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) model overestimates inefficiency scores compared to our extension.

Introduction

Widespread societal environmental concerns and theory of externalities developments (Mishan, 1971, Cropper and[START_REF] Cropper | Environmental Economics -a Survey[END_REF] have ushered in a new era in production economics with the emergence of multi-type output considerations in methodologies. In addition, the adoption of sustainable production behaviors has become key to many policy recommendations. The performance benchmarking literature [START_REF] Tyteca | On the Measurement of the Environmental Performance of Firms-A Literature Review and a Productive Efficiency Perspective[END_REF][START_REF] Allen | DEA in the ecological context-an overview. Data envelopment analysis in the service sector[END_REF][START_REF] Zhou | A survey of data envelopment analysis in energy and environmental studies[END_REF][START_REF] Song | Environmental efficiency evaluation based on data envelopment analysis: A review[END_REF] has therefore shown a keen interest in including the generation of undesirable outputs as by-products in production technology modeling. Following the seminal work produced by [START_REF] Pittman | Multilateral Productivity Comparisons with Undesirable Outputs[END_REF], many non-parametric frontier estimation models have been developed (along the lines of Data Envelopment Analysis (DEA) where all firms are enveloped by a frontier made of the highest performing firms in the sample) to incorporate undesirable outputs into technology modeling. These models are based on the standard transformation function, and rely on specific disposability assumptions used to capture all the production technology's potential tradeoffs (substitution between inputs and outputs; marginal productivities). Most empirical applications treat undesirable outputs as additional inputs [START_REF] Barbera | The Impact of Environmental-Regulations on Industry Productivity -Direct and Indirect Effects[END_REF][START_REF] Hailu | Environmentally sensitive productivity analysis of the Canadian pulp and paper industry, 1959-1994: an input distance function approach[END_REF][START_REF] Hailu | Alternative methods for environmentally adjusted productivity analysis[END_REF][START_REF] Hailu | Nonparametric productivity analysis with undesirable outputs: reply[END_REF][START_REF] Considine | The environment as a factor of production[END_REF] or work them into the technology as outputs, but under the weak disposability assumption (WDA) [START_REF] Färe | Effects on relative efficiency in electric power generation due to environmental controls[END_REF][START_REF] Färe | Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach[END_REF][START_REF] Coggins | The Price of Pollution: A Dual Approach to Valuing SO2 Allowances[END_REF][START_REF] Boyd | The impact of environmental constraints on productivity improvement in integrated paper plants[END_REF][START_REF] Kuosmanen | Weak disposability in nonparametric production analysis with undesirable outputs[END_REF][START_REF] Kuosmanen | Weak disposability in nonparametric production analysis: reply to Färe and Grosskopf[END_REF][START_REF] Färe | Productivity: should we include bads?[END_REF]. Such assumptions should make for a positive correlation between good and bad outputs. For example under the weak disposability assumption, it is costly for the firm to reduce its undesirable outputs since this implies a proportional reduction in good outputs due to the diversion of resources to the mitigation of undesirable outputs.

The limitations of these models, based as they are on a single functional relationship between inputs and outputs, are now well documented. For instance, [START_REF] Førsund | Good Modelling of Bad Outputs: Pollution and Multiple-Output Production[END_REF], takes a profit function and a monetized pollutant damage function to show that, under the assumption that bads1 are outputs (freely disposable), the maximal level of these detrimental outputs is zero.

Actually, under this situation where the degree of assortmentdefined by [START_REF] Frisch | Theory of Production[END_REF] as the degree of freedom with which inputs can be directed to the production of any of the outputsis maximal, all resources can be diverted at no cost to the production of the good outputs and thus generate zero levels of bads. This result appears to be unrealistic in the light of [START_REF] Ayres | Production, consumption, and externalities[END_REF]'s materials balance idea, whereby the generation of pollutants is inevitable because of the use of pollution-generating inputs. Similarly, considering residuals as inputs is awkward approach. As argued by [START_REF] Førsund | Good Modelling of Bad Outputs: Pollution and Multiple-Output Production[END_REF], keeping all other inputs constant, an increase in the level of pollution cannot technically explain why a good output increases. Besides, there is no explicit relationship between the common production inputs and the residuals, and only some kind of tradeoff between these residuals and good outputs is captured. Moreover, no 'purification possibility' (pollution control) is accounted for. Similarly, [START_REF] Pethig | The'materials balance approach'to pollution: its origin, implications and acceptance[END_REF] and [START_REF] Pethig | Non-linear production, abatement, pollution and materials balance reconsidered[END_REF] take the materials balance principles (MBP) to demonstrate that bads cannot be treated as inputs since this is a violation of the first law of thermodynamics relating mass or energy conservation. In accordance with [START_REF] Frisch | Theory of Production[END_REF], [START_REF] Førsund | Good Modelling of Bad Outputs: Pollution and Multiple-Output Production[END_REF] recommends using 'product couplings' and 'factor bands' to overcome the above-mentioned drawbacks. Product couplings refer to the introduction of additional constraints that depict the link between some outputs (here between the good output and the bad output) irrespective of the inputs.2 Factor bands relate to the relationship between inputs regardless of the outputs. 3 With respect to the WDA, although [START_REF] Førsund | Good Modelling of Bad Outputs: Pollution and Multiple-Output Production[END_REF] specifies the connection with the product couplings idea, the WDA falls down in that some parts of the technology boundary exhibit no opportunity costs in the abatement of unintended outputs. This is a significant limitation since it means that it is not costly to reduce bads (this situation is also investigated by Chen ( 2014)). [START_REF] Coelli | Environmental efficiency measurement and the materials balance condition[END_REF] and [START_REF] Hoang | Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach[END_REF] also prove the inconsistency of this assumption with respect to the MBP. [START_REF] Murty | On modeling pollution-generating technologies[END_REF] and [START_REF] Murty | On Modeling Pollution Generating Technologies[END_REF] expand on these criticisms by demonstrating the irregularities that occur when using a single functional relationship to define a pollutiongenerating technology. It is easy to say that these approaches, based on a single feature of the production technology, work like black boxes in which the 'magic' is misused and hence fails to produce an explicit representation of the production processes involved. [START_REF] Murty | On modeling pollution-generating technologies[END_REF] and [START_REF] Murty | On Modeling Pollution Generating Technologies[END_REF] then propose a better alternative, namely the by-production approach, which is based on a full description of the production processes and has sound theoretical grounds [START_REF] Murty | On the theory of by-production of emissions[END_REF]. To be more precise, the by-production approach estimates two subtechnologies: one for good outputs and the other for undesirable outputs. Theoretically, the overall technology lies at the intersection of the two sub-technologies. However, practical implementation in the case of the non-parametric DEA analysis proposed by [START_REF] Murty | On modeling pollution-generating technologies[END_REF] is based on a modification of the Färe-Grosskopf-Lovell index [START_REF] Färe | The Measurement of Efficiency of Production[END_REF] and is simply an estimation of two independent sub-technologies. Under this approach, a firm's efficiency is actually evaluated on the basis of multiple objective programming by assigning a weight of 50% to each objective separately. 4 This comes down to serious drawback with the empirical model proposed by [START_REF] Murty | On modeling pollution-generating technologies[END_REF], and it can be argued that these user-defined weights are subjective and are not data-driven in contrast with DEA philosophy. In addition, no condition is introduced to check either the product couplings or the factor band concepts.

In this paper, we re-examine the by-production approach by introducing an interconnection into the activity analysis model. This connection is set up by means of a number of dependence constraints between the sub-technologies. These constraints, set in keeping with the factor bands principle, mean that the production of residuals can be integrated into the overall technology.

When added to the classic [START_REF] Murty | On modeling pollution-generating technologies[END_REF] model, the constraints implicitly assume the existence of tradeoffs between operational and environmental performances, and link up the two sub-technologies in such a way that the weight assigned to each objective is endogenously determined. We discuss the model under the restrictive assumption of fixed levels of inputs and under the flexible scenario of free choice of input quantities. In addition, we define how overall efficiency can be computed based on our by-production approach with dependence constraints, using non-radial distance function estimation. Once we have described our new model's theoretical foundation, we apply it empirically to a sample of virtual data using the Enhanced Russell-Based Directional Distance Measure (ERBDDM) discussed in [START_REF] Chen | The enhanced Russellbased directional distance measure with undesirable outputs: Numerical example considering CO2 emissions[END_REF]. We present the results of the two models applied to this data set: (i) the classic by-production model proposed by [START_REF] Murty | On modeling pollution-generating technologies[END_REF], and (ii) our extension introducing dependence constraints enabling tradeoffs between operational and environmental performances. For further insight into the economic interpretation of our model, we also discuss the dual of our extended by-production model.

The paper is organized as follows. Section 1 reviews the by-production modeling as developed by [START_REF] Murty | On modeling pollution-generating technologies[END_REF]. Section 2 presents our new extension of this model, along with the efficiency assessment using the ERBDDM and the associated dual program. Section 3 compares the two by-production approaches (classic and our extension) using a numerical application based on the generation of virtual decision-making units (DMUs). Section 4 concludes.

The Classic by-production modeling

Grounded in ideas put forward by [START_REF] Frisch | Theory of Production[END_REF] and [START_REF] Førsund | Pollution modelling and multiple-output production theory[END_REF], the by-production (BP) approach is driven by the view that a production system should be described by several relations (transformation functions), and that this suits bad output-generating technologies particularly well. [START_REF] Frisch | Theory of Production[END_REF] calls this explicit representation of the technology used 'factorially determined multi-output production'. In general, the BP approach posits cost disposability, taken from [START_REF] Murty | Externalities and fundamental nonconvexities: A reconciliation of approaches to general equilibrium externality modeling and implications for decentralization[END_REF], for undesirable outputs, pollution-generating inputs and some good outputs. 5To be more precise, the approach states that with fixed quantities of some inputs and/or some good outputs, a minimal amount of pollution can be simultaneously generated as a by-product of the technology. In the presence of inefficiencies, a higher level than this minimal level of undesirable outputs may be reached. However, this assumption must coexist with the disposability of the good outputs, which expresses that a set of maximal good output vectors can be produced if levels of inputs are held fixed. The positive monotonicity hypothesis states that an increase in input consumption will not reduce the production of these good outputs, but will inevitably raise the level of minimum attainable bad outputs. The axiomatization of the byproduction approach is discussed in detail in [START_REF] Murty | On the theory of by-production of emissions[END_REF].

Two production technology sets are constructed (see Figure 1): an intended-output production technology, which is a standard neoclassical production function, and a residual-generation technology, which reflects the nature of the polluting emission. The intended-output technology satisfies standard free disposability assumptions and is independent of the level of pollution.

Under this sub-technology, a DMU 𝑛 is dominated by all the observations located in the area delimited by arrows 𝑛𝐴 ⃗⃗⃗⃗⃗ and 𝑛𝐶 ⃗⃗⃗⃗⃗ . The residual-generation technology satisfies, to quote [START_REF] Murty | On modeling pollution-generating technologies[END_REF], 'the polar opposite condition', that is to say cost disposability, and is independent of the good output and the non-material inputs (i.e. non-polluting inputs). For this sub-technology, 𝐷𝑀𝑈 𝑛 is dominated by the points located in the area delineated by arrows 𝑛𝐷 ⃗⃗⃗⃗⃗ and 𝑛𝐹 ⃗⃗⃗⃗⃗ . These dominating observations are characterized by the fact that they use more inputs to produce less undesirable outputs. Thereby, the sub-frontier for any inefficient DMU can be reached by increasing the consumption of inputs and simultaneously decreasing the generation of undesirable outputs. This situation is similar to that described by Sueyoshi and Goto (2010) and Sueyoshi et al. (2010) and later termed as 'managerial disposability' or positive adaptation (Sueyoshi and Goto, 2012, Sueyoshi and Goto, 2012, Sueyoshi and Goto, 2012). The Positive adaptation refers to a situation where input consumption can be increased and pollution reduced by simultaneously raising the production of good outputs. Yet this occurs by means of managerial efforts that lead to structural business transformations and the adoption of new technologies such as high quality inputs and other innovative technologies that can mitigate the levels of pollution. As pointed out by these authors, this concept ties in with the idea developed by [START_REF] Porter | Toward a New Conception of the Environment-Competitiveness Relationship[END_REF] that regulation might offer innovation opportunities to secure the production of more good outputs and decrease the generation of bad outputs.

In view of the above, the intersection of these two sub-technologies then violates the free disposability assumption for pollution-causing inputs because of their opposite direction with regard to the two sub-technologies. 6 To understand this situation, it is useful to bear in mind that, due to their nature, the levels of good outputs need to be increased while the quantities of undesirable outputs are minimized. To sum up, by-production technology modeling has essentially three options to reduce the levels of detrimental outputs for a fixed technology: firstly, an increase in abatement by means of resource diversion (which is accompanied by a reduction in the production of good outputs); secondly, a reduction in pollution-causing inputs (which decreases the levels of intended outputs except in the case of a substitution with non-polluting inputs to maintain the same amount of good output production); and thirdly, the use of cleaner inputs, i.e. inputs that generate fewer bad outputs and maintain at least the same level of good output production. (𝑥 1 ∈ ℝ + 𝐾 1 ) is the sub-vector of non-pollution-causing inputs and 𝑥 2 (𝑥 2 ∈ ℝ + 𝐾 2 ) is the sub-vector of pollution-causing inputs. Denoting 𝑦 as a vector of good outputs (𝑦 ∈ ℝ + 𝑄 ), 𝑏 a vector of bad outputs (𝑏 ∈ ℝ + 𝑅 ) and 𝑁 the number of DMUs, the general production technology Ψ 𝑏𝑦 can be theoretically represented by

Ψ 𝑏𝑦 = Ψ 1 ∩ Ψ 2 (1) .
where

Ψ 1 = [(𝑥 1 , 𝑥 2 , 𝑦, 𝑏) ∈ ℝ + 𝐾 1 +𝐾 2 +𝑄+𝑅 | 𝑓(𝑥 1 , 𝑥 2 , 𝑦) ≤ 0] (2) 
.

Ψ 2 = [(𝑥 1 , 𝑥 2 , 𝑦, 𝑏) ∈ ℝ + 𝐾 1 +𝐾 2 +𝑄+𝑅 | 𝑏 ≥ 𝑢(𝑥 2 )] (3) .
and 𝑓 and 𝑢 are both continuously differentiable functions. 7 The cost disposability assumption with respect to the undesirable outputs can be expressed as follows:

(𝑥 1 , 𝑥 2 , 𝑦, 𝑏) ∈ Ψ ∧ 𝑏 ̅ ≥ 𝑏 ∧ 𝑥̅ 2 ≤ 𝑥 2 ⇒ (𝑥 1 , 𝑥̅ 2 , 𝑦, 𝑏 ̅ ) ∈ Ψ (4) .
Cost disposability implies that it is possible to pollute more given the levels of 𝑥 2 , i.e. that the set of technology Ψ 2 is bounded below (Figure 1) [START_REF] Murty | Externalities and fundamental nonconvexities: A reconciliation of approaches to general equilibrium externality modeling and implications for decentralization[END_REF]. The Ψ 1 technology, however, satisfies the standard disposability assumptions:

(𝑥 1 , 𝑥 2 , 𝑦, 𝑏) ∈ Ψ ∧ 𝑥 ̃1 ≥ 𝑥 1 ∧ 𝑥 ̃2 ≥ 𝑥 2 ∧ 𝑦 ̃≤ 𝑦 ⇒ (𝑥 ̃1, 𝑥 ̃2, 𝑦 ̃, 𝑏) ∈ Ψ (5) .
Empirically, the unified technology under variable returns to scale (VRS) is represented by model (6) with two intensity variables 𝜈 𝑖 and 𝜉 𝑖 , which represent the two different sub-technologies.

Ψ 𝑏𝑦 = [(𝑥 1 , 𝑥 2 , 𝑦, 𝑏) ∈ ℝ + 𝐾 1 +𝐾 2 +𝑄+𝑅 | 𝑦 ≤ ∑ 𝜈 𝑖 𝑌 𝑖 𝑁 𝑖=1 ; 𝑥 1 ≥ ∑ 𝜈 𝑖 𝑋 𝑖1 𝑁 𝑖=1 ; 𝑥 2 ≥ ∑ 𝜈 𝑖 𝑋 𝑖2 𝑁 𝑖=1 ; 𝑥 2 ≤ ∑ 𝜉 𝑖 𝑋 𝑖2 𝑁 𝑖=1 ; 𝑏 ≥ ∑ 𝜉 𝑖 𝐵 𝑖 𝑁 𝑖=1 ; ∑ 𝜈 𝑖 𝑁 𝑖=1 = 1; ∑ 𝜉 𝑖 𝑁 𝑖=1 = 1; 𝜈 𝑖 , 𝜉 𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] (6) . 
where (𝑋, 𝑌, 𝐵) denote the benchmark levels of inputs, good outputs and undesirable outputs, i.e.

the reference set.

Interestingly, the technology as presented in model (6) does not really represent the overall technology as an intersection of the two sub-technologies. 8 It appears to be a set of all available 7 A rigorous modeling of technology Ψ 2 under the materials balance conditions implies equality in the constraint: 𝑏 = 𝑔(𝑥 2 ). This means that, given the amount of polluting inputs, the level of undesirable outputs is fixed. The model also implies that there is no recuperation factor, but this can be generalized to allow for possibility where desirable outputs enter in the constraint as abatement output. Moreover, as formulated, the model based on the second technology provides an opportunity to introduce some non-linearity between polluting inputs and residual generation.

sub-technologies without explicitly linking one to another

(Ψ 𝑏𝑦 = [Ψ 1 ∪ Ψ 2 ] ≠ [Ψ 1 ∩ Ψ 2 ]
). The authors [START_REF] Murty | On modeling pollution-generating technologies[END_REF] actually propose a measure of the efficiency score, which is a slight modification of the output-oriented Färe-Grosskopf-Lovell (FGL) index. The new efficiency score obtained is a weighted addition (𝑤𝑒𝑖𝑔ℎ𝑡 = 1 2 ) of two independent efficiency scores: an operational efficiency score based on Ψ 1 and an environmental efficiency score obtained from Ψ 2 . The authors assign equal weights to each objective although the model, as it is formulated, allows for numerous possible combinations of weights. The weights can be adapted to the users' objective (or the manager, policy-maker or researcher). Actually, the easiest way to solve a multiobjective problem is the weighted sum, which calls for some specific user weights. This flexibility in the choice of weights places a significant limitation on the BP approach. It could even prevent a weight-free9 comparison of different DMUs. Besides, the logic behind DEA is that all comparisons are based on a direct flexible data-driven approach, that is to say there is no a priori specification of weights (weights are chosen for the best possible efficiency and to reflect the sample's characteristics).

In this paper, we then propose an improvement on model (6) to overcome this drawback with the BP as implemented by [START_REF] Murty | On modeling pollution-generating technologies[END_REF]. Taking the ERBDDM, an overall efficiency score under the classic by-production can be derived using: where 𝑔 𝑥 𝑘 represents the directional vector of all the inputs under the good outputs subtechnology while 𝑔 𝑥 𝑘 2 is the vector of materials inputs under the bad outputs sub-technology representation; and 𝜃 𝑘 𝑛-, 𝜃 𝑘 2 𝑛+ are the associated inefficiency scores.

𝐷 ⃗ ⃗ (𝑥, 𝑦, 𝑏; 𝑔 𝑦 , 𝑔 𝑏 ) = Max 𝜃 𝑛 = 1 2 [ 1 𝑄 ∑ 𝜃 𝑞 𝑛 𝑄 𝑞=1 + 1 𝑅 ∑ 𝜃 𝑟 𝑛 𝑅 𝑞=1 ] 𝑠. 𝑡. ∑ 𝜈 𝑖 𝑌 𝑞𝑖 𝑁 𝑖=1 ≥ 𝜃 𝑞 𝑛 𝑔 𝑦 𝑞 + 𝑦 𝑞𝑛 𝑞 = 1, … . , 𝑄 ∑ 𝜈 𝑖 𝑋 𝑘𝑖 𝑁 𝑖=1 ≤ 𝑥 𝑘𝑛 𝑘 = 1, … , 𝐾 (7) 
The independence assumed in the [START_REF] Murty | On modeling pollution-generating technologies[END_REF] BP model allows for the counterintuitive possibility of measuring input inefficiency in the opposite direction depending on the associated sub-technology.

A new model: extension of the by-production approach

Definition of the extension

In the [START_REF] Murty | On modeling pollution-generating technologies[END_REF] BP model, inputs need to be divided into two groups based on whether or not they generate pollution. This input breakdown makes sense in theory, but is not always possible in practice. We cannot say with certainty that the inputs classified as non-pollutiongenerating inputs do not directly interact with the pollution-generating sub-technology. We then recommend estimating a full dimension by-production model where all the inputs are treated as pollution generators.

The BP approach described theoretically by [START_REF] Murty | On modeling pollution-generating technologies[END_REF] offers the advantage of separating operational from environmental performances. However, as argued above, it assumes independence between the two sub-frontiers and thus the autonomy of the two performance measures. To overcome this issue we propose to adding some additional constraints with respect to the optimal levels of input consumption (factor bands), as follows:

∑ 𝜈 𝑖 𝑋 𝑖𝑘 𝑁 𝑖=1 = ∑ 𝜉 𝑖 𝑋 𝑖𝑘 𝑁 𝑖=1 𝑘 = 1, … , 𝐾 (9) 
.

These dependence constraints state that the efficient combination level of the inputs should be equal in both sub-technologies. They can be viewed as the integration of residual production into the overall technology, implying that it is not just the production of good outputs that matters, but also the generation of detrimental outputs. By adding constraints (9) to model (6) we link up the two sub-technologies in such a way that the weight assigned to each objective is endogenously determined. These constraints implicitly account for the tradeoffs between operational and environmental performances. The equality in (9) simply transcribes the idea stated by Førsund input level 𝑥 𝐵 . In the case of sub-technology Ψ 2 , however, 𝐷𝑀𝑈 𝑛 is projected towards the lower sub-frontier in point 𝐸 associated with input quantities 𝑥 𝐸 . It is obvious that the two optimal levels of inputs are not equivalent (𝑥 𝐵 ≠ 𝑥 𝐸 ). By contrast, the introduction of constraints (9) can create a unique benchmark (a convex combination of different DMUs) and the tradeoff between the two objectives of operational and environmental performance improvements can be accounted for. These constraints completely reshape the overall technology and allow for several possibilities, as follows.

 Fixed levels of inputs

Under the assumption of fixed levels of inputs, inputs are not directly considered in the dominance analysis, and, therefore new dominating DMUs are identified. For given levels of inputs 𝑥 𝑛 (associated with the 𝐷𝑀𝑈 𝑛 under evaluation), the dominating set of observations is made up of DMUs producing more good outputs under Ψ 1 and polluting less under Ψ 2 . This set can be constructed using:

𝐷 𝑛 = [(𝑥, 𝑦, 𝑏) ∈ ℝ + 𝐾+𝑄+𝑅 | 𝑌 ≥ 𝑦 𝑛 & 𝐵 ≤ 𝑏 𝑛 given 𝑋 = 𝑥 𝑛 ] (10) . 
The equality condition on inputs in (10) might be seen as too restrictive. 10 To relax this restriction, one can build the dominance set with DMUs in the neighborhood of 𝑥 𝑛 . In cases where inputs are continuous variables, we recommend to basing the neighborhood determination on smoothing technique and optimal kernel density bandwidth estimation [START_REF] Silverman | Density estimation for statistics and data analysis[END_REF][START_REF] Scott | Multivariate density estimation: theory, practice, and visualization[END_REF]. Following some discussion of efficiency measurement in the literature [START_REF] Bădin | Explaining efficiency in nonparametric frontier models: recent developments in statistical inference[END_REF], the bandwidth selection is based on the least squares cross-validation method [START_REF] Hall | Cross-Validation and the Estimation of Conditional Probability Densities[END_REF]. Instead of estimating one bandwidth for the overall technology, we can estimate two different bandwidths with respect to each sub-frontier. For greater accuracy [START_REF] Bădin | Optimal bandwidth selection for conditional efficiency measures: a data-driven approach[END_REF] suggest that these bandwidths can be computed using dominating observations. For instance, under Ψ 1 , the bandwidths can be based on observations that produce more good outputs than the DMU under evaluation. Similarly, under Ψ 2 , the bandwidths are determined by the observations that generate less pollution than 𝐷𝑀𝑈 𝑛 . According to this procedure, there will be as many bandwidths (for each sub-technology) as observations in the sample. However, Simar et al. (2013) recently argue that this procedure is 'numerically very demanding' for large sample size. In addition, the monotonicity properties of the efficiency score are not always guaranteed.

10 Indeed, in practice, under the dominance analysis scheme, the set of observations in (10) can only include one observation in the shape of the DMU under evaluation, and this DMU will therefore be deemed efficient. Simar et al. (2013) therefore recommend estimating one bandwidth (here, one for each subtechnology and the whole sample) independently of 𝑦 (in the case of the good output subtechnology) and 𝑏 (for the bad output sub-technology). The cross-validation method explained by [START_REF] Li | Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data[END_REF] can be used by applying kernel conditional density bandwidth selection.

For the good output sub-technology, a bandwidth ℎ ̃1 can be computed using conditional density function Ϝ 1 (𝑦|𝑥). Similarly, for the bad output sub-technology, bandwidth ℎ ̃2 is obtained using Ϝ 2 (𝑏|𝑥). Since we are interested in the probability density function instead of the conditional distribution, ℎ ̃1 and ℎ ̃2 have to be corrected by a proper rescaling factor: 𝐾+𝑅+4) . The dominance set constructed in (10) can be reviewed using:

ℎ 1 = ℎ ̃1 × 𝑁 - 𝑄 (𝐾+4)(𝐾+𝑄+4) and ℎ 2 = ℎ ̃2 × 𝑁 - 𝑅 (𝐾+4)(
𝐷 𝑛 ℎ 1 ℎ 2 = [(𝑥, 𝑦, 𝑏) ∈ ℝ + 𝐾+𝑄+𝑅 | 𝑌 ≥ 𝑦 𝑛 (for |𝑋 -𝑥 𝑛 | ≤ ℎ 1 ) & 𝐵 ≤ 𝑏 𝑛 (for |𝑋 -𝑥 𝑛 | ≤ ℎ 2 )] (11) .
where ℎ 1 and ℎ 2 are the bandwidths 11 associated respectively with Ψ 1 and Ψ 2 . Let's define the smallest bandwidth:

ℎ = min ( ℎ 1 , ℎ 2 ) (12) .
The dominance set can be further revised as follows:

𝐷 𝑛 ℎ = [(𝑥, 𝑦, 𝑏) ∈ 𝑅 + 𝐾+𝑄+𝑅 | 𝑌 ≥ 𝑦 𝑛 & 𝐵 ≤ 𝑏 𝑛 given |𝑋 -𝑥 𝑛 | ≤ ℎ] (13) 
.

In (13) the use of ℎ provides a more general benchmark, because the observations delimited by the smallest bandwidth are embedded in those associated with the largest bandwidth and the intersection condition is verified.

 Free choice of inputs

To better capture the tradeoffs between operational and environmental performances, inputs can be endogenously determined under the most flexible assumption of free choice of input 11 These bandwidths can be computed using R software and the 'np' package [START_REF] Hayfield | Nonparametric econometrics: The np package[END_REF].

quantities. The production technology can be defined as in (14). Given this flexibility, the model evaluates the optimal allocation of inputs that will guarantee the highest operational and environmental performances.

The endogenous levels of the inputs create different situations in comparison to the case where input levels are imposed as fixed:

 Win (operationally)win (environmentally): in this situation, a DMU improves both performances when the inputs are freely allocated.

 Winlose: operational efficiency increases while environmental performance decreases.

 Losewin: contrary to the previous case, the associated DMUs decrease in operational performance while environmental efficiency increases.

 Loselose: this situation is probably the most expected due to the fact that the introduction of flexibility into the choice of input levels might reveal more deficiencies in the production systems.

The categorization of DMUs into these four outcome groups can help identify the DMU characteristics able to perform with respect to both aspects (operational and environmental) or just one aspect. From here, it can help suggest policy recommendations. Finally, it should be stressed that the by-production model with dependence constraints is particularly well suited to model production systems where the amounts of a specific input to produce good outputs or generate bad outputs cannot be identified.

Ψ 𝑏𝑦 𝑓𝑟𝑒𝑒 = [(𝑥, 𝑦, 𝑏) ∈ ℝ + 𝐾+𝑄+𝑅 | 𝑦 ≤ ∑ 𝜈 𝑖 𝑌 𝑖 𝑁 𝑖=1 ; 𝑏 ≥ ∑ 𝜉 𝑖 𝐵 𝑖 𝑁 𝑖=1 ; ∑ 𝜈 𝑖 𝑋 𝑖 𝑁 𝑖=1 = ∑ 𝜉 𝑖 𝑋 𝑖 𝑁 𝑖=1 ; ∑ 𝜈 𝑖 𝑁 𝑖=1 = 1; ∑ 𝜉 𝑖 𝑁 𝑖=1 = 1; 𝜈 𝑖 , 𝜉 𝑖 ≥ 0; 𝑖 = 1, … , 𝑁] (14) 
.

Efficiency assessment under the new extended BP approach

In this section we define how overall efficiency can be computed based on our approach, the byproduction approach with some dependence constraints, using non-radial distance function estimation (under DEA). Performance is appraised using the ERBDDM [START_REF] Chen | The enhanced Russellbased directional distance measure with undesirable outputs: Numerical example considering CO2 emissions[END_REF]. In the case of the most restrictive model with fixed levels of inputs, the model can be written as: Under the assumption of fixed levels of inputs for both sub-technologies, the model in (15)

𝐷 ⃗ ⃗ (𝑥,
appraises technical inefficiency in output production. In the case of bad outputs, as previously explained, only a minimal quantity of undesirable output can be produced when inputs levels are held fixed. However, poor management may lead a firm to produce more than this minimal level.

This model can then be used to evaluate the managerial capacity of a firm to by-produce detrimental outputs without departing from the materials balance conditions.

The dual12 of the model in (15) can be written as: ).

𝐷 ⃗ ⃗ (𝑥,
The objective function in (16) can then be interpreted as profit maximization. The impact of the dependence constraints is captured by the unrestricting sign of the input prices under both subtechnologies. The global impact of the inputs is measured by the sum of the two shadow values [(𝑊 𝑘 + 𝑈 𝑘 )𝑥 𝑘𝑛 ]. This lack of restriction can have significant policy implications. In a situation where there is no regulation of the polluting emissions, sub-technology Ψ 2 does not influence the producer's decision, and the overall technology is simply equivalent to the good output technology. In the case where regulations exist to internalize the production of detrimental outputs, the overall technology becomes that reported in (6) augmented by the dependence constraint in (9). This constraint can be associated with the presence of regulations. In the case where input value balance ∑ (𝑊 𝑘 + 𝑈 𝑘 )𝑥 𝑘𝑛 𝐾 𝑘=1

has a negative sign, the regulation is beneficial to the firm since it helps generate higher revenues. This observation is known as the Porter hypothesis [START_REF] Porter | Toward a New Conception of the Environment-Competitiveness Relationship[END_REF]. Conversely, if this input value balance is positive, the environmental regulation comes at a cost for the firm; a common view shared by many economists [START_REF] Palmer | Tightening Environmental Standards -the Benefit-Cost or the No-Cost Paradigm[END_REF] and supported by a number of empirical assessments [START_REF] Brännlund | Environmental policy without costs? A review of the Porter hypothesis[END_REF]. In (16), the first group of constraints indicates that the maximal profit generated using the shadow variables obtained with the good output sub-technology and associated with 𝐷𝑀𝑈 𝑛 cannot exceed zero for any of the DMUs defining the data set. This is similar to the idea expressed in the multiplier version of the DEA developed by [START_REF] Charnes | Measuring the efficiency of decision making units[END_REF] and [START_REF] Banker | Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis[END_REF]. The second group of constraints relating to the bad output sub-technology shows that the cost associated with pollutant generation plus the value (positive or negative) of an efficient use of the inputs should not be less than zero. With respect to the non-restriction of input shadow prices 𝑈 𝑘 , it is possible to obtain zero values for some DMUs. Where this is the case, it shows that these DMU inputs with zero shadow prices are not really pollution generators. However, this is endogenously obtained (through the model) rather than specified exogenously as in the classic BP approach taken by [START_REF] Murty | On modeling pollution-generating technologies[END_REF].

In terms of tradeoffs, the marginal rates between good outputs and bad outputs can be obtained using partial derivatives:

𝑑𝑦 𝑞 𝑑𝑏 𝑟 = 𝑈 𝑟 * 𝑊 𝑞 * 𝑞 = 1, … , 𝑄 ; 𝑟 = 1, … , 𝑅 (17) . 
where 𝑈 𝑟 * , 𝑊 𝑞 * are the optimal shadow prices for the both good output 𝑞 and undesirable output 𝑟 obtained from solving the model in (16). Given the number of good and bad outputs, 𝑄 × 𝑅 different combinations are possible. The ratio in (17) evaluates the changes in good output 𝑞 (𝑑𝑦 𝑞 ) when bad output 𝑟 is altered by 𝑑𝑏 𝑟 . The ratio in (17) is expected to be greater than zero to ensure a positive correlation between good and bad outputs. This implies that good and bad outputs are complements instead of substitutes.

We use the directional derivatives approach discussed by [START_REF] Rosen | Marginal Rates and Two-dimensional Level Curves in DEA[END_REF]. The advantage of this approach is to provide upper and lower bounds for the tradeoffs by estimating the derivatives respectively to the 'right' and to the 'left'. [START_REF] Prior | Strategic groups based on marginal rates: An application to the Spanish banking industry[END_REF] apply this approach to the banking system in Spain and show how marginal rates can be computed for inefficient DMUs using both primal and dual approaches. Other examples can be found in [START_REF] Chambers | A "calculus" for data envelopment analysis[END_REF] and [START_REF] Chambers | On the pricing of undesirable statecontingent outputs[END_REF]. Based on this literature, we propose estimating the maximum and minimum of the tradeoff between a good output and a bad output using the formulation in (18). In (18), 𝐷 ⃗ ⃗ * (𝑥, 𝑦, 𝑏; 𝑔 𝑦 , 𝑔 𝑏 ) represents the inefficiency score computed in (15) and it appears in the first constraint imposing the computation of tradeoffs for points lying on the frontier. The condition for the value associated with the good and bad outputs of the DMU under evaluation prevents the left derivative (𝑇𝑅 -) from equaling zero. However, an infinite value can be obtained for the right derivative (𝑇𝑅 + ). In this situation, we recommend using the same result as for the left derivative. When using proper transformations [START_REF] Charnes | Programming with linear fractional functionals[END_REF] 

≥ 0 𝑖 = 1, … , 𝑁 𝑊 𝑞 𝑦 𝑞𝑛 ≥ 1 2𝑄 𝑞 = 1, … , 𝑄 (20) 
.

𝑈 𝑟 𝑏 𝑟𝑛 ≥ 1 2𝑅 𝑟 = 1, … , 𝑅 𝑊 𝑞 , 𝑈 𝑟 ≥ 0 𝐷 𝑘 , 𝑊 𝑐 , 𝑈 𝑐 unrestricted
Since there is freedom of choice of inputs , their relative costs (or values) do not appear in the objective, which in this case is simply a profit function based on the revenue of good output production and the costs associated with bad output generation. 𝐷 𝑘 is the shadow price associated with the respective dependence constraint. It plays a crucial role in delineating the possible sets of solutions for the linear program (through the constraints).

A numerical application

We run the ERBDDM models on a sample of virtual DMUs to illustrate the differences between the two sets of models previously discussed (by-production with and without dependence constraints). For this application, we generate a thousand artificial DMUs that use three inputs (𝑥 1 , 𝑥 2 , 𝑥 3 ) to produce one good output (𝑦 1 ) and two bad outputs (𝑏 1 , 𝑏 2 ). The high number of DMUs generated prevents dimensionality issues associated with nonparametric estimations and is based on convergence rates of DEA models [see [START_REF] Daraio | Advanced robust and nonparametric methods in efficiency analysis: Methodology and applications[END_REF] for further discussion on this topic]. The main results are summarized in Table 1. For simplicity, we run the models under convexity and variable returns-to-scale assumptions. We do not present the results based on the bandwidth parameters given the fact that this is useful mainly for deriving efficiency from a dominance analysis (Free Disposal Hull - [START_REF] Deprins | Measuring labor-efficiency in post offices[END_REF]) in the situation where inputs are fixed.

The first difference between the two BP approaches -the classic approach by [START_REF] Murty | On modeling pollution-generating technologies[END_REF] based on independent sub-technologies and ours with dependence constraints -is the overestimation of inefficiency scores by the [START_REF] Murty | On modeling pollution-generating technologies[END_REF] model. However, in the case of our available data , the differences are quite small when inputs are assumed to be fixed : for instance, on average, the overall inefficiency score with independent sub-frontiers is 0.571, while it is 0.517 when dependence constraints are introduced. This small difference is fairly understandable given the low flexibility present in this situation of fixed levels of inputs.

Nevertheless, the difference can be accentuated in the presence of high inefficiency observations in terms of input usage. The small differences between the models when inputs are fixed can also be seen from Figure 2 where the boxplots and density plots seem to overlap. When the constraints on inputs are relaxed so that they can be freely chosen, the difference between the two models is clearly accentuated (Figure 3). The model of [START_REF] Murty | On modeling pollution-generating technologies[END_REF] greatly overestimates inefficiency compared to our extension. This situation can be explained by the poor treatment of inputs under this approach. A common feature of all these models is that they all point up the same main source of inefficiency (operational performance). But this can simply be attributed to the data under analysis. 

Conclusion

This paper proposes a practical extension of the by-production modeling formulated by [START_REF] Murty | On the theory of by-production of emissions[END_REF]. The [START_REF] Murty | On modeling pollution-generating technologies[END_REF] approach, based on the estimation of a number of subtechnologies to characterize an overall pollution-generating technology, is one of the most promising models for capturing the production of undesirable outputs. The main advantage of this approach is that it is based on a full description of production processes. The theoretical aspects of such an approach are now clearly defined [START_REF] Murty | On the theory of by-production of emissions[END_REF].

However, we argue in this paper that the use of DEA proposed by [START_REF] Murty | On modeling pollution-generating technologies[END_REF] fails to unify the two sub-technologies as developed in the theory. We have thus developed an extension of the [START_REF] Murty | On modeling pollution-generating technologies[END_REF] BP approach by including some dependence constraints. These additional constraints offer some interesting opportunities to theoretically and empirically discuss the nature of regulations designed to integrate detrimental output generation into managers' strategic decisions. In fact, the dual of the models presented in this paper helps evaluate the cost or gain related to this integration, allowing for an assessment of how an environmental regulation might affect productivity in a beneficial or detrimental way. Another interesting feature of the byproduction approach is the possibility of explicitly incorporating abatement outputs in the production processes.

Given the sensitivity of nonparametric approaches to outliers, an extension to the estimation of robust versions will be necessary [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF][START_REF] Aragon | Nonparametric frontier estimation: A conditional quantile-based approach[END_REF][START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF]. It will also be important to develop algorithms for the estimation of conditional inefficiency scores along with the derivation of statistical inference in light of the discussions by Simar and Wilson (2013) and Simar et al. (2013).
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	𝑁 In (7), 𝑔 𝑦 , 𝑔 𝑏 represents the directional vectors of good outputs and undesirable outputs respectively, and 𝜃 𝑞 𝑛 , 𝜃 𝑟 𝑖=1 𝑛 the inefficiency scores associated with good output 𝑞 and undesirable ∑ 𝜉 𝑖 𝐵 𝑟𝑖 ≤ 𝑏 𝑟𝑛 -𝜃 𝑟 𝑛 𝑔 𝑏 𝑟 𝑟 = 1, … , 𝑅
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In keeping with the recommendation by

[START_REF] Chung | Productivity and undesirable outputs: A directional distance function approach[END_REF] 

for directional vector 𝑔 𝑦 , 𝑔 𝑏 , we use the observed vectors for the different outputs: 𝑔 𝑦 = 𝑦 and 𝑔 𝑏 = 𝑏 ⃗ . The ERBDDM in model (

7

) is somewhat similar to the FGL index applied by

[START_REF] Murty | On modeling pollution-generating technologies[END_REF]

, except that the results here are expressed in terms of inefficiency. Using the range adjusted measure (RAMsee

[START_REF] Cooper | RAM: A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA[END_REF]

),

[START_REF] Sueyoshi | Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment[END_REF] 

introduce inputs into the objective function by the means of two groups of input slacks (namely input surpluses and input shortfalls), which respectively capture the opposite direction in terms of disposability. An adaptation of the RAM approach to the ERBDDM is provided in model (8):

  The main difference with (15) is the deletion of the constraints relative to the consumption of inputs 𝑥 𝑛 by 𝐷𝑀𝑈 𝑛 (∑ 𝜈 𝑖 𝑋 𝑘𝑖
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			𝜈 𝑖 , 𝜉 𝑖 ≥ 0; 𝑖 = 1, … , 𝑁 ; 𝜃 ≥ 0	, (18) can be
	solved as a common LP model.	
	[max 𝑇𝑅 + , min 𝑇𝑅 -] = [max 𝑁 𝑖=1	𝑈 𝑟 𝑊 𝑞 ≤ 𝑥 𝑘𝑛 & ∑ 𝜉 𝑖 𝑋 𝑘𝑖 , min 𝑈 𝑟 𝑊 𝑞 ] 𝑁 𝑖=1	(18) .
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	∑ 𝑈 𝑟 𝐵 𝑟𝑖	+ ∑ 𝑈 𝑘 𝑋 𝑘𝑖	+ 𝑈 𝑐 ≥ 0 𝑖 = 1, … , 𝑁 𝑄	𝑅
	𝑟=1 𝑊 𝑞 𝑦 𝑞𝑛 ≥		𝑘=1 𝐷 ⃗ ⃗ (𝑥, 𝑦, 𝑏; 𝑔 𝑦 , 𝑔 𝑏 ) = -max ∑ 𝑊 𝑞 𝑦 𝑞𝑛 1 𝑞=1 𝑞 = 1, … , 𝑄 2𝑄 𝑄 𝐾	-∑ 𝑈 𝑟 𝑏 𝑟𝑛 𝑟=1	-𝑊 𝑐 -𝑈 𝑐
	𝑈 𝑟 𝑏 𝑟𝑛 ≥	1 2𝑅 𝑠. 𝑡. ∑ 𝑊 𝑞 𝑌 𝑞𝑖 𝑞=1 𝑟 = 1, … , 𝑅 -∑ 𝐷 𝑘 𝑋 𝑘𝑖 𝑘=1	-𝑊 𝑐 ≤ 0 𝑖 = 1, … , 𝑁
	𝑊 𝑞 , 𝑈 𝑟 ≥ 0	𝑅				𝐾	
	𝑟=1 𝑊 𝑘 , 𝑈 𝑘 , 𝑊 𝑐 , 𝑈 𝑐 unrestricted 𝑘=1 ∑ 𝑈 𝑟 𝐵 𝑟𝑖 -∑ 𝐷 𝑘 𝑋 𝑘𝑖	+ 𝑈 𝑐
	Under the most flexible assumption of free choice of all the inputs, (15) can be transformed into:

≥ 𝑥 𝑘𝑛 ). As explained earlier, since the observed input levels of the DMU under evaluation do not influence the attainable level of the objective function, some constraints can be removed. However, the dependence constraints relative to the optimal levels of input consumption explicitly appear in the model. At optimality, the adequate quantities of inputs can be lower or higher than the observed levels actually used by the DMUs.

The dual version of the model in (19) can be expressed as follows:

Table 1 : Descriptive statistics for ERBDDM inefficiency scores under several models

 1 The ERBDDM is based on the directional distance function approach. Thereby all scores in Table1should be interpreted as inefficiency levels.

	Variables	Type of inefficiency Minimum Median Mean	Standard deviation	Maximum
		Overall	0	0.540	0.571	0.262	1.963
	Classic Murty et al. (2012) BP model with fixed levels of inputs	Operational	0	0.648	0.737	0.498	3.395
		Environmental	0	0.437	0.404	0.171	0.778
		Overall	0.492	1.667	1.971	1.473	26.344
	Classic Murty et al. (2012) BP model with free levels of inputs	Operational	0	2.403	3.025	3.000	52.640
		Environmental	0	0.930	0.917	0.064	0.984
		Overall	0	0.497	0.518	0.272	1.955
	Our BP model with dependence constraints and fixed levels of inputs	Operational	0	0.589	0.673	0.491	3.395
		Environmental	0	0.388	0.362	0.182	0.778
		Overall	0	0.770	0.842	0.426	3.341
	Our BP model with dependence constraints	Operational	0	1.420	1.533	0.938	6.533
	and free levels of inputs						
		Environmental	0	0.115	0.151	0.141	0.604
	Number of observations	1,000					
	Note: Source: Author						

In this paper the terms bads, bad outputs, undesirable outputs, unintended outputs, detrimental outputs, pollutants and residuals are used interchangeably.

An application of product couplings can be seen in[START_REF] Bokusheva | A Distance Function Model with Good and Bad Outputs[END_REF] where the authors use a translog hedonic specification to link the good outputs to the bads. In a number of previous studies,[START_REF] Fernández | Multiple-output production with undesirable outputs: An application to nitrogen surplus in agriculture[END_REF] and[START_REF] Fernández | Alternative efficiency measures for multiple-output production[END_REF] use an output aggregator function based on the constant elasticity of transformation defined in[START_REF] Powell | The Constant Elasticity of Transformation Production Frontier and Linear Supply System[END_REF].

This is key to our contribution and will be detailed later in the paper.

The weights as they are proposed actually give an average value of two independent efficiency scores.

Some good outputs can also generate pollution, but for simplicity we choose here to not consider this situation in the modeling here.

However, it supports the free disposability of non-polluting inputs and good outputs, and the cost disposability of undesirable outputs.

In model (6), there is no relationship linking either both types of outputs (product couplings) or inputs (factor bands) under the two separate sub-technologies.

i.e. independent of the choice of the users.

In the literature analysts often refer to the dual model as the multiplier model where the different weights are known as multiplier variables.
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