Molecular phenotyping of intestinal epithelial cells exposed to mycotoxins

SOLER VASCO, Laura¹ ; LABAS Valérie²-³ ; TEIXEIRA-GOMES Ana Paula³-⁴ ; BANLIAT Charles²-³ ; LAHJOUJI Tarek¹ ; PINTON Philippe¹ ; TERCIOL Chloé¹ ; NEVES, Manon¹ ; OSWALD Isabelle¹

¹Biosynthesis & Toxicity of Mycotoxins; UMR 1331 Toxalim, INRA Toulouse 180, chemin de Tournefeuille - 31027 Toulouse, France
² UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, 37380 Nouzilly, France
³ CIRE, Pôle d’Analyse et d’Imagerie des Biomolécules, INRA, CHRU de Tours, Université de Tours, 37380 Nouzilly, France.
⁴ UMR ISP, INRA 1282, Université de Tours, 37380 Nouzilly, France

Introduction: Mycotoxins are natural food contaminants that display a wide variety of toxic effects (cytotoxic, genotoxic, endocrine disruption, …). Characterization of their toxicity is hence cumbersome, so the development of high-throughput, comprehensive tools to depict their toxicity is needed. One possibility would be the use of the molecular profiling methodology ICM-MS (Intact Cell MALDI-TOF Mass Spectrometry). This technique is based on the acquisition of MS profiles from whole cells. An ICM-MS profile represents a specific molecular cell phenotype, which can be later combined in machine-learning algorithms for the construction of diagnostic/predictive models. Our hypothesis is that the ICM-MS profiles of cells exposed to characterized, known mycotoxins could be used to build a toxicity-predictive model, that could be valuable for toxicity screening of uncharacterized mycotoxins, toxin combinations, etc. Our objective was to verify if the ICM-MS profile of intestinal cells exposed to known mycotoxins was toxin-specific as a first step to test the potentiality of this technique applied to toxicological screening. The methodology followed involved a short exposition of differentiated Caco-2 cells to low concentrations of several mycotoxins (deoxynivalenol, zearalenone, aflatoxin-B1, Fumonisin-B1, patulin, ochratoxin-A). Cells were then analyzed using ICM-MS and profiles were compared. Results showed that ICM-MS intestinal cells phenotyping was specific enough to differentiate the response to different mycotoxins, with cross-validation and recognition values higher that 80%. The molecular phenotype changed in response to concentration changes and different exposition times. In conclusion, ICM-MS shows a promising potential to become a toxicity screening tool.

Acknowledgements: Authors would like to express their gratitude to the Animal Health Department from INRA for their financial support (AP2017-DeptSA).