlapping protein-coding and pseudogene exons from

the reference. The FEELnccodpot module then calculates a coding potential score

(CPS) for the remaining transcripts based on several predictors (such as multi

k-mer frequencies and ORF coverage) incorporated into a random forest algo-

rithm [62]. In order to increase the robustness of the final set of novel lncRNAs

and mRNAs, the options --mode=shuffle and --spethres=0.98,0.98 were set.

Finally, the FEELncclassifier classifies the resulting lncRNAs according to their

positions and transcriptional orientations with respect to the closest annotated

reference transcripts (sense or antisense, genic or intergenic) in a 1Mb window

(--maxwindow=1000000).

It is worth noting that between 83 and 2,718 lncRNA transcripts were not classi-

fied because of their localization on the numerous unassembled contigs in livestock

species with no annotated genes.

Syntenic conservation of lncRNAs

Briefly, a lncRNA was considered as “syntenically” conserved between two species

if (1) the lncRNA was located between two orthologous protein-coding genes, (2)

the lncRNA was the only one in each species between the two protein-coding genes

and (3) the relative gene order and orientation of the resulting triplet was identical

between species. Using these criteria, we found six triplets shared between the four

species, 73 triplets shared between cattle, goat and pig, and 19 triplets shared

between cattle, chicken and pig.

Annotation of 3’ polyA sites

The identification of potential polyA sites was performed from the already mapped

RNA-seq data in three steps: prediction, cleaning and clustering.

Prediction The samToPolyA utility (Table S3) was used on RNA-seq mapped

reads to find traces of sequenced yet unmapped A stretches in

reads that overlap polyA sites. Taking a bam file as input, sam-

ToPolyA finds stretches of As in the terminal part of the reads

that had to be trimmed to allow the read to be mapped (soft-

clip in the CIGAR string). The bam file of each sample was
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processed with the options --minClipped=20 --minAcontent=0.9

--discardInternallyPrimed, which outputs one bed record per po-

tential site. For each site the number of supporting reads was com-

puted per tissue and in total.

Cleaning Extensive filtering was done to discard false positive sites that could

have originated from internal priming during the library construction

or from excessive read trimming during the mapping. The first can be

detected by the presence of an A-rich region upstream of the candidate

polyA site (12 As or more within the upstream 20bp), the second by

a similar region downstream. Any site with such a region upstream

or downstream was discarded. Unknown bases “N” were considered

as “A”s for this filtering step.

Clustering Consecutive positions on the same strand that were not separated by

more than 10bp were then grouped into clusters of polyA sites. PolyA

clusters are provided for each species as additional files in BED format,

where the positions of the distinct polyA sites within the clusters

and the corresponding numbers of supporting reads at each of them

are indicated in fields #7 and #8 respectively. The total number of

supporting reads for each cluster is reported in the score field #5.

ATAC-seq data analysis pipeline

ATAC-seq reads were trimmed with trimgalore 0.4.0 using the --stringency 3,

-q 20, --paired and --nextera options (Table S3). The trimmed reads were then

mapped to the genome using bowtie 2 2.3.3.1 with the -X 2000 and -S options [63].

The resulting sam file was then converted to a bam file with samtools 1.3.1, and

this bam file was sorted and indexed with samtools 1.3.1 [64]. The reads for which

the mate was also mapped and with a MAPQ ≥ 10 were retained using samtools

1.3.1 (-F 12 and -q 10 options, [64]), and finally only the fragments where both

reads had a MAPQ ≥ 10 and which were on the same chromosome were retained.

Mitochondrial reads were then filtered out, as well as duplicate reads (with picard

tools, MarkDuplicates subtool, see Table S14). The peaks were called using MACS2

2.1.1.20160309 [65] in each tissue separately using all the mapped reads from the

given tissue (-t option) and with the --nomodel, -f BAMPE and --keep-dup all

options. To get a single set of peaks per species, the tissue peaks were merged using

mergeBed version 2.26.0 [57]. These peaks were also quantified in each sample by

simply counting the number of mapped reads overlapping the peak.

ATAC-seq peaks were also classified with respect to the reference gene annotation

using these eight genomic domains and allowing a peak to be in several genomic

domains:

exonic the ATAC-seq peak overlaps an annotated exon by at least one bp

intronic the ATAC-seq peak is totally included in an annotated intron

tss the ATAC-seq peak includes an annotated TSS

tss1Kb the ATAC-seq peak overlaps an annotated TSS extended 1Kb both

5’ and 3’

tss5Kb the ATAC-seq peak overlaps an annotated TSS extended 5Kb both

5’ and 3’
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tts the ATAC-seq peak includes an annotated TTS

tts1Kb the ATAC-seq peak overlaps an annotated TTS extended 1Kb both

5’ and 3’

tts5Kb the ATAC-seq peak overlaps an annotated TTS extended 5Kb both

5’ and 3’

intergenic the ATAC-seq peak does not overlap any gene extended by 5KB on

each side

Differential analysis: normalization and model. Contrary to RNA-seq counts,

ATAC-seq counts exhibited trended biases visible in log ratio-mean average (MA)

plots between pairwise samples after normalization using the TMM approach, sug-

gesting that an alternative normalization strategy was needed. In particular, trended

biases are problematic as they can potentially inflate variance estimates or log fold-

changes for some peaks. To address this issue, a fast loess approach [66] implemented

in the normOffsets function of the R/Bioconductor package csaw [67] was used to

correct differences in log-counts vs log-average counts observed between pairs of

samples.

As for for RNA-seq, we used three different differential models: Model 1 for tissue

pair comparisons, Model 2 for T cell versus liver comparisons and Model 3 for tissue

pair and sex comparisons taking the sex effect into account (see corresponding RNA-

seq section for more details). In any of the pairwise tissue comparisons or any of the

four species, 26% to 56% of ATAC-seq peaks identified as differentially accessible

(DA) in Model 1 or 3 were commonly identified as DA by both Models 1 and 3.

Although sex-specific effects appeared to be stronger in the ATAC-seq data than

in the RNA-seq data, for simplicity and consistency, we have focused our discussions

on results from Models 1 and 2 in the manuscript, unless specifically discussing sex

effects.

ATAC-seq peak TFBS density. In order to identify Transcription Factor Binding

Sites (TFBS) genome-wide, we used the FIMO [68] software (Table S3) to look for

genomic occurrences of the 519 TFs catalogued and defined in the Vertebrate 2016

JASPAR database [69] . We then intersected these occurrences with the ATAC-seq

peaks of each species and computed the TFBS density in differential vs non differ-

ential ATAC-seq peaks (Figure S18). Among the predicted TFBSs, those obtained

from the CTCF motif were used to profile the resulting density with respect to

Topological Associating Domains from Hi-C data (Figure 7).

Hi-C data analysis pipeline

Our Hi-C analysis pipeline includes HiC-Pro v2.9.0 [70] (Table S3) for the read

cleaning, trimming, mapping (this part is internally delegated to Bowtie 2 v2.3.3.1),

matrix construction, and matrix balancing ICE normalization [71]. TAD finding was

done using Armatus v2.1 [45] (Table S3). Graphical visualization of the matrices was

produced with the HiTC R/Bioconductor package v1.18.1 [44] (Table S3). Export to

JuiceBox [72] was done through the Juicer Tools v0.7.5 (Table S3). These tools were

called through a pipeline implemented in Python. Because of the high number of

unassembled scaffolds (e.g. for goat) and/or micro-chromosomes (e.g. for chicken)
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in our reference genomes, only the longest 25 chromosomes were considered for

TAD and A/B compartment calling. For these processes, each chromosome was

considered separately.

The Directionality Index (DI) was computed using the original definition intro-

duced by [46] to indicate the upstream vs. downstream interaction bias of each

genomic region. Interaction matrices of each chromosome were merged across repli-

cates and the score was computed for each bin of 40Kb. CTCF sites were predicted

along the genomes by running FIMO with the JASPAR TFBS catalogue (see section

“ATAC-seq peak TFBS density”).

A/B compartments were obtained using the method described in [15] as illustrated

in Figure S23: first, ICE-normalized counts, Kij , were corrected for a distance effect

with:

K̂ij =
Kij −K

d

σd
,

in which K̂ij is the distance-corrected count for the bins i and j, K
d

is the average

count over all pairs of bins at distance d = d(i, j) and σd is the standard devia-

tion of the counts over all pairs of bins at distance d. Within-chromosome Pearson

correlation matrices were then computed for all pairs of bins based on their distance-

corrected counts and a PCA was performed on this matrix. The overall process was

performed similarly to the method implemented in the R/Bioconductor package

HiTC [44]. Boundaries between A and B compartments were identified according

to the sign of the first PC (eigenvector). Since PCAs had to be performed on

each chromosome separately, the average counts on the diagonal of the normalized

matrix were used to identify which PC sign (+/-) should be assigned to A and B

compartments for each chromosome. This allowed to automatically obtain an homo-

geneous assignment across chromosomes. In line with what was originally observed

in human, where the first PC was the best criterion for separating A from B com-

partments (apart from few exceptions like the chromosome 14 for instance [15]),

we also observed a good agreement between the plaid patterns of the normalized

correlation matrices and the sign of the first PC (Figure S23).

To estimate the robustness of A/B compartment calling, the method was tested

on each replicate separately (four animals). Since the HiTC filtering method can

discard a few bins in some matrices, resulting in missing A/B labels, the proportion

of bins with no conflicting labels across replicates was computed among the bins

that had at least two informative replicates (Figure S24).

Integrative analysis

ATAC-seq vs. RNA-seq correlation: intra- and inter-sample analysis. For each

ATAC-seq peak that overlapped a promoter region (1Kb upstream of the TSS, as

suggested in Figure 5) its loess-normalized read count value (see differential analy-

sis) was associated with the TMM-normalized expression of the corresponding gene

from the reference annotation. Intra- and inter-sample correlations were then in-

vestigated: within each sample, genes were ranked according to their expressions

and the distribution of the corresponding ATAC-seq values was computed for each
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quartile (Figure S19). Across samples, the Pearson correlation coefficient was com-

puted for each gene using the ATAC-seq and RNA-seq normalized values from all

the available samples with both values (10 for pig, for instance), as illustrated in

Figure S20.

Chromatin accessibility and gene expression in A/B compartments. To compute

the general chromatin accessibility in A and B compartments, we first computed

the average of the normalized read count values across all liver samples for each

ATAC-seq peak. For each compartment, the mean value of all contained peaks was

then reported and the resulting distributions for all A and B compartments were

reported (Figure 8).

The same approach was used to assess the general expression of genes in A and B

compartments, using the average of the normalized expression values from the liver

samples.

Difference between A and B distributions was tested for statistical significance

using a Wilcoxon test.
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8UMR1282 ISP, INRA, F-37380 Nouzilly, France. 9IRCM, CEA, Université Paris Saclay, F-78350 Jouy-en-Josas,
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36. Muret K, Klopp C, Wucher V, Esquerré D, Legeai F, Lecerf F, et al. Long noncoding RNA repertoire in chicken
liver and adipose tissue. Genetics Selection Evolution . 2017; 49:6.

37. Lagarde J, Uszczynska-Ratajczak B, Santoyo-Lopez J, Gonzalez JM, Tapanari E, Mudge JM, et al. Extension of
human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq). Nature
Communications . 2016; 7:12339.

38. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Principles of long noncoding RNA
evolution derived from direct comparison of transcriptomes in 17 species. Cell Reports . 2015; 11:1110–1122.

39. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, et al. The evolution of lncRNA repertoires
and expression patterns in tetrapods. Nature . 2014; 505:635–640.

40. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA
polyadenylation revealed by PAS-Seq. Rna . 2011; 17:761–772.

41. Chang JH, Tong L. Mitochondrial poly (A) polymerase and polyadenylation. Biochimica et Biophysica Acta
(BBA)-Gene Regulatory Mechanisms . 2012; 1819:992–997.
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47. Tagu D, Colbourne JK, Nègre N. Genomic data integration for ecological and evolutionary traits in non-model
organisms. BMC genomics . 2014; 15:490.

48. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics . 2013; 29:15–21.

49. Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Current Protocols in Bioinformatics . 2015;
51:11–14.

50. Djebali S, Wucher V, Foissac S, Hitte C, Corre E, Derrien T. Bioinformatics pipeline for transcriptome
sequencing analysis. In U Ørom, editor, Enhancer RNAs, New York, NY, USA: Humana Press, volume 1468, pp.
201–219. 2017; .

51. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/316091doi: bioRxiv preprint first posted online May. 11, 2018; 

http://dx.doi.org/10.1101/316091
http://creativecommons.org/licenses/by/4.0/


Foissac et al. Page 25 of 35

Nature Biotechnology . 2010; 28:511–515.
52. Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using

RNA-Seq. Bioinformatics . 2011; 27:2325–2329.
53. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference

genome. BMC Bioinformatics . 2011; 12:323.
54. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human

cells. Nature . 2012; 489:101.
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56. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data

retrieval across taxonomic space. Database . 2011; 2011:bar030.
57. Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis. Current Protocols in Bioinformatics .

2014; 47:11–12.
58. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data.

Genome Biology . 2010; 11:R25.
59. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with

respect to biological variation. Nucleic Acids Research . 2012; 40:4288–4297.
60. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple

testing. Journal of the Royal Statistical Society, Series B (Methodological) . 1995; 57:289–300.
61. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics . 2006;

23:257–258.
62. Breiman L. Random forests. Machine Learning . 2001; 45:5–32.
63. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods . 2012; 9:357–359.
64. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and

SAMtools. Bioinformatics . 2009; 25:2078–2079.
65. Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nature Protocols . 2012;

7:1728–1740.
66. Ballman KV, Grill DE, Oberg AL, Therneau TM. Faster cyclic loess: normalizing RNA arrays via linear models.

Bioinformatics . 2004; 20:2778–2786.
67. Lun AT, Smyth GK. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding

windows. Nucleic Acids Research . 2015; 44:e45.
68. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics . 2011;

27:1017–1018.
69. Mathelier A, Fornes O, Arenillas DJ, Chen Cy, Denay G, Lee J, et al. JASPAR 2016: a major expansion and

update of the open-access database of transcription factor binding profiles. Nucleic Acids Research . 2015;
44:D110–D115.

70. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline
for Hi-C data processing. Genome Biology . 2015; 16:259.

71. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. Iterative correction of Hi-C
data reveals hallmarks of chromosome organization. Nature Methods . 2012; 9:999–1003.

72. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox provides a visualization
system for Hi-C contact maps with unlimited zoom. Cell Systems . 2016; 3:99–101.

73. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic
and other trees. Nucleic Acids Research . 2016; 44:W242–W245.

Figures

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/316091doi: bioRxiv preprint first posted online May. 11, 2018; 

http://dx.doi.org/10.1101/316091
http://creativecommons.org/licenses/by/4.0/


Foissac et al. Page 26 of 35

Figure 1 Experimental design overview. For each species, samples from liver and T cells of two
males and two females were processed by RNA-seq, ATAC-seq and Hi-C assays. See Table S1 for
a complete list of performed experiments and available datasets.
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Figure 2 Gene expression ratio in males versus females on chromosomes X or Z. Gene
expression was compared in males vs. females using the base 10 logarithm of the TPM values.
y-axis: the log2 of the male/female expression ratio for the genes located on the chromosome of
interest. For each plot, the median of these expression ratios is indicated in the title. Left: genes
located on chromosome 1 used as a control. Right: genes located on chromosome X for mammals
and Z for chicken. x-axis: the position of the gene on the chromosome of interest.
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Figure 3 RNA-seq sample heatmap and hierarchical clustering based on the expression of
the 9,461 orthologous genes across the four species. Pairwise similarity between samples is
computed as the Pearson correlation between the base 10 logarithm of the expression (TPM) of
the 9,461 orthologous genes. These similarities are plotted as a heatmap, where samples appear
both as rows and columns and are labelled by their species, tissue and the sex of the animal. The
color of each heatmap cell also reflects the similarity (Pearson correlation) between each sample
pair (the lighter, the higher). Hierarchical clustering is also performed using one minus the squared
Pearson correlation as a distance and the complete linkage aggregation method.
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Figure 4 A novel lncRNA conserved across multiple species. Phylogenetic representation
based on the NCBI taxonomy of the 22 annotated species from fishes to mammals using iTOL [73]
(A) Three gene syntenic region centered on CREMos lncRNA with NCBI IDs for lncRNAs already
annotated in reference databases and distance between entities in nucleotides ; The cases where
CREM and CREMos genes are overlapping are indicated by the “0*” distance. (B) Expression of
the 3 genes in cattle, goat, chicken and pig: CREMos is generally less expressed in liver than in
CD cells (in cattle, chicken and pig) whereas CREM is generally more expressed in liver than in
CD cells (in cattle, chicken and goat).

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/316091doi: bioRxiv preprint first posted online May. 11, 2018; 

http://dx.doi.org/10.1101/316091
http://creativecommons.org/licenses/by/4.0/


Foissac et al. Page 29 of 35

A B

C D

Figure 5 Density of ATAC-seq peaks and polyA clusters within and around reference genes
for cattle (A), goat (B), chicken (C) and pig (D). Mean coverage values of ATAC-seq peaks
(y-axis, left) and polyA clusters (y-axis, right) were computed genome-wide relatively to the
position of the genes (x-axis). Dotted lines indicate gene boundaries. Since genes have variable
sizes, an absolute scale is used for the upstream and downstream flanking regions (from -5Kb
before to +5Kb after the genes) while a relative scale is used within the gene regions (from 0 to
100% of the gene length). As expected, the ATAC-seq and the polyA signals tend to accumulate at
the 5’ and 3’ ends of the genes respectively.
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Figure 6 Correlation between gene expression and promoter accessibility in pig. For each
expressed FR-AgENCODE gene with an ATAC-seq peak in the promoter region, the Pearson
correlation is computed between the base 10 logarithm of the RNA-seq gene expression and the
base 10 logarithm of the ATAC-seq chromatin accessibility. The distribution is represented for
genes with no significant differential expression between liver and T cells (A, top) and for
differentially expressed genes (B, bottom). The distribution obtained for differentially expressed
genes showed an accumulation of both positive and negative correlation values, suggesting a
mixture of regulatory mechanisms.
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A

B

C

Figure 7 CTCF motif density and Directionality Index within and around TADs. Spatial
proximity bias toward upstream vs. downstream positions is measured from Hi-C interaction
matrices using the Directionality Index and represented on the y-axis (left). The mean density of
predicted CTCF binding sites is also shown on the y-axis (right). Mean DI and CTCF density are
plotted relative to the positions of Hi-C-derived Topologically Associating Domains. Dotted lines
indicate TAD boundaries. Absolute scale is used on the x-axis up to 1Mb on each side of the TADs
while relative positions are used inside the domains (from 0 to 100% of the TAD length).

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/316091doi: bioRxiv preprint first posted online May. 11, 2018; 

http://dx.doi.org/10.1101/316091
http://creativecommons.org/licenses/by/4.0/


Foissac et al. Page 32 of 35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

Chicken Goat Pig

A B A B A B

0

50

100

150

HiC compartment

A
V

G
 g

en
e 

ex
pr

es
si

on
 in

 li
ve

r

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Chicken Goat Pig

A B A B A B

0

50

100

150

HiC compartment

A
V

G
 A

TA
C

−
se

q 
pe

ak
 s

co
re

 in
 li

ve
r

B

Figure 8 Gene expression and chromatin accessibility in A and B topological
compartments. For the three species with Hi-C-derived A and B compartments, the distribution of
the RNA-seq gene expression values (normalized read counts, top panel) and ATAC-seq chromatin
accessibility values (normalized read counts, bottom panel) is shown per compartment type. A:
“active” compartments. B: “repressed” compartments. As Hi-C data was only available from liver,
only RNA-seq and ATAC-seq values from the same samples were considered. The significant and
systematic difference of gene expression and chromatin accessibility values between A and B
compartments (p-values < 2.2e-16, Wilcoxon test) confirm a general consistency between
RNA-seq, ATAC-seq and Hi-C data across species.
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Tables
Table 1 Reference and FR-AgENCODE detected transcripts. This table provides the total number
of reference transcripts for each species, the number and percent of those that were detected by
RNA-seq (TPM ≥ 0.1 in at least 2 samples), the total number of FR-AgENCODE transcripts, and the
subsets of them that were classified as mRNAs or lncRNAs by FEELnc. Overall, the transcript
repertoire is augmented by about 50% in all species but cattle, where it is more than tripled.

Species
Reference transcripts FR-AgENCODE transcripts

All Expressed
] % of total ] mRNAs lncRNAs

Cattle 26,740 16,100 60.2 84,971 59,801 22,724
Goat 53,266 34,442 64.7 78,091 64,962 13,864

Chicken 38,118 22,180 58.2 57,817 47,567 7,502
Pig 49,448 29,786 60.2 77,540 63,721 12,587

Additional files
Additional files are available in the supplementary data file section and on the

FR-AgENCODE website www.fragencode.org.

Additional file 1 — SF1.pdf

Supplementary figures (S1-S23) and tables (S1-S15).

Addisional file 2 – refgn.tar.gz

Reference genes and transcripts (structure, expression) of the 4 species. Archive

content:

• bos_taurus.gtf

• bos_taurus.refgn.tpm.tsv

• capra_hircus.gtf

• capra_hircus.refgn.tpm.tsv

• gallus_gallus.gtf

• gallus_gallus.refgn.tpm.tsv

• sus_scrofa.gtf

• sus_scrofa.refgn.tpm.tsv

Additional file 3 – ensembl orth 1to1 chicken pig cow goat hsid.tsv

Orthologs between the 4 livestock species. We used Biomart to retrieve the 1 to

1 orthology relationships between chicken, pig and cow and added goat via gene

name. The human gene id is given for reference.

Additional file 4 – de.refgn.tar.gz

Reference DE genes (all combinations): the archive contains four folders, one

for each species (bos_taurus, capra_hircus, gallus_gallus, sus_scrofa). Each

folder contains itself three subfolders, one for each model: diffcounts.nominsum

(Model 1), diffcounts.cdvsliver (Model 2) and diffcounts.withsex (Model

3).

Results of Model 1 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.readme.idx

• refgenes.counts.min2tpm0.1.normcounts.diff.cd4.cd8.bed

• refgenes.counts.min2tpm0.1.normcounts.diff.cd4.liver.bed
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• refgenes.counts.min2tpm0.1.normcounts.diff.cd8.liver.bed

Results of Model 2 are given in:

• refgenes.counts.min2tpm0.1.normcounts.diff.readme.idx

• refgenes.counts.min2tpm0.1.normcounts.diff.cd.liver.bed

Results of Model 3 are given:

• for all species but chicken in:

– refgenes.counts.min2tpm0.1.normcounts.diff.readme.idx

– refgenes.counts.min2tpm0.1.normcounts.diff.cd4.cd8.bed

– refgenes.counts.min2tpm0.1.normcounts.diff.cd4.liver.bed

– refgenes.counts.min2tpm0.1.normcounts.diff.cd8.liver.bed

– refgenes.counts.min2tpm0.1.normcounts.diff.sex.cd4.bed

– refgenes.counts.min2tpm0.1.normcounts.diff.sex.cd8.bed

– refgenes.counts.min2tpm0.1.normcounts.diff.sex.liver.bed

• for chicken in:

– refgenes.counts.min2tpm0.1.normcounts.diff.readme.idx

– refgenes.counts.min2tpm0.1.normcounts.diff.F.M.bed

All bed files contain the coordinates and id of the genes found to be differentially

expressed between the two conditions. The file also contains the normalized read

counts of those genes in the different samples as well as the adjusted pvalue, logFC

and normLogFC (see readme.idx file for more details)

Additional file 5 – TF.curated.tar.gz

Manually curated lists of immunity and metabolism TFs.:

• liver_TFnames.txt

• Tcell_TFnames.txt

Additional file 6 – fraggn.tar.gz

FR-AgENCODE genes and transcripts (structure, expression, positional and coding

classes).

• bos_taurus_cuff_tpm0.1_2sample_complete.gff

• bos_taurus_cuff_tpm0.1_2sample_trid_4posclasses_3codingclasses_booleans.tsv

• bos_taurus.frag.gnid.posclasslist.codclasslist.tsv

• bos_taurus.fraggn.tpm.tsv

• capra_hircus_cuff_tpm0.1_2sample_complete.gff

• capra_hircus_cuff_tpm0.1_2sample_trid_4posclasses_3codingclasses_booleans.tsv

• capra_hircus.frag.gnid.posclasslist.codclasslist.tsv

• capra_hircus.fraggn.tpm.tsv

• gallus_gallus_cuff_tpm0.1_2sample_complete.gff

• gallus_gallus_cuff_tpm0.1_2sample_trid_4posclasses_3codingclasses_booleans.tsv

• gallus_gallus.frag.gnid.posclasslist.codclasslist.tsv

• gallus_gallus.fraggn.tpm.tsv

• sus_scrofa_cuff_tpm0.1_2sample_complete.gff

• sus_scrofa_cuff_tpm0.1_2sample_trid_4posclasses_3codingclasses_booleans.tsv

• sus_scrofa.frag.gnid.posclasslist.codclasslist.tsv

• sus_scrofa.fraggn.tpm.tsv
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Additional file 7 – de.fraggn.gz

FR-AgENCODE DE genes (all combinations). The archive has the same structure

than de.refgn.tar.gz with names starting with cuffgenes instead of refgenes.

Additional file 8 – lncRNAs.tar.gz

lncRNAs (information from FEELnc, orthology, structure ...). Archive content:

• bos_taurus.lncrna.TPM0.1in2samples.classif.tsv

• capra_hircus.lncrna.TPM0.1in2samples.classif.tsv

• ConservedLncRNABySynteny_73_19_6.xlsx

• gallus_gallus.lncrna.TPM0.1in2samples.classif.tsv

• sus_scrofa.lncrna.TPM0.1in2samples.classif.tsv

Additional file 9 – polyAsite.clusters.tar.gz

polyA site clusters.

• bos_taurus.polyAsites.minclip10.merged.maxdist10.minreads2.bed

• capra_hircus.polyAsites.minclip10.merged.maxdist10.minreads2.bed

• gallus_gallus.polyAsites.minclip10.merged.maxdist10.minreads2.bed

• sus_scrofa.polyAsites.minclip10.merged.maxdist10.minreads2.bed

Additional file 10 – atac.peaks.tar.gz

ATAC-seq peaks (coordinates, quantification, positional classification): the

archive contains four folders, one for each species (bos_taurus, capra_hircus,

gallus_gallus, sus_scrofa). Each folder contains the following six files:

• mergedpeaks_allinfo2.tsv

• mergedpeaks_allinfo.tr2.tsv

• mergedpeaks_allinfo.tr.tsv

• mergedpeaks_allinfo.tsv

• mergedpeaks.peaknb.allexp.readnb.bed.readme.idx

• mergedpeaks.peaknb.allexp.readnb.bed

Additional file 11 – da.atacpeaks.tar.gz

DA ATAC-seq peaks (all combinations). The archive has the same structure than

de.refgn.tar.gz with names starting with mergedpeaks.peaknb.allexp.readnb

instead of refgenes.counts.min2tpm0.1.

Additional file 12 – hic.tad.ab.tar.gz

Hi-C TADs and A/B compartments: the archive contains three folders, one for

each species (capra_hircus, gallus_gallus, sus_scrofa). Each folder contains

the following two files:

• compartments.bed

• mat.40000.longest25chr.tad.consensus.bed
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