Coordination problems and the control of epidemics affecting fruit trees
César Martínez, Pierre Courtois, Mabel Tidball, Gael Thébaud

To cite this version:
César Martínez, Pierre Courtois, Mabel Tidball, Gael Thébaud. Coordination problems and the control of epidemics affecting fruit trees. 1.GREEN-Econ Spring School in Environmental Economics, Aix-Marseille School of Economics [Aix-Marseille Université] (AMSE). FRA., Jul 2018, Marseille, France. hal-02791160

HAL Id: hal-02791160
https://hal.inrae.fr/hal-02791160
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Coordination problems and the control of epidemics affecting fruit trees

C. Martinez1, P. Courtois1, M. Tidball1, G. Thébaud2

1INRA, CEE-M; 2INRA, BGPI

23/05/2018
A complex management problem

- production by private owners distributed within a landscape
- economic losses due to the infection outbreak
- diffusion of pathogens intra and inter-patch
- finite horizon, multi-year production
- treatment by (partially inefficient) detection and removal of infected trees, (discrete binary choice)

Figure: Sharka example
Objective: Understand the decentralized problem

Problem often studied under the centralized perspective.

Our objective: understand better the decentralized behavior.
Emerging literature: [Atallah et al., 2017], [Fenichel et al., 2014], [Costello et al., 2017]

We analyze classical questions...
coordination issues, inefficiency characterization...
with specific modeling constraints
Modeling: infection diffusion within a period

Management options: \(\rho_i \in \{0, \rho_{\text{max}}\}; \; 0 < \rho_{\text{max}} < 1 \)

State variables:
\(l_i \) Quantity of infected in patch \(i \).
\(S_i \) Quantity of uninfected trees.

Growth and diffusion of the infection: \(r_{ij} \)

Evolutionary law (discrete time model), with \(I \ll S \):

\[
(l_{i}^{t+1}, S_{i}^{t+1}) = f(S^{t}, l^{t}, \rho^{t})
\]

\[
l_{i}^{t+1} = l_{i}^{t}(1 - \rho_{i}) + \sum_{j=1}^{N} l_{j}^{t}(1 - \rho_{j})r_{ji}
\]

\[
S_{i}^{t+1} = S_{i}^{t} - \sum_{j=1}^{N} l_{j}^{t}(1 - \rho_{j})r_{ji}
\]
Modeling: Infection diffusion, two patches model

Diffusion in a two patches model

\[I_{i}^{t+1} = I_{i}^{t}(1 - \rho_{i}) + \sum_{j=1}^{N} I_{j}^{t}(1 - \rho_{j}) r_{ji} \]

patch 1

\[r_{11} I_{1}^{t}(1 - \rho_{1}^{t}) \]

\[r_{12} I_{1}^{t}(1 - \rho_{2}^{t}) \]

\[\rightarrow \]

partch 2

\[r_{21} I_{2}^{t}(1 - \rho_{1}^{t}) \]

\[r_{22} I_{2}^{t}(1 - \rho_{2}^{t}) \]
Economic model: profit function

\[\pi_i^t(I^t, S^t, \rho^t) = \left(S_i^{t+1} v_i + I_i^{t+1} u_i - \frac{\rho_i^t}{\rho_{\text{max}}} (c_a + c_h A_i) \right) \]

subject to:

\[(I^{t+1}, S^{t+1}) = f(S^t, I^t, \rho^t). \]

- \(v_i \): production value by an uninfected tree in patch \(i \)
- \(u_i \): production value by an infected tree \(i \)
- \(c_a \): access cost
- \(c_h \): per ha\(^{-1} \) inspection cost
- \(A_i \): patch \(i \) surface
Conceptual framework

Resolution for the closed loop feedback-Nash equilibrium concept. Comparison with the Pareto optimum.

\[V_i^T(\rho^0, \rho^1, I^0, S^0) = \pi^0_i(I^0, S^0, \rho^0) + \beta \pi^1_i(I^1, S^1, \rho^1) \]

\[L^{t+1}, S^{t+1} = f(L^t, S^t, \rho^t). \]
Impact of the initial condition in the 2 patches 2 steps model:

- An example of analytical result: zone where \((\rho_{\text{max}}, \rho_{\text{max}}, \rho_{\text{max}}, \rho_{\text{max}})\) is the unique FNE
- Multiplicity of FNE
- Characterization of inefficiency
Maximal effort as a FNE

Proposition: Within the initial condition state space, there is a zone where initial infection is sufficiently high so that both players do maximal effort:

\[(\rho_{\text{max}}, \rho_{\text{max}}, \rho_{\text{max}}, \rho_{\text{max}}) \text{ is the unique Nash equilibrium if and only if } (I_1^0, I_2^0) \in \Delta_{\text{max}}, \text{ where } \Delta_{\text{max}} \text{ is defined by the set of inequalities:} \]

\[
\begin{align*}
I_2^0 &> \frac{\alpha_1 - I_1^0(1 - \rho_{\text{max}})(1 + r_{11})}{(1 - \rho_{\text{max}})r_{21}} \\
I_2^0 &> \frac{\alpha_2 - I_1^0(1 - \rho_{\text{max}})r_{12}}{(1 - \rho_{\text{max}})(1 + r_{22})} \\
I_2^0 &> k_2 \\
I_1^0 &> k_1
\end{align*}
\]

where \(\alpha_i \equiv \frac{1}{F_i} \left(c_a + c_h \frac{1}{\rho_{\text{max}}} A_i \right) \) where \(F_i \equiv (v_i - u_i) r_{ii} - u_i\), and \(k_1\) and \(k_2\) are some constants.
Private efficiency in the case of maximal effort

\[
\frac{\alpha_1}{(1 - \rho_{max})^2}
\]

\[
\frac{\alpha_2}{(1 - \rho_{max})(1 + r_{22})}
\]

\[
k_2
\]

\[
k_1
\]

\[
\rho^0_1, \rho^0_2, \rho^1_1, \rho^1_2 \Rightarrow (\rho_{max}, \rho_{max}, \rho_{max}, \rho_{max})
\]

\[
(\rho^0_1, \rho^0_2, \rho^1_1, \rho^1_2)^* = (\rho_{max}, \rho_{max}, \rho_{max}, \rho_{max})
\]

\[
(\rho^0_1, \rho^0_2, \rho^1_1, \rho^1_2)^* = (\rho_{max}, 0, \rho_{max}, \rho_{max})
\]
Illustration for ρ_{max} as a unique Nash equilibrium

\[\beta_i \equiv \frac{1}{D_i} \left(c_a + c_h \frac{1}{\rho_{\text{max}}} A_i \right) \text{ where } D_i \equiv (v_i - u_i)r_{ii} + (v_j - u_j)r_{ij} - u_i \]

\[\alpha_i \equiv \frac{1}{F_i} \left(c_a + c_h \frac{1}{\rho_{\text{max}}} A_i \right) \text{ where } F_i \equiv (v_i - u_i)r_{ii} - u_i \]
Number of Nash equilibria

Proposition: Multiplicity might arise... even in a symmetric case (proof using an example).
Example, Nash equilibria according to the initial condition
Symmetric example, inefficiency

Figure: Pareto optimum, symmetric example

Figure: Nash equilibria, symmetric example
Symmetric example, inefficiency
Conclusion

Main results
When infection is still small, \((I \ll S)\), and detection imperfect, and given parameters \((T, R, U, V...)\)

- Nash feedback resolution of the game shows equilibria depending on the initial infection level
- Geometric characterization of efficiency and inefficiency zones as a function of the initial infectious state
- Coordination issues: multiplicity of equilibria for some \((I_1^0, I_2^0)\)
Conclusion

Perspectives

- Introduce asymmetry in the case study, look at the impact of other parameters
- Study de-synchronization of production cycles and longer time horizons
- Apply this framework to analyze real life problems (find some data); question large scale management programs using known parameters
- Work on the modeling: SI model, probabilistic framework...
Thanks for listening !

Temporal structure

BEGINNING OF THE GAME

decision
(ρ_0^1, ρ_0^1)

\downarrow

$t = 0$

evolution :
$(I_1^0, I_2^0) = f(I_1^0, I_2^0, \rho_0^0, \rho_0^0)$

\downarrow

0

decision
(ρ_1^1, ρ_1^1)

\downarrow

$t = 1$

evolution :
$(I_1^1, I_2^1) = f(I_1^1, I_2^1, \rho_1^1, \rho_1^1)$

\downarrow

1

first season payoffs

$\pi_1^0(I_0^0, \rho_0^0) = g(I_1^0)$

$\pi_2^0(I_0^0, \rho_0^0) = g(I_2^0)$

periods

\rightarrow

2

second season payoffs

$\pi_1^1(I_1^1, \rho_1^1) = g(I_1^1)$

$\pi_2^1(I_1^1, \rho_1^1) = g(I_2^1)$

END OF THE GAME

C. Martinez (INRA, CEE-M)