Coupling phenomenological model of expansion with mechanical model of starchy products extrusion (Projet AIC 'QualExp')

Magdalena Kristiawan, Guy G. Della Valle, Kamal Kansou

To cite this version:

Magdalena Kristiawan, Guy G. Della Valle, Kamal Kansou. Coupling phenomenological model of expansion with mechanical model of starchy products extrusion (Projet AIC 'QualExp'). Séminaire Intégration des Connaissances et des Modèles (INCOM), Institut National de Recherche Agronomique (INRA). UAR Département Caractérisation et Elaboration des Produits Issus de l’Agriculture (1008)., Apr 2014, Paris, France. hal-02791920

HAL Id: hal-02791920
https://hal.inrae.fr/hal-02791920
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recall of Objectives

To build a **phenomenological model of expansion by extrusion** that allows to predict foam structure from process variables and material properties.

Deliverables

- 1/ **Phenomenological model of expansion** by extrusion for predicting macro and cellular structure of starchy solid foam.
- 2/ **Coupling this phenomenological model with mechanical model of extrusion** (Ludovic® software)
Context: Expansion by extrusion

Acquisition of texture

- **Screw**
- **Die**
- **Coalescence**
- **Shrinkage**
- **Bubble growth**

The bubble growth stops (setting) at \(T_p > T_g + \ldots ^\circ C \)

Tg: glass transition temperature

State diagram

- **Die exit**
- **Temperature, \(R \)**
- **Bubble growth stop**
- **Axial distance or time**
- **\(T_g \)**
- **\(T_p \)**
- **MC**
Applications

- Innovative starchy foods, with modulated shape and digestibility
- Starch based shape memory biopolymers for medical devices

Partners: BIA, I2M, externals

- **M. Kristiawan**: Modeling implementation
- **B. Vergnes (CEMEF-MinesParisTech)**: Extrusion and plastic foam manufacturing
- **G. Della Valle**: Expertise on extrusion, rheology, process modeling
- **Ch. David /L. Ratte (SCC)**: Software development for extrusion (Ludovic®)
- **L. Chaunier**: Expertise on extrusion, experiments & physics measurements
- **Allaf / V. Sobolik (ULR)**: Expansion by instant pressure drop, rheology, fluid mechanics
- **K. Kansou**: Qualitative modeling and reasoning
- **A. Ndiaye**: Qualitative modeling and reasoning
- **C. Fernandez**: Software development for Knowledge Base System: Qualis©; Make Book
Methods and Resources

Modeling

Phenomenological models of **bubble growth** (+ nucleation, coalescence, setting, shrinkage) in a **viscoelastic** biopolymer matrix in the transition state from rubbery to solid phase.

Macro and Cellular structure = f (Water%, Tp°C, SME kWh/t, η(\dot{\gamma}), η(\dot{\varepsilon}))

Approach

1. Collection of scientific knowledge (SK)
2. Representation of knowledge (Concept map / causal graph)
3. Establishment of phenomenological models of expansion
 - 2/3 of experimental data: Model establishment
 - 1/3 of experimental data & scientific articles: Model validation
4. Coupling mechanical model of extrusion (Ludovic®) with expansion models
5. Simulation and validation with experiments
Experimental data: Extrusion of maize starch

(Della Valle et al., 1996, 1997; Babin et al., 2007)

- **Input variables: (400 points)**
 - Amylose (0 – 70%) ($E'(T_\alpha)$); Plasticizer: Water % (MC)
 - T°C of product at die exit (T_p), SME kWh/t, shear viscosity

- **Output variables**
 - Macrostructure
 - Volumetric Expansion Indices (VEI) ($VEI = LEI \times SEI$)
 - Radial Expansion Indices (SEI)
 - Longitudinal Expansion Indices (LEI)
 - Anisotropy Factor (AF)
 - Cellular structure
 - Mean cell size (MCS) (mm)
 - Mean cell wall thickness (MWT) (μm)

X-Ray tomography

AF = 1
Isotrope

AF > 1
Radial

AF < 1
Longitudinal

Flow direction
Results
Concept map: Phenomenological model of expansion

\[\text{VEI} \approx \left(\frac{\text{MC}}{\text{MC}_o} \right)^x \otimes \left(\frac{T_p}{T_{p_o}} \right)^y \otimes \left[\frac{\eta(\gamma)}{\eta_0(\gamma)} \right]^z \otimes \left[\frac{E'(T_\alpha)}{E_0'(T_\alpha)} \right]^t \]
Volumetric expansion indices VEI

\[VEI \approx \left[\frac{E'(T\alpha)}{E_o'(T\alpha)} \right]^t \]

Water = 0.245, 185°C, 150 kWh/t, h die = 3 mm

Amylose 70%, 165°C, 200 kWh/t, h die = 3 mm

\[VEI \approx \left[\frac{MC}{MC_o} \right]^x \]

Séminaire InCoM – 9-10 Avril 2014
The cellular structure can be deduced from the knowledge of anisotropy.

Cellular fineness (F):

$$F = \sqrt{\frac{\left(\frac{250}{\text{MWT}}\right)^2 + \left(\frac{1}{\text{MCS}}\right)^2}{2}}$$

- $F < 1 \rightarrow$ Coarse
- $F > 1 \rightarrow$ Fine

MWT in μm; MCS in mm
Scaling down: from *macroscopic* (anisotropy, AF) to *microscopic* (cellular structure, Fineness)

\[F = \sqrt{\frac{(250 \text{ MWT})^2}{2} + \left(\frac{1}{\text{MCS}}\right)^2} \]

- **F** < 1 → Coarse
- **F** > 1 → Fine

MWT in μm; MCS in mm

AF = \(\frac{\text{LEI}}{(\text{SEI})^{1/2}} = \frac{\text{VEI}}{(\text{SEI})^{3/2}} \)

R^2 = 0.69135

Fineness of cellular structure, F (microscopic)
Ludovic's INPUT

Product properties
- Water content MC
- Thermal characteristics of solid and melt

Processing parameters
- Temperature profile °C (Barrels, screw and die)
- Screw rotation speed N rpm
- Feed flow rate Q

Extruder parameters
- L/D: D(-)
- Restrictive screw elements

Melt shear viscosity model
- Power law
 \[\mu_{\text{shear}} = K \cdot \text{shear rate}^{(n-1)} \]

Influence (+)
- Thermal conductivity
- Heat capacity
- Density
- Fusion temperature
- Fusion enthalpy

Influences (-)

Melt viscosity

Temperature of product Tpd

Total specific mechanical energy SME

Mean residence time

Melt pressure

Ludovic's OUTPUT
f(axial length)

Influences (+)

« Ludovic®’s output variables = input of expansion model »
Extruder: Clextral BC 45 & Slit die

Amylose 0.7, Water 0.25, Tp 157°C, 224 kWh/t, 89 bar
Evaluation

Realized:
- Collection & integration of scientific knowledge
- Experiments on extrusion of starchy foams having shape memory (the part of CR2 project, for familiarization with extrusion)
- Representation of knowledge « Concept map with causalities »

On going:
- Establishment of phenomenological models of expansion

Perspective:
- Coupling mechanical model of extrusion (Ludovic®) with phenomenological models of expansion
- The new Ludovic®’s outputs: Macro and cellular structures of foams
Thank you for your attention

Discussion....
Integration of scientific knowledge

Elongational viscosity & $E'(T_\alpha)$ as $f(Amylose\%)$

1) Variations of $E'(T_\alpha)$ and $\eta(\varepsilon)$ with amylose% follow the same pattern

2) If E' (+) then Coalescence (-) & VEI (+)

Water = 0.245, 185°C, 150 kWh/t, h die = 3 mm
If the Cells «more coarse » then MWT dist. « more heterogeneous »

If MCS (+) then MWT (+)