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From Becker-Döring to Lifshitz-Slyozov: deriving the boundary condition

Becker-Döring model for Nucleation

Reversible one-step agregation

C i `C1 a i ÝÝá âÝÝ b i`1 C i`1
(1) où C i " 7tagregates of size iu.

The nucleation time is given by the following waiting time, t ˚" inftt ě 0 :

C N ptq " 1 | pC i p0qq iě1 u, (2) 
Typical initial condition C i pt " 0q " Mδ i"1 .

N is a size of the nucleus : it's a parameter of the model (with

M,a i , b i ).
This model is used to understand spontaneous protein poylmerization experiments "Large number limit" of the nucleation time

What are the dependencies of the nucleation time with respect to the model parameters ? Analytical approximation and numerical simulations showed (R.Y., Maria R. D'Orsogna, Tom Chou, J. Chem. Phys. 2012) : § non-monotone behavior with respect to the detachment rate b § complex depencies with respect to the total mass M (log t ˚is not proportional to log M) § discrete size effect due to specific configuration that are "traps".

Here, we ask : what is the nucleation time for very large nucleus lim

NÑ8 t ˚(3)
Choose a fix state space

With ε " 1 N Ñ 0, we obtain a fix state space by studying (for appropriately rescaled

C ε i ) µ ε t p. q " ÿ iě2 C ε i ptqδ iε p. q P M b pR `q (4)
The nucleation time is thus

t ε " inftt ě 0 : µ ε t pt1uq ą 0 | µ ε 0 u, (5) 
Based on the flux at size i, for

C ε i , C ε i´1 J ε i´1 ÝÝá âÝÝ C ε i J ε i Ý á â Ý C ε i`1 , (6) 
if

J ε i " 1 ε ´aε i C ε 1 C ε i ´bε i`1 C ε i`1 ¯, (7) 
We will get for the limit µ " lim The limit is deterministic, finite or infinite

εÑ0 ÿ iě2 C ε i ptqδ iε a Lifhsitz-
The nucleation time, for this limiting model

Bµ t Bt `B´p apxqC 1 ´bpxqqµ t Bx " 0 , is t ˚" inftt ě 0 : µ t pt1uq ą 0 | µ 0 u, (9) 
which can be finite or infinite (but is "easier" to compute, at least numerically).

However for typical initial condition µ 0 " 0, we need ap0qC 1 ´bp0q ą 0 and then a boundary condition !

Strategy of proof

To prove a convergence result, the strategy is the following § Write down equation on µ ε § Prove compactness of ppµ ε t q tďT q εą0 ("choose" the right scaling for that) § Take a convergence subsequence of µ ε , and prove that all terms in the equation on µ ε do converge (and find their limit) § Prove a uniqueness result fot the limit equation.

First problem : Topology !

Compacts of M b pRq are not so easy to handle in strong topology, so we use a weak-˚topology. Test functions : ϕ P C b pR `q to capture the boundary (and

NOT ϕ P C c pR `q). The mass balance property C 1 ptq `ÿ i C i ptq " M will translate into C ε 1 ptq `ż 8 0 xµ ε t pdxq " M ε . ( 10 
)
so we actually need to take test functions of the form p1 `xqϕ with ϕ P C b pR `q.

(Long calculations...)

With the appropriate scaling, and within the weak topology on pM b , p1 `xqdxq, Proposition ppµ ε t q tďT q εą0 is compact in DpR `, pM b , p1 `xqdxqq.

GREAT BUT IT'S NOT FINISHED !

Rescaled Equation (1) So Let's look at the equation on µ ε , in a weak form,

xµ ε t , ϕy " xµ ε in , ϕy `Oε,ϕ t ż t 0 ϕp2εq " a ε 1 pC ε 1 psqq 2 ´bε 2 xµ ε s , 1 2ε y ‰ ds `ż t 0 ż ∆ ε pϕqa ε pxqC ε 1 psqµ ε s pdxq ds ´ż t 0 ż ∆ ε pϕqpxqb ε pxqµ ε s pdxq ds . ( 11 
)

Remark

Large monomer number / Slow-down agregation rates / speed up depolymerization rate / specific scaling for boundary terms

a ε 1 , b ε 2 .
Rescaled Equation ( 2)

By compactness, everything converge nicely except the red term !

xµ ε t , ϕy " xµ ε in , ϕy `Oε,ϕ t ż t 0 ϕp2εq " a ε 1 pC ε 1 psqq 2 ´bε 2 xµ ε s , 1 2ε y ‰ ds `ż t 0 ż `8 0 ∆ ε pϕqa ε pxqC ε 1 psqµ ε s pdxq ds ´ż t 0 ż `8 0 ∆ ε pϕqpxqb ε pxqµ ε s pdxq ds . ( 12 
)
We need to look at the term

xµ ε s , 1 2ε y " . . . " C ε 2 !

Fast variable

The equations on C ε 2 involves C ε 3 , which involves C ε 4 and so on...and there are fast variables.

C ε i´1 1 ε a ε pεpi´1qqC ε 1 C ε i´1 Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý 1 ε b ε pεiqC ε i C ε i 1 ε a ε pεiqC ε 1 C ε i Ý ÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝ Ý 1 ε b ε pεpi`1qqC ε i`1 C ε i`1 ,
We cannot hope a convergence in a standard function space. We need a functional space that do not see the fast variations, such as MpR `, l 1 pR `qq, (with respect to the weak topology) for the occupation measure, defined by, for measurable sets U of l 1 , Γ ε ´r0, T s ˆU¯: "

ż t 0 1 tpC ε i psqq i PUu ds
Parenthesis (Kurtz' averaging theorem (1992))

Let tpX n , Y n qu a family of stochastic process, with suitable compactness conditions, such that for suitable test functions f , g ,

f pX n ptqq " ż t 0 Af pX n psq, Y n psqqds `ε1,f n ptq `M1,f ,n t , g pY n ptqq " ż t 0 α n Bg pX n psq, Y n psqqds `ε2,g n ptq `M2,g,n t , where M 1,f ,n t , M 2,g ,n t are martingales, α n Ñ 8 and lim nÑ8 E " sup tďT | ε 1,f n ptq | ‰ " 0, lim nÑ8 E " sup tďT β ´1 n | ε 2,g n ptq | ‰ " 0.
Assume that the operator B x : DpBq Ñ C b pE 2 q, B x g py q " Bg px, y q, has a unique stationary distribution π x . Then any limiting point X of X n is solution of the martingale problem for

Cf pxq " ż Af px, y qπ x pdy q Theorem (Under some conditions...) pµ ε , pC ε i qq converges in DpR `, pM, p1 `xqdxqq ˆMpR `, l 1 pR `qq towards

xµ t , ϕy " xµ in , ϕy `ż t 0 ϕp0q " a 1 pC 1 psqq 2 ´b2 C 2 psq ‰ `ż t 0 ż `8 0 ϕ 1 pxqpapxqC 1 psq ´bpxqqµ s pdxq ds .
xµ t , idy `C1 ptq " m :" xµ 0 , idy `C1 p0q

And pC i ptqq iě2 is a stationary solution in l 1 of the following deterministic Becker-Döring system ( for constant

C 1 " C 1 ptq) 9 C 2 " 0 " ´´a 2 C 1 C 2 ´b3 C 3 ¯, 9 C i " 0 " ´ai´1 C 1 C i´1 ´bi C i ¯´´a i C 1 C i ´bi`1 C i`1 ¯.
where a i , b i depends on the behavior of a, b at 0

For apxq " ax r `opxq, bpxq " bx r `opxq, r ă 1, the above equation reduces to, for C 1 ptq ď Y., arXiv :1412Y., arXiv : .5025 (2014) ) Consider a sequence of pã ε i q, p bε i q, p C ε i p0qq, p Mε q. Let p C ε i ptqq be the corresponding solution and define (suppose a ε 1 , b ε 2 , a ε , b ε and C ε 1 p0q, µ ε p0, dxq converges in an appropriate sense)

a ε i :" ε A ãε i , @i ě 2 , b ε i :" ε B bε i , @i ě 3 , a ε 1 :" ε A1 ãε 1 , b ε 2 :" ε B1 bε 2 .
χ ε i :" 1 rpi´1{2qε β ,pi`1{2qεq , a ε pxq :"

ÿ iě2 a ε i χ ε i pxq , b ε pxq :" ÿ iě3 b ε i χ ε i pxq .
We then define the variables

C ε i " ε α C ε i , @i ě 2 , C ε 1 " ε θ C ε 1 . µ ε pt, dxq " ÿ iě2 C ε i ptqδ iε β pdxq , M ε " ε α`β Mε .
The above results hold with the following choices θ " α `β , A " ´α , B " β , A 1 " ´α ´2β , B 1 " 0 , a ε i " a i ε raβ , @i ě 2 b ε i " b i ε r b β , @i ě 2 , 0 ď minpr a , r b q ă 1 .

Remark

  The boundary condition is : flux at 0 = dimerization rate Numerical illustration § apxq " 1, bpxq " x, § Incoming charcateristics. DeterministicNumerical illustration and further work § apxq " x, bpxq " 1, § outgoing charcateristics.Obrigado ! § First passage times in homogeneous nucleation and self-assembly, R.Y., Maria D'Orsogna and Tom Chou (Journal of Chemical Physics (2012) 137 :244107) § From a stochastic Becker-Döring model to the Lifschitz-Slyozov equation with boundary value, Julien Deschamps, Erwan Hingant and R.

  Slyozov equation (in weak form)

			Bx				
	Bµ t Bt	`B´J	px, C 1 qµ t	" 0 ô	dxµ t , ϕy dt	"	ż 8 0	ϕ 1 pxqJpx, C 1 qµ t pdxq .
									(8)
	with ϕ P C c pR `q and					
		Jpx, C 1 q " apxqC 1 ´bpxq and C 1 ptq	`ż 8	xµ t pdxq " m .
							0
	References : Laurençot and Mischler 2002 J. Stat. Phys.,
	Collet et al 2002 SIAM J. Appl. Math.			

  pxqpapxqC 1 psq ´bpxqqµ s pdxq ds .xµ t , idy `C1 ptq " m :" xµ 0 , idy `C1 p0q

			b a ,
	xµ t , ϕy " xµ in , ϕy ż `8 `ż t	ϕ 1 pxqpapxqC 1 psq ´bpxqqµ s pdxq ds .
	0	0	
	xµ t , idy `C1 ptq " m :" xµ 0 , idy `C1 p0q
	and to, for C 1 ptq ą b a ,		
	xµ t , ϕy " xµ in , ϕy	`ż t	ϕp0qa 1 pC 1 psqq 2
	`ż t	ż `8	0 ϕ 1
	0	0	

Concrete Example

Consider a sequence of pã ε i q, p bε i q, p C ε i p0qq, p Mε q. Let p C ε i ptqq be the corresponding solution and define (suppose

We then define the variables