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1 Introduction

The Tara Oceans expedition [Sunagawa et al., 2015] facilitated the study of plankton communities by
providing the scientists an ocean metagenomic data set combined with environmental measures. During
the expedition, 243 seawater samples were collected from 68 locations representing all main oceanic re-
gions from three depth layers : the surface (SRF), the deep chlorophyll maximum (DCM) layer and the
mesopelagic (MES) zone.

In [Sunagawa et al., 2015], several approaches have been used to show a vertical stratification of the
ocean microbial composition mainly driven by temperature. In the presented work, we propose to take
advantage of kernel methods to integrate taxonomic and functional community composition with environ-
mental factors of 139 ocean samples in a single exploratory analysis.

2 Method

2.1 Integrating multiple data sets

In the following, we consider M sets of input data, (xmi )i=1,...,N,m=1,...,M all measured on the same
observations (1, . . . , N) which take values in an arbitrary space (Xm)m. Xm is equipped with a kernel
Km : Xm × Xm → R that provides pairwise similarity between the observations, Km

ij := Km(xi, xj).
Km is assumed symmetric (Km

ij = Km
ji ) and positive (∀N ∈ N, ∀ (αi)i=1,...,N ⊂ R, ∀ (xi)i=1,...,N ⊂

Xm,
∑

i,i′ αiαi′K
m
ii′ ≥ 0).

The M kernels can be combined into a single one K∗, defined as a convex combination as following :

K∗
ij =

M∑
m=1

αmK
m
ij (1)

where αm ≥ 0 and
∑M

m=1 αm = 1. In this first version of the work, αm are chosen such that all kernels
have the same weight : αm = 1

M
.

Kernel methods allow to implement different versions of any algorithm which can be expressed in terms
of dot products. This is the case of the kernel PCA, a PCA analysis performed in the feature space (H, 〈., .〉)
induced by the kernel. The kernel PCA was first introduced in [Schölkopf et al., 1998] and suppose that
the kernel K∗ is centered. Then, the following eigenvalue problem is solved : K∗α = λα. The eigenvectors
(α)k=1,...,n ∈ Rn and the corresponding eigenvalues (λk)k=1,...,n are obtained from the centered matrix.

2.2 Data sets and kernels

The present section is dedicated to describe the data sets and the kernels used. Three data sets provided
by the Tara Oceans companion website 1 are used to evaluate the proposed method :

1. http ://ocean-microbiome.embl.de/companion.html
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— the environmental dataset which contains 22 numeric features (i.e., temperature, salinity, . . . ).
Similarity between ocean samples are computed using the linear kernel, given by K(xi, xj) =<
xi, xj >.

— the taxonomic community composition that contains more than 35,000 species. The operational
taxonomic units (OTUs) provided, allow to compute both compositional and phylogenetic dissimi-
larities. The first one is obtained using the Bray-Curtis distance given by

dBC =

∑
s |nA

s − nB
s |∑

s n
A
s + nB

s

, (2)

where (nA
s )s=1,...,S and (nB

s )s=1,...,S respectively represent the count of species s in community A
and B. The phylogenetic dissimilarities requires first to build the phylogenetic trees using fasttree
[Morgan N. Price, 2010] with the OTUs sequences as inputs. The weighted Unifrac distance is then
applied. This one is given by

dwUF =

∑
e le|pe − qe|∑
e pe + qe

,

where for each branch e, le represent its length and pe (respectively qe) the fraction of commu-
nity A (respectively community B) below branch e. Kernels can then be obtained from these two
dissimilarities using

Kij = −1

2

(
dij −

1

N

N∑
k=1

(dik + dkj) +
1

N2

N∑
k, k′=1

dkk′

)
,

as suggested in [Lee and Verleysen, 2007], where d can either be dBC or dwUF .
— the functional community composition which contains more than 63,000 KEGG orthologous groups.

To obtain a functional composition kernel, the Bray-Curtis dissimilarity (Equation (2)) is used.

3 Results and discussion

The results obtained confirm those exposed in [Sunagawa et al., 2015]. Samples are not clearly grouped
by their ocean regions but are separated by their depth layer of origin.

Figure 1 presents the kernel PCA results performed on the combined kernel K∗. The histogram (left)
presents the entropy supported by the first 15 axes of the kernel PCA and shows that the first two axes
are enough to provide relevant information on the data. Figure 1 (right) displays the projections of the
ocean samples on the first two principal component. The first axis represents 18.08% of the total entropy
and opposes samples from the mesopelagic (MES) zone and the epipelagic layers (SRF and DCM).

To conclude, integrating taxonomic and functional community composition with environmental factors
allows to have a fast insight of the different data sets within a single analysis. Future work should investigate
multiple kernel learning (MKL) in order to learn kernels weights, αm, defined in Equation 1 as proposed in
[Speicher and Pfeifer, 2015]. MKL would allow to have a better insight on the different data sets by sorting
the kernels considering their weight and thus their significance. Also, the self-organizing map algorithm
[Kohonen, 2001] and its extension to data described by a kernel will be investigated to classify the different
ocean samples.
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Figure 1 – Kernel PCA Entropy preserved by the 15 first axes on the left and projection of the observations
on the first two principal components on the right. Colors represent the oceanic regions and shapes the
depth layers.
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