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Conservation priorities when species interact:
the Noah�s Ark Metaphor revisited

Pierre COURTOIS�, Charles FIGUIERESy, Chloé MULIERz

March 26, 2014

Abstract

This note incorporates ecological interactions into the Noah�s Arch
problem [M.L. Weitzman, The Noah�s Arch problem, Econometrica 66(6)
(1998) 1279-1298]. In doing so, we arrive at a general model for rank-
ing in situ conservation projects accounting for species interrelations and
provide an operational cost-e¤ectiveness method for the selection of best
preserving diversity projects under a limited budget constraint.

Keywords: conservation priorities, ecological interactions, biodiversity,
Weitzman ranking criterion.

JEL Classi�cation: C6, Q5.

1 Introduction

Weitzman (1998) is a milestone in the economic theory of biodiversity. His
"Noah�s Arch problem" is not only a modeled metaphor that is helpful to or-
ganize thinking on how to face conservation trade-o¤s with �nite resources. It
also results in a practical cost-e¤ectiveness methodology that can serve as inspi-
ration to guide conservation policies. The idea is, for each species i, to collect
information about: i) Ci, the cost of its protection, ii) �Pi; the increase of
survival probability resulting from it, iii) Ui, the direct utility of how much we
value the species, iv) Di; its distinctiveness. From this information, each species
is assigned a number Ri via the formula:

Ri =
�Pi
Ci

(Di + Ui) ; (1)
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which indicates its rank in conservation priorities. This ranking criterion has a
theoretical foundation: it is rooted in a rigorous optimization model (Weitzman,
1998, Theorem 4, p. 1295).
While the criterion sheds light on real biodiversity issues and has actually

been used in several applications1 , it is fair to say that it is more appropriate
for ex situ conservation projects - say to build a gene bank or a zoo - rather
than to manage a set of interacting species in their natural habitats. This is so
because formula (1) uses no information of any kind about the web of life. Yet, in
ecosystems, species interact. Some of them compete to share common resources,
others develop synergies and mutually enhance each other or they simply pertain
to the same trophic chain. Suppose, then, that the conservation authority has
information about those ecological interactions, even if it is only under the
rudimentary form of probability interdependencies. That is, it knows that a
marginal increase of survival probability of species j will have an impact rij on
the survival probability of species i. Could this information be used to qualify
formula (1) and increase its relevance when it comes to in situ conservation
trade-o¤s?
To our knowledge, three recent articles stress the need to account for ecolog-

ical interactions in Weitzman�s diversity concept. They have in common: i) to
take into account the ecological interactions via interdependent survival prob-
abilities in a simpli�ed version of the Noah�s Ark metaphor with two species
(Baumgartner, 2004, Simanier 2008) or three species (van der Heide, van den
Bergh and van Ierland, 2005), ii) to show that this consideration can reverse
the conservation priorities.
The key of this note is to provide a general analysis of in situ conservation

problems considering interdependent survival probabilities. Revisiting Weitz-
man�s optimization problem, we extend his model in order to incorporate species
interactions. Our principal output is to forward a general ranking formula that
could be used as a rule of thumb for deciding in situ conservation priorities
under a limited budget constraint.
The sketch of the paper is the following. Section 2 incorporates ecological in-

teractions in Weitzman�s parable of Noah�s Arch, with any arbitrary number of
species. The crux of the section is to provide with a new rule for establishing in
situ conservation priorities through the expression (11) below that encompasses
formula (1) as a special case. The link between this formula and Noah�s opti-
mal policy is explained. Section 3 illustrates the relevance of this new formula
within a two-species example. We end this last section with a discussion on the
possibility of ranking reversal in relation to three stylized kinds of ecological
interactions: predation, mutualism and competition.

2 The Noah�s Arch metaphor revisited

2.1 Introducing ecological interactions
1 see Eppink & van den Bergh (2007), in particular Section 3.1 on cost-e¤ectiveness models

and the various references therein
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In the initial version of Weitzman�s modeled allegory, Noah�s decision problem
is, for each species i, to choose a survival probability between a lower and an
upper bound, Pi 2

�
P i; P i

�
, in order to maximize the sum of the expected

number of distinct genes:

W
�
fPigki=1

�
;

and the expected utility of the set of species:

U
�
fPigki=1

�
=

kX
i=1

Ui � Pi :

Weitzman devotes much of his paper to de�ne function W
�
fPigki=1

�
and to

explain its link with the concept of information content (see his Theorem 1, p.
1284). We remain agnostic about the exact nature of this diversity function.
Several functions exists and could be used. Those we study in the present pa-
per are C2 functions. Importantly, we consider the class of expected diversity
functions with Hessian matrices that are not negative semi-de�nite. Weitzman�s
expected diversity function belongs to this class of functions. It encompasses -
but is not limited to - functions W with a positive de�nite Hessian matrix, i.e.
that are strictly convex functions.
Now let us take a step away from this initial metaphor, towards reality.

Two modi�cations are brought into the formalism. First, rather than controlling
directly the probability of survival Pi of each species i = 1; :::; k; Noah can exert
a protection e¤ort within an admissible range, xi 2 [0; xi] ; which is interpreted
as the controlled increase of survival probability Pi - say that xi is the increase
of survival probability for species i resulting from a protection e¤ort, e.g. an
investment in a vaccination campaign. It is important to distinguish the e¤ort
from the variation of survival probability because Pi is also determined by other
factors, for there are ecological interactions among species. And this is where
our second, most important, quali�cation appears: probabilities of survival are
interdependent and Noah may have this information. Nowadays he can rely
on the knowledge gained from the new and booming literature on conservation
biology, as well as the two sub�elds on species distribution models and population
viability analysis2 . A group of experts can measure the marginal impact, say
rih, that an increase in the probability of survival of a species h can have on
the probability of survival of another species i: The experts can also appraise
the impact of protection e¤orts on these probabilities. Assume, then, that a
tractable approximation of all those pieces of information can be summarized
by the system (2) of linear equations:

Pi = qi + xi +
X
h6=i

rih Ph ; qi 2 [0; 1[ ; xi 2 [0; xi] : (2)

2See for instance Burgman, Ferson and Akcakaya (1993), Witting, Tomiuk & Loeschcke
(2000), Guisan and Thuillier (2005), or Elith and Leathwick (2009) for a recent overview.

3



The admissible ranges of e¤orts, �ki=1 [0; xi], are those for which the solutions
of the above system of equations can be interpreted as probabilities:

Pi 2 �i =
�
�i;�i

�
v [0; 1] ; 8i ; 8 xi 2 [0; xi] :

We denote P i as the natural survival probability of species i, without any
human intervention, xi = 0. In the absence of natural interactions, which cor-
responds the case studied by Weitzman, we have rih = 0;8i;8h. A consequence
is that in the most extreme case with no ecological interactions and no human
intervention, species i has a probability of survival qi; which could also be zero.
The survival probabilities interval, without ecological interactions, would thus
take values ranging from P i = qi to P i = P i + xi:
Noah also has to cope with a budget constraint:

kX
i=1

Ci
�Pi

� xi � B ; (3)

where �Pi = �i � �i is the potential increase in survival probability, B is the
total budget to be allocated to conservation - metaphorically, the size of the Arch
- and Ci=�Pi is the cost per unit of increase of survival probability in the range
�i ��i. An interesting remark is in order: except when ecological interactions
are negligible, Noah can increase the probability of survival of any species i via
two di¤erent channels: a direct one by increasing the protection e¤ort xi; at a
cost (Ci=�Pi) � xi ; and an indirect one through ecological interactions, due to
the protection of another species j, with a cost (Cj=�Pj) � xj:
Noah�s ark problem, when ecological interactions are taken into account, is

then:
max

fxigki=12 �k
i=1[0;xi]

W
�
fPigki=1

�
+ U

�
fPigki=1

�
; (4)

subject to (2) and (3).
It will be convenient in the sequel to work with matrix expressions, written

in bold characters. For any matrixM, det(M) denotes its determinant, adj(M)
its adjugate, M> its transpose. Besides, Ik is the (k � k) identity matrix, �k
is the k dimensional column vector whose elements are all 1, and we recall the
following de�nition of inequality between two k-dimensional vectors m and n:
m 5 n if mi � ni; for all i = 1; :::; k:3

3The other basic relationships between vectors are: i) m = n if mi = ni; for all i = 1; :::; k;
ii) m < n if mi < ni; for all i = 1; :::; k; iii) m � n if mi � ni; for all i = 1; :::; k; and m 6= n:
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Let us de�ne:

Q �

26664
q1
q2
...
qk

37775 ; R �

26664
0 r12 ::: r1k
r21 0 ::: r2k

::: :::
. . .

...
rk1 rk2 ::: 0

37775 ; P �
26664
P1
P2
...
Pk

37775 ; � �
26664
C1=�P1
C2=�P2

...
Ck=�Pk

37775

P �

26664
P 1
P 2
...
P k

37775 ; P �

26664
P 1
P 2
...
P k

37775 ; X �

26664
x1
x2
...
xk

37775 ; X �

26664
x1
x2
...
xk

37775 :
In matrix form, the system (2) reads as:

P = Q+X+RP:

If Ik �R is invertible, solving this matrix equation one �nds:

P = � (Q+X) ; (5)

where � �
�
Ik �R

��1
:

Let P (X) � � (Q+X) refer to the a¢ ne mapping from e¤orts to probabil-
ities. Natural survival probabilities without protection policies are therefore:

P = P
�
0 � �k

�
: (6)

Without ecological interactions, � is the identity matrix, P = Q and P =
P+X = Q+X:
Now we can plug (5) into (4) to get rid of probabilities, and express Noah�s

problem only in terms of e¤orts. De�ne the two composite functions:

W � P (X) � W (P (X)) ;
U � P (X) � U (P (X)) :

Noah�s problem expressed as a function of protection e¤orts X is then:

max
X
W � P (X) + U � P (X) ; (7)

subject to:

�>X � B ; (8)

0 � �k 5 X 5 X : (9)

Two questions arise: i) could anything general be said about the solution to
problem (7), (8), (9)? And ii), taking a more practical stance, could we engineer
a simple rule that approximates the general solution?
Regarding the �rst question, the key is to generalize a property already es-

tablished in Weitzman (1998) who showed that the solution to Noah�s problem
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when probabilities are independent lies on borders except for at most one de-
cision variable. In other words, the optimal protection policy is extreme, in the
sense of giving full protection to a subset of species, partial protection for at
most one species, and exposing remaining species to the risk of minimal (or no)
protection. But what if probabilities are interdependent?

Theorem 1 Suppose Ik�R is invertible. The solution to Noah�s Arch problem
with ecological interactions, de�ned by (7), (8) and (9), is an extreme policy.

Proof. See Appendix A.

2.2 A myopic ranking rule for interacting species

Theorem 1 is a qualitative result, that does not indicate which species should
be granted protection and why. This brings us to our second question; it would
be welcome to have an explicit and easy-to-use approximation of the general
solution. Facing the same problem, this is the practical point of view adopted
by Weitzman (1998), which he describes as "the main theme" of his paper (p.
1294). His formula (1) o¤ers a ranking that is not really a solution to the original
problem, but rather a �rst order approximation of an optimal policy. In order
to achieve this, he replaces the objective function by its linear approximation.
He then obtains a classical linear programming problem, whose solution is to
assign grades Ri given by formula (1) to species (those grades depend on the
model parameters) and embark them in decreasing order of importance up to
the point where the budget is exhausted. Those grades are exactly the practical
ranking Noah is looking for.
We follow the same approach here, i.e. we linearize the objective function.

The astute reader knows that, in general, such approximations can be seriously
misleading (Baumol and Bushnell, 1967) and should not be followed blindly.
Nevertheless, as proven in Theorem 2 below, there is something special about
Noah�s problem that makes this practice appropriate here, in a sense to be made
precise.
Let us denote:

Di �
@W

@Pi

����
P=P

; Ui �
@U

@Pi

����
P=P

;

and de�ne the two matrices:

A �

26664
D1 + U1
D2 + U2

...
Dk + Uk

37775 ; � � A>�:

From simple calculations, the linearized problem in matrix form turns out to
be:

max
X

�X+ constant terms, (10)
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subject to (8) and (9).

As can be observed in the above approximation of Noah�s problem, the intro-
duction of ecological interactions changes the "slope" of the objective function
to be maximized, which is now � � A>� instead of just A>. The crux, from
the point of view of the present note, is to transform the information about eco-
logical interactions conveyed by matrix R; into operational data via the matrix
�:

� =
�
Ik �R

��1
=

1

det (Ik �R) � adj
�
Ik �R

�
:

When Ik �R is invertible, the computation of the matrix � is easily made and
if �ij denotes a typical element of �, then � is a k-dimensional line vector of
the type:

� =

"
kX
h=1

(Dh + Uh) �h1 ;
kX
h=1

(Dh + Uh) �h2 ; :::;
kX
h=1

(Dh + Uh) �hk

#

Let

�i �
kX
h=1

(Dh + Uh) �hi ;

�i � ci
�Pi

;

stand for the ith elements of, respectively, � and �: We can now de�ne the
"bene�t"-cost ratios R

i � �i=�i ; or with explicit reference to relevant informa-
tion:

R
i � �Pi

Ci

kX
h=1

(Dh + Uh) �hi ; i = 1; :::; k: (11)

As shown in Theorem 2 below, there is a sense in which expression (11) can
be taken for the new practical formula sought to construct in situ conservation
priorities. Observe that the number assigned to each species i does not depend
merely on its own "bene�ts" but actually on overall "bene�ts" generated by
species i on all the species,

Pk
h=1 (Dh + Uh) �hi; via ecological interactions.

Therefore, a species with a strong own interest can be overridden by another,
endowed with a less direct interest, but whose importance is enhanced because
of its ecological role. Of course, when there are no ecological interactions, �
is the identity matrix, with �ii = 1;�hi = 0;8h 6= i; and (11) boils down to
Weitzman�s original system of grades for species i :

R
i
= Ri � �Pi

Ci
(Di + Ui) :

One can ask to what extent can we rely on formula (11) to build a hierarchy
among species? Can conservation policy be based on such an approximation?
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Baumol and Bushnell (1967) have famously attracted the attention on a num-
ber of potential �aws with linear approximations, two of them being of a great
importance for the problem at hand: i) a linear approximation to a nonlinear
program need not provide an answer better than a randomly chosen initial so-
lution, ii) only if the objective function behaves monotonically in every variable
within the admissible region can we be assured that a linear approximation will
yield results which represent an improvement over the initial point. Clearly,
Noah�s objective function does not meet this last condition, for an increase of
the e¤ort xi can improve the chances of species i at the expense of another
species j (obviously so when i is a predator for j).
Still, we can prove the following Theorem which establishes a special interest

to the use of a linear approximation in this decision problem:

Theorem 2 Suppose Ik �R is invertible. And suppose one selects a solution
to the Noah�s Arch Problem with ecological interactions to be of the following
form: there exists a cuto¤ value R

�
such that:

� if Ri > R� =) xi = xi ; (species i is granted full protection),

� if Ri < R� =) xi = 0 ; (species i is granted zero protection).

Let us call XW this policy and X� the optimal solution approximated by XW .
Then,

i) XW o¤ers an improvement compared to the absence of protection,

ii) the error introduced by XW is no larger than K �
�
X
|
�k
�2
; where K =

max
�
@2 (W � P) = (@xi@xj)

	
:

Proof. See Appendix B.

3 Final remarks

We close this note with a brief study of trade-o¤s alterations arising from the
consideration of ecological interactions. This can be illustrated within a simple
two-species example. Assume for simplicity that jr12j < 1; jr21j < 1. The system
(2) becomes: �

P1
P2

�
=

�
q1
q2

�
+

�
x1
x2

�
+

�
0 r12
r21 0

� �
P1
P2

�
:

Here the matrix Ik �R is invertible since r12r21 6= 1.

Solving the system of interactions:

P1 = (1� r12r21)�1 (q1 + r12q2 + x1 + r12x2) ;
P2 = (1� r21r12)�1 (q2 + r21q1 + x2 + r21x1) :

8



The grades also can be easily computed. They are:

R
1
=

�P1
c1

�
D1 + U1
1� r12r21

+
r21 (D2 + U2)

1� r21r12

�
;

R
2
=

�P2
c2

�
r12 (D1 + U1)

1� r12r21
+
D2 + U2
1� r21r12

�
:

To further simplify, imagine that c1 = c2 = c; �P1 = �P2 = �P: If ecologi-
cal interactions are erroneously ignored, formally Noah assigns zero values by
mistake to the system of interactions: r12 = r21 = 0. Suppose, without loss of
generality, that on this erroneous basis the �rst species ranks higher:

R1 = (D1 + U1) > R
2 = (D2 + U2) :

In other words D1 + U1 = k � (D2 + U2) ; for some k > 1:
Two questions arise. Could this ranking be reversed once interactions are

properly taken into account? And, if the answer is a¢ rmative, why?
When the ranking is reversed:

R
1

< R
2
;

,
D1 + U1
1� r12r21

+
r21 (D2 + U2)

1� r21r12
<

r12 (D1 + U1)

1� r12r21
+
D2 + U2
1� r21r12

:

Since 1� r12r21 > 0, and using D1 + U1 = k � (D2 + U2) ; the last inequality is
equivalent to:

, k + r21 < kr12 + 1 ;

, k <
1� r21
1� r12

: (since jr12j < 1).

So, a ranking reversal occurs when:

1 < k <
1� r21
1� r12

:

In order to �x ideas, consider that k is arbitrarily close to one, i.e. the two
species provide similar "bene�ts" and therefore a ranking reversal, if any, is due
to the consideration of ecological interactions. Then note that for the above
inequality to hold, necessarily r12 > r21, which may occur in various interesting
ecological con�gurations:

i) Predation: species 1, a predator, feeds on species 2, its prey. So r21 < 0
whereas r12 > 0. Giving conservation priority to the prey is the most
e¤ective way to enjoy the bene�ts of both species.

ii) Mutualism: for example plant-pollinator interactions, r12; r21 > 0: The syn-
ergistic relation between those two species is best enhanced by promoting
species 2, which has the largest collective marginal impact.

9



iii) Competition: two species have to share a common resource in the same
living area that cannot fully support both populations, hence r12; r21 < 0,
so conservation e¤orts focus on species 2 because its marginal negative
impact is lower.
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Appendix

A Proof of Theorem 1

The proof rests on two pieces of information:

i) Noahs�problem is to maximize a continuous function over a compact set,
therefore by Weiestrass extreme value theorem there exists a solution.

ii) The Hessian matrix of W � P (X) +U � P (X) is not negative semi-de�nite,
a statement we shall prove below.

Item ii) violates the necessary second order condition for interior solutions to
Noah�s problem and, in combination with item i), leads to conclude the existence
of a solution on the boundary of the e¤orts set, as claimed by Theorem 1.
In order to reach this conclusion, it remains to prove item ii). Since U �P (X)

is linear, the di¢ culty is to ensure that the Hessian matrix of W � P (X) is not
negative semi-de�nite. Recall that P (X) is a k-dimensional vector with typical
element Ph (X) ; h = 1; :::; k, and let JP (X) stand for the Jacobian matrix:

JP (X) �

266664
@P1(X)
@x1

@P1(X)
@x2

::: @P1(X)
@xk

@P2(X)
@x1

@P2(X)
@x2

::: @P2(X)
@xk

...
...

. . .
...

@Pk(X)
@x1

@Pk(X)
@x2

::: @Pk(X)
@xk

377775 :

Note that, since each function Ph (X) is linear, the Jacobian matrix is made of
invariant numbers, so we need not mention the application point X and we can
simply refer to the matrix JP .
Denote r2W � P (X) the Hessian matrix of W � P (X) ; a k � k matrix

with typical elements @2 (W � P) = (@xi@xj). From meticulous derivations of the
composite function W �P (X), and after simpli�cations allowed by the linearity
of the mapping P (X), one obtains:

r2W � P (X) � J>P � r2W (X) � JP :

If r2W � P (X) is negative semi-de�nite, then for any nonzero vector m 2 Rk
we must have:

m> � r2W � P (X) �m = m> � J>P � r2W (X) � JP �m � 0 :
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Notice that JP �m is simply a nonzero (k � 1) vector, which we may simply call
n. Hence we can rewrite the above inequality as:

n> � r2W (X) � n � 0 ;

which would mean that r2W (X) is negative semi-de�nite, a possibility that
has been ruled out by assumption. QED.

B Proof of Theorem 2

Item i). The solution proposed in Theorem 2 is inspired from gradient methods
used to �nd optimal solutions based on the property of iterative improvements,
like the famous Frank-Wolfe algorithm. The �rst step of those algorithms is to
substitute to the objective function its �rst order Taylor approximation Z (X)
computed at an admissible vector X0 (here at the zero protection vector X0=0�
�k). Let us note rW � P the Gradient, a k � 1 vector with typical elements
@ (W � P) =@xi ; that corresponds actually to the vector � � A>� given in the
text.
Using those notations:

Z (X) 'W � P
�
0 � �k

�
+rW � P

�
0 � �k

�> �
X� 0 � �k

�
:

A �rst step of a gradient algorithm would maxX Z (X) subject to the relevant

constraints. Since in Z (X) only the term rW �P
�
0 � �k

�>
X = �X varies, this

step is equivalent to maximize (10) subject to (8) and (9). And the policy XW

presented in the Theorem 2 is exactly the maximizer of this linear programming
problem.
By de�nition of XW , we must have:

Z
�
XW

�
� Z

�
0 � �k

�
:

() rW �P
�
0 � �k

�> �
XW � 0 � �k

�
� rW �P

�
0 � �k

�> �
0 � �k � 0 � �k

�
= 0;
(12)

so the vector XW �0� �k is an ascent direction for W �P. Although this means
that the approximation Z (X) is non decreasing along this direction, it is not
guaranteed that the non linear objective will behave similarly, i.e. we cannot
yet conclude W � P

�
XW

�
�W � P

�
0 � �k

�
:

By convexity of function W � P we can write:

W � P
�
XW

�
�W � P

�
0 � �k

�
� rW � P

�
0 � �k

�> �
XW � 0 � �k

�
;

and since we have established in (12):

rW � P
�
0 � �k

�> �
XW � 0 � �k

�
� 0;

we are led to conclude:

W � P
�
XW

�
�W � P

�
0 � �k

�
� 0:
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Item ii). Recall that r2W �P stands for the Hessian matrix ofW �P. Using
Taylor expansions, one can write:

W �P (X�) =W �P
�
0 � �k

�
+rW �P

�
0 � �k

�>
X�+

1

2!
(X�)

| r2W �P (Z�) X� ;

for some admissible vector Z�; and

W�P
�
XW

�
=W�P

�
0 � �k

�
+rW�P

�
0 � �k

�>
XW+

1

2!

�
XW

�| r2W�P (Zw) XW ;

for some admissible vector Zw:Therefore

W � P (X�)�W � P
�
XW

�
= rW � P

�
0 � �k

�> �
X� �XW

�
+
1

2!
(X�)

| r2W � P (Z�) X�

� 1
2!

�
XW

�| r2W � P (Zw) XW :

But, by de�nition of XW

rW � P
�
0 � �k

�> �
X� �XW

�
� 0 ;

so

W � P (X�)�W � P
�
XW

�
� 1

2!
(X�)

| r2W � P (Z�) X� � 1

2!

�
XW

�| r2W � P (Zw) XW

� K

2!

�
(X�)

|
�k
�2 � K

2!

h�
XW

�|
�k
i2
� K

�
X
|
�k
�2
;

where K = max
�
@2 (W � P) = (@xi@xj)

	
:

13


