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DSM & Soil Monitoring

- Digital soil maps have been produced at
continental, country and regional extents.

- These maps of soll properties along with
their uncertainty can be used to establish

strata for soil monitoring.



HOW?



Map of prediction of target variable




How to stratify?

Map of prediction of target variable

compact geographical stratification
K-means, minimise the mean of the
shortest distance



How to stratify?

Map of prediction of target variable

compact geographical stratification Minimise sampling variance

K-means, minimise the mean of the Cum \/f method
shortest distance (Dalenius and Hodges, 1959)



The two extremes

1. No prior information at all? (Brus et al.
2002
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Optimal stratlflcatlon (Ospats)

compact geographical stratification OSPATS
Minimise sampling variance



Optimal stratification (OSPATS)

Predictor

de Gruijter et al. 2015
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A novel method for soil carbon auditing at farm scale based on data value is presented. Using a map of carbon
content with associated uncertainty, it optimizes stratified random sampling: number of strata, stratum bound-
aries, total sample size and sample sizes within strata. The optimization maximizes the expected profit for the
farmer on the basis of sequestered carbon price, sampling costs, and a trading parameter that balances farmer's
and buyer's risks due to uncertainty of the estimated amount of sequestered carbon. The stratification is opti-
mized by a novel method (Ospats), an iterative procedure that re-allocates grid points to strata on the basis of
pairwise differences between predictions and covariances of prediction errors. Optimal sample sizes are calculat-
ed from variance predictions by Ospats. An application on an Australian farm has shown that soil carbon changes
across farms and regions can be audited effectively using the proposed method. It is concluded that sample

Spatial stratification

Prediction error bulking and returning to the same sites in subsequent sampling rounds are not recommendable.

Map uncertainty
Value Of Information

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

The soil system is recognized as a significant terrestrial sink of car-
bon. Estimates for the top meter of soil in the world, range between
1200 and 2500 petagrams for organic C (Batjes, 1996; Lal, 2004). The re-
liable assessment and monitoring of soil carbon stocks are of key impor-
tance for soil conservation and in mitigation strategies for increased
atmospheric carbon (Stockmann et al., 2013). Carbon credits are the
heart of a cap-and-trade scheme, by offering a way to quantify carbon
sequestered from the atmosphere; carbon credits gain a monetary
value to offset a given amount of carbon dioxide releases (Paustian
et al., 2009). The agricultural industry worldwide has the capacity to
capture and store carbon emissions in soil (Paustian et al., 2000). How-
ever there is still a debate on how soil can benefit for the offsets in the
carbon economy because there is no good and efficient way of measur-
ing soil carbon storage with appropriate statistical confidence (Post
et al.,, 2001; Smith, 2004b). A scheme that can measure and monitor
soil carbon storage on a farm, which is crucial to the participation of
the agricultural sector in the carbon economy is essential.

There is a win-win position for increased carbon storage in soil. Soil
organic carbon (SOC) provides benefits of enhanced soil fertility through
improved soil structure, by promoting the agents and mechanisms of ag-
gregation, and increased cation exchange capacity (Stockmann et al,
2013). Studies of Australian soil systems have shown that conversion of
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forested and grassland areas into cultivated agriculture has led to an
overall decline in SOC stock in those soils (Dalal and Chan, 2001; Luo
et al,, 2010). Conservation tillage, reforestation, and sustainable devel-
opment practices are recognized methods to promote carbon storage.
One mechanism that can facilitate the effective management of the
soil carbon is to treat it as a tradeable resource or commodity. A mone-
tary value has been assigned to carbon, in all its states and forms, which
can allow for the trading and offsetting of carbon budgets. The develop-
ment of carbon credit markets accessible to the private sector would
allow for incentives such as government payments, tax credits, and/or
emissions trading, which can aid in overcoming farmer reluctance to
adopting management strategies that increase soil carbon (Rosenberg
and Izaurralde, 2001).

There are two distinct approaches recognized to establishing SOC
stock with Tier 3 method (IPCC, 2006} including, i.e. process-based
models and inventory measurement systems. The choice between
each approach depends largely on applicability to the situation, data
availability and cost-effectiveness. When considering the costs and
low sequestration rates process-based models may be favored {Conant
and Paustian, 2002; Smith, 2004b}, however it is also challenging con-
sidering the diverse combinations of climate, soil type and manage-
ments (Rabotyagov, 2010). It is inevitable that not all combinations
will be covered or parameterized and support for emerging manage-
ments will have a temporal lag in incorporation as data over time is re-
quired. Added to this, there are several other reasons to also develop
Tier 3 direct measurement methods including:

1) providing an independent verification tool applicable to emerging
managements at the farm scale; 2) encompassing adaptive land
management through independence from established management
assumptions; 3) provision of site-specific feedback to landholders as

See talk by
Hedley et al.
for an
example
from

New
Zealand



Applying It to a large extent

- Computationally expensive/challenging



NSW, Australia
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France

550,000 km2

Calibration
data;
Legacy soil
datés 1V

Validation data:
Soil Monitoring Network
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Map of topsoll (0-30 cm) C
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Stratifications

stratOspatskKM stratOspaisCR

Needs
annealing
schedule

- 5km grid
10 strata
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Standard error of the mean of C
content in g/kg
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RY

Percentage RVp

RV, =100 x V,(2)/V..(3)
Calculated using the SMN observations
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the ‘equivalent
sample size’, which would yield the same precision if Simple Random
Sampling

Neqg = Ve - 1. (7.19)
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Conclusions

- Use of national or global DSM (e.qg.,
GlobalSoilMap) products can be used for
designing regional or national soll
monitoring schemes to detect regional or
national mean change.

- Conversely these monitoring schemes can
be used to remove bias and/or update
national or global DSM products (e.qg.,
GlobalSoilMap).
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