Calibration and Evaluation of the STICS Intercrop Model for Two Cereal-Legume Mixtures
Kirsten Paff, Sebastian Munz, Rémi Vezy, Noémie Gaudio, Laurent Bedoussac, Eric Justes

To cite this version:
Kirsten Paff, Sebastian Munz, Rémi Vezy, Noémie Gaudio, Laurent Bedoussac, et al.. Calibration and Evaluation of the STICS Intercrop Model for Two Cereal-Legume Mixtures. 2. International Crop Modelling Symposium (iCROPM2020), Feb 2020, Montpellier, France. 1 p., 2020. hal-02791381

HAL Id: hal-02791381
https://hal.inrae.fr/hal-02791381
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The aim of this study was to calibrate and evaluate the STICS Intercrop model for two cereal-legume mixtures (winter and spring intercrops) simulating two types of cereal-legume mixtures (winter crops could reduce inputs and potential environmental damage through N losses and spring intercrops) to determine the validity domain.

The species and cultivar parameters calibrated in step 1 are used again for intercrop simulations in step 2.

Materials and Methods

- French data sets comprised of 4 years of winter wheat (*Triticum turgidum* L.) and pea (*Pisum sativum* L.) (Bedoussac, 2009; Kammoun, 2015), and 4 years of spring barley (*Hordeum vulgare* L.) and pea (Corre-Hellou, 2005) including different N levels and plant densities (Table 1)
- 3-step Approach: 1) Calibration of species and cultivar parameters with sole crop data; 2) Calibration of two intercrops parameters; 3) Evaluation for intercrop data, in order to determine the validity domain.
- Step 1 of calibration followed the order: phenology, leaf area, biomass, nitrogen uptake/fixation, and grain yield
- The species and cultivar parameters calibrated in step 1 are used again for intercrop simulations in step 2

Results and Discussion

Sole Crops

- Largest source of error was winter pea (nRMSE=40.0 %)
- All other crops had a nRMSE<17.0 %
- Simulated winter pea reached max LAI too early, possibly a result of limited observed phenology data → further research needed

Intercrops

- Largest source of error was winter pea (nRMSE=80.9 %)
- High nRMSE for all other crops (37.4 to 60.3 %)
- Winter wheat crop height increased too quickly in simulations, causing overestimation of biomass and grain yield → further revision of height simulation formals needed to avoid bias

Conclusion

- Based on the sole crop calibration, some intercrop situations could be correctly simulated
- Further analysis of the model’s simulation of interspecific competition is necessary to better capture the large variation in observed data and to improve model accuracy
- With these future improvements, the STICS intercrop model can be a useful tool for better understanding the biological functions of intercropping systems to and assist in optimizing their management

Table 1: Description of the observed field data.

<table>
<thead>
<tr>
<th></th>
<th>Winter Wheat</th>
<th>Winter Pea</th>
<th>Spring Barley</th>
<th>Spring Pea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Auzeville, France</td>
<td>Auzeville, France</td>
<td>Angers, France</td>
<td>Angers, France</td>
</tr>
<tr>
<td>Years</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>N Levels</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Densities</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figures

- **Figure 1**: Comparison of simulated observed grain yield for sole crop winter wheat, winter pea, spring barley, and spring pea.
- **Figure 2**: Comparison of simulated observed partial land equivalent ratio (LER) for intercropped winter wheat/winter pea and spring barley/spring pea.

Sources

- Vezy R et al. (2020) Implementation of new formalisms in STICS for intercropping modeling, iCROPM, Montpellier, France.