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Introduction

The Tara Oceans expedition [Sunagawa et al., 2015] facilitated the study of plankton communities by providing the scientists an ocean metagenomic data set combined with environmental measures. During the expedition, 243 seawater samples were collected from 68 locations representing all main oceanic regions from three depth layers : the surface (SRF), the deep chlorophyll maximum (DCM) layer and the mesopelagic (MES) zone.

In [Sunagawa et al., 2015], several approaches have been used to show a vertical stratification of the ocean microbial composition mainly driven by temperature. In the presented work, we propose to take advantage of kernel methods to integrate taxonomic and functional community composition with environmental factors of 139 ocean samples in a single exploratory analysis.

Method

Integrating multiple data sets

In the following, we consider M sets of input data, (x m i ) i=1,...,N,m=1,...,M all measured on the same observations (1, . . . , N ) which take values in an arbitrary space (X m ) m . X m is equipped with a kernel K m : X m × X m → R that provides pairwise similarity between the observations,

K m ij := K m (x i , x j ). K m is assumed symmetric (K m ij = K m ji ) and positive (∀ N ∈ N, ∀ (α i ) i=1,...,N ⊂ R, ∀ (x i ) i=1,...,N ⊂ X m , i,i α i α i K m ii ≥ 0
). The M kernels can be combined into a single one K * , defined as a convex combination as following :

K * ij = M m=1 α m K m ij (1)
where α m ≥ 0 and M m=1 α m = 1. In this first version of the work, α m are chosen such that all kernels have the same weight : α m = 1 M . Kernel methods allow to implement different versions of any algorithm which can be expressed in terms of dot products. This is the case of the kernel PCA, a PCA analysis performed in the feature space (H, ., . ) induced by the kernel. The kernel PCA was first introduced in [Schölkopf et al., 1998] and suppose that the kernel K * is centered. Then, the following eigenvalue problem is solved : K * α = λα. The eigenvectors (α) k=1,...,n ∈ R n and the corresponding eigenvalues (λ k ) k=1,...,n are obtained from the centered matrix.

Data sets and kernels

The present section is dedicated to describe the data sets and the kernels used. Three data sets provided by the Tara Oceans companion website 1 are used to evaluate the proposed method :

1. http ://ocean-microbiome.embl.de/companion.html -the environmental dataset which contains 22 numeric features (i.e., temperature, salinity, . . . ).

Similarity between ocean samples are computed using the linear kernel, given by K(x i , x j ) =< x i , x j >. -the taxonomic community composition that contains more than 35,000 species. The operational taxonomic units (OTUs) provided, allow to compute both compositional and phylogenetic dissimilarities. The first one is obtained using the Bray-Curtis distance given by

d BC = s |n A s -n B s | s n A s + n B s , (2) 
where (n A s ) s=1,...,S and (n B s ) s=1,...,S respectively represent the count of species s in community A and B. The phylogenetic dissimilarities requires first to build the phylogenetic trees using fasttree [Morgan N. [START_REF] Price | [END_REF] with the OTUs sequences as inputs. The weighted Unifrac distance is then applied. This one is given by

d wU F = e l e |p e -q e | e p e + q e
, where for each branch e, l e represent its length and p e (respectively q e ) the fraction of community A (respectively community B) below branch e. Kernels can then be obtained from these two dissimilarities using

K ij = - 1 2 d ij - 1 N N k=1 (d ik + d kj ) + 1 N 2 N k, k =1 d kk ,
as suggested in [START_REF] Lee | Nonlinear Dimensionality Reduction. Information Science and Statistics[END_REF], where d can either be d BC or d wU F . -the functional community composition which contains more than 63,000 KEGG orthologous groups.

To obtain a functional composition kernel, the Bray-Curtis dissimilarity (Equation ( 2)) is used.

Results and discussion

The results obtained confirm those exposed in [Sunagawa et al., 2015]. Samples are not clearly grouped by their ocean regions but are separated by their depth layer of origin.

Figure 1 presents the kernel PCA results performed on the combined kernel K * . The histogram (left) presents the entropy supported by the first 15 axes of the kernel PCA and shows that the first two axes are enough to provide relevant information on the data. Figure 1 (right) displays the projections of the ocean samples on the first two principal component. The first axis represents 18.08% of the total entropy and opposes samples from the mesopelagic (MES) zone and the epipelagic layers (SRF and DCM).

To conclude, integrating taxonomic and functional community composition with environmental factors allows to have a fast insight of the different data sets within a single analysis. Future work should investigate multiple kernel learning (MKL) in order to learn kernels weights, α m , defined in Equation 1 as proposed in [Speicher and Pfeifer, 2015]. MKL would allow to have a better insight on the different data sets by sorting the kernels considering their weight and thus their significance. Also, the self-organizing map algorithm [Kohonen, 2001] and its extension to data described by a kernel will be investigated to classify the different ocean samples. 
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 1 Figure 1 -Kernel PCA Entropy preserved by the 15 first axes on the left and projection of the observations on the first two principal components on the right. Colors represent the oceanic regions and shapes the depth layers.
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