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Abstract

This paper compares the performance of econometric land use models based on

three proxies for agricultural land rent: farmers’ revenues, land prices, and shadow

land prices derived from a mathematical programming model. We consider different

land use classes (agriculture, pasture, forest, urban, and other), different determi-

nants (economic, physical, and demographic) of land use shares, and different spatial

econometric specifications. It is found that the inclusion of spatial components sig-

nificantly improves the quality of predictions. In terms of economic interpretation,

the shadow land prices provide the most stable and intuitive results.
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1 Introduction

Land use and land use change (LUC) are among the main human pressures on the envi-

ronment (Foley et al., 2005). Some LUCs e.g. deforestation, could have adverse effects on

the environment such as reduced biodiversity (Sala et al., 2000), carbon release into the

atmosphere (Rhemtulla, Mladenoff and Clayton, 2009), changes to water cycles (Steven-

son and Sabater, 2010) and loss of ecosystem services (Schröter et al., 2005). Other LUCs

such as the establishment of permanent grassland or afforestation, could store carbon in

the soil, and thus, contribute to reducing greenhouse gas emissions and preserving the

environment. Developing precise LUC models could be useful to provide policy makers

with insights into future LUCs driven by global change. Also these models could be used

to evaluate policy mechanisms designed to reduce the negative environmental externalities

of LUCs (greenhouse gas emissions, loss of biodiversity, reduced water quality, etc.).

Econometric land use models focus mainly on the behavioral decisions of landowners

who choose among land uses in order to maximize the benefits from their land. The

emerging decision rule states that optimal land use is determined by comparing the rents

associated with each possible land use net of conversion costs. According to economic

theory, land rents vary depending on land characteristics such as fertility (Ricardo, 1817)

and location (von Thünen, 1826). However, there are other factors that can affect the

land use decision for a given plot. These include socio-economic factors such as production

prices, and policy variables such as taxes or subsidies. Econometric studies of land use

generally examine the relationship between land use choices and a set of explanatory

variables, namely the rents derived from different land uses, or proxies such as input

and output prices, subsidies, and soil and climatic variables (slope, altitude, soil quality,

temperature, precipitation, etc.). Land rent is a rather complex notion and the literature

proposes several concepts of economic rent.1

Usually, land use rents are not directly observed, and most studies approximate

them using other variables. These proxies for land use rents vary across studies but

the most frequently used proxies for agriculture include producer’s revenue, agricultural

land price, output or input prices, yield, land quality, and government payments (e.g.
1See Randall and Castle (1985) for a detailed presentation on the concept of land rent.
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Wu and Segerson, 1995; Plantinga, 1996; Stavins and Jaffe, 1990; Plantinga and Ahn,

2002). The objective of the present paper is to compare land use models based on three

different proxies for agricultural land rent: (i) farmer’s revenue, (ii) land price, and (iii)

the shadow price of land derived from a mathematical programming model (AROPAj,

Jayet et al., 2015). Farmer’s revenue is the most frequent economic variable in land use

literature (Stavins and Jaffe, 1990; Plantinga and Ahn, 2002; Lubowski, Plantinga and

Stavins, 2008; Chakir and Le Gallo, 2013). Data on revenues from agriculture can be

derived from agricultural censuses or surveys. The second proxy, land price, generally is

considered equal to the net present value (NPV) of future land rents (Ricardo, 1817). It

is often used in the context of climate change impact assessments, otherwise known as

the Ricardian method proposed initially by Mendelsohn, Nordhaus and Shaw (1994) and

which focuses solely on agricultural use. In the land use literature, Ay, Chakir, Doyen,

Jiguet and Leadley (2014) use the agricultural land price to approximate land rents in an

econometric land use model to study the impacts of climate change on land use in France.

Our third proxy, the land shadow price, to the best of our knowledge, has not so far

been used in econometric land use share models. Using the land shadow price to proxy

for agricultural land rent is one of the main contributions of our paper. The shadow

price corresponds to the marginal productivity of the land estimated using a European

Union mathematical programming model for agriculture.2 Generally, shadow prices are

used when no market valuation is available. In the case of France, the agricultural land

market is regulated by public structures, and land prices and land rents are upper bounded

(Dupraz and Temesgen, 2012). Thus, estimated shadow prices sometimes provide more

relevant insight into agricultural land productivity. Another argument in favor of land

shadow price is that these figures are not influenced by conversion option values (such

as development options) which increase land prices for reasons unrelated to agriculture.

Compared to agricultural revenues, land shadow prices are obtained for perfectly informed

farmers, and as such, correspond to the farmers expected revenues under no price or

climate hazards.

In order to compare the impacts of these different agricultural rent proxies, we estimate
2The economic supply-side model AROPAj (for detailed description see Jayet et al., 2015) is based on

the Farm Accountancy Data Network (FADN).
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land use share models at a homogeneous 8km x 8km cell grid resolution, to cover the

territory of metropolitan France. We consider five land use classes: agriculture, pasture,

forestry, urban, and other. Land use data are derived from the remote sensing database,

Corine Land Cover (CLC3). We model spatial dependence between grid cells, and compare

different spatial model specifications.

Although work in the land use literature which take explicit account of spatial depen-

dence has increased according to Brady and Irwin (2011), still, only a few studies apply

spatial econometric tools (Ay, Chakir and Le Gallo, 2016; Chakir and Le Gallo, 2013; Li,

Wu and Deng, 2013; Sidharthan and Bhat, 2012; Ferdous and Bhat, 2013; Chakir and

Parent, 2009). Most recent econometric land use models proposed by articles published

in high quality journals tend to ignore spatial dependence, or use ad hoc methods4 to deal

with it (e.g. Irwin, Bell and Geoghegan, 2003; Carrion-Flores and Irwin, 2004; Lubowski

et al., 2008; Fezzi and Bateman, 2011). This is because spatial dependence raises several

issues related to econometric estimation, hypothesis testing, and prediction – especially

in the case of discrete choice models (Anselin, 2007; Brady and Irwin, 2011).

According to Gibbons and Overman (2012) and Corrado and Fingleton (2012), most

papers in the field of applied spatial econometrics focus on choosing the best model speci-

fication and conduct batteries of tests to justify that choice, at the expense of considering

the crucial issue of identifying the causal effects. Causality is central in our paper, and

our empirical question is based on economic theory which states that land use is deter-

mined by the land rent (Lichtenberg, 1989; Lubowski et al., 2008). The idea here is to

test different definitions of agricultural land rent since this concept is rather vague and

difficult to define empirically (Hardie, Parks, Gottleib and Wear, 2000). In the present

paper, we focus on three possible definitions of agricultural land rent: agricultural land

price, farm income, and the land shadow price and compare different spatial specifications

of the econometric model using the three rent proxies. These comparisons are made based

on various criteria including: consistency with the theoretical hypothesis (significance of

agricultural rents and their marginal impacts), prediction quality (NRMSE – normalized
3For more information on CLC: http://land.copernicus.eu/pan-european/corine-land-cover .
4De Pinto and Nelson (2007) enumerate three types of ad hoc corrections for spatial effects which are

available in the land-use literature: spatial sampling, latitude and longitude as exogenous variables, and
spatially lagged geophysical variables.
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root-mean-square error) and specification tests (LM – Lagrange multiplier – tests).

Our study is organized as follows. In section 2 we present the land use share model

specification employed, discuss some implications of the spatial dependence, and describe

the most frequently used specifications for spatial models. The data used in our study are

provided in section 3 and the results obtained using the three proxies and the different

model specification are presented in section 4. The paper concludes in section 5.

2 The Model

2.1 Land use share model

In this section we describe our land use share model. This type of model specifica-

tion is standard in the literature (Lichtenberg, 1989; Stavins and Jaffe, 1990; Wu and

Segerson, 1995; Plantinga, 1996; Miller and Plantinga, 1999). The model starting point

is the assumption that landowners derive the optimal land allocation from their profit-

maximization problem. Here, we focus on the landowner’s decision to allocate land among

five possible uses: agriculture, pasture, forest, urban, and other. Landowners allocate land

to the use providing the greatest NPV of their profits (Plantinga, 1996; Stavins and Jaffe,

1990). The optimal allocations of individual landowners are aggregated in order to derive

the observed share of land in the grid cell i in use k, denoted yki.

Following recent studies by Ay et al. (2016) and Chakir and Le Gallo (2013), we specify

an aggregated land use share model. Our study is conducted at grid-level where shares

are defined as percentages of the total grid area devoted to given uses. The observed share

of land use k (k = 1, ..., K) in grid cell i (i = 1, ..., I) is expressed as:

yki = pki + uki ∀i = 1, . . . , I, ∀k = 1, . . . , K, (1)

where pki is the expected share of land allocated to use k in grid cell i. The estimated

optimal allocation may be different from the observed allocation yki because of the effects

of random factors such as bad weather or unanticipated price changes. These random

events are assumed to have zero mean.

As in Wu and Segerson (1995) and Plantinga, Mauldin and Miller (1999), we use a
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logistic5 specification for the share functions as follows:

pki =
eβ

′
kXi

∑K
j=1 e

β
′
jXi

(2)

where Xi are explanatory variables and β ′
k measure the effect of the explanatory vari-

ables on the expected shares.

Following Zellner and Lee (1965), the natural logarithm of each observed share nor-

malized on a common share (here yKi) is equal to approximately:

ỹki = ln(yki/yKi) = β
′
kXi + εki for ∀i = 1, . . . , I, ∀, k = 1, . . . , K, (3)

where εki is the transformed error term. The model in equation 3 is identified if we

constrain βK = 0.

2.2 Spatial dependence

Spatial autocorrelation and dependence could result in aggregated land use share models

from a structural spatial relationship among the values of the dependent variable (SAR –

spatial auto-regressive model), or a spatial autocorrelation among the error terms (SEM –

spatial error model). The former is regarded as a fundamental characteristic of the spatial

processes characterized by potentially complex interactions, and dependent structures

among neighboring values. Spatial autocorrelation due to a spatially correlated error

term is essentially a data measurement problem. For instance, it can emerge from data

measurement errors involving the spatial limits of the phenomena which differ from the

boundaries used for the measurement. Spatially correlated omitted variables6 are another

possible source of spatial autocorrelation. This applies to our data where use of artificially

constructed grids and differing scales could explain the existence of spatial autocorrelation

(Anselin, 1988).

Omitting spatial dependence from a spatial data generating process could adversely
5Logistic share models are preferred for three main reasons: (i) they ensure that the predicted share

functions lie (strictly) in the interior of the zero-one interval, (ii) they are parsimonious in their parame-
ters, and (iii) they are empirically tractable thanks to the so-called log-linear transformation.

6See the paper by LeSage and Pace (2009) which provides motivations for regression models that
include spatial autoregressive processes.
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affect the land use model. It could suffer from bias in the regression coefficients, incon-

sistency, inefficiency, masking effects of spillovers, and prediction bias. There are several

procedures that can be used to test statistically for the presence of spatial dependence

against the null hypothesis of spatial independence (Anselin, 1988). The most commonly

used measure of spatial autocorrelation is Moran’s (1948) I statistic which indicates the

degree of spatial association reflected in the data. Consideration of spatial dependence

in an econometric model can be achieved in various ways by including spatially lagged

variables, i.e., weighted averages of observations of the "neighbors" of a given observation

(Anselin, 1988). These spatially lagged variables can be the dependent variable (SAR),

explanatory variables (spatial cross regressive model, SLX), or the error terms (SEM),

or any combination of these options which results in a range of spatial models (Elhorst,

2010). For instance, the spatial autoregressive confused model (SAC) accounts simulta-

neously for autocorrelation in the error term and for spatial associations of the dependent

variable. The spatial Durbin model (SDM) combines the SAR and the SLX models while

the spatial Durbin error model (SDEM) integrates all the elements of the SLX and the

SEM. Finally, the general nesting spatial model (GNS) combines the SAC and the SLX.

We consider in this paper spatial models labeled SAR, SEM, SLX, SDM, SDEM,

SAC, and GNS in Anselin (1988); LeSage and Pace (2009) and Elhorst (2014). Table 1

summarizes the different estimated spatial model specifications and their interpretation.

We then compare different spatial specifications of the econometric model using the three

rent proxies. These comparisons are based on several criteria: quality of economic expla-

nation (significance of agricultural rents and their marginal impacts), prediction quality

(NRMSE), and specification tests (LM tests).

The spatial neighborhood matrix, W , is obtained following the queen contiguity rule

of grid cell borders, and consequentially, its values are row-weighted.7

7For our estimations of the different spatial specifications, we use the R package spdep (Bivand, Hauke
and Kossowski, 2013; Bivand and Piras, 2015).
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Model Model presentation Interpretation
SEM ỹ = Xβ + ε Unobserved omitted variables follow

ε = λWε+ u a spatial pattern, data measurement errors

SAR ỹ = ρWỹ +Xβ + ε Land use share for one location is determined
jointly with that of neighboring locations.

SLX ỹ = Xβ +WXγ + ε Land use share for one location is determined by
the explanatory variables of neighboring locations.

SDM ỹ = ρWỹ +Xβ +WXγ + ε A combination of SLX and SAR

SAC ỹ = ρWỹ +Xβ + ε A combination of SEM and SAR
ε = λWε+ u

SDEM ỹ = Xβ +WXγ + ε A combination of SEM and SLX
ε = λWε+ u

GNS ỹ = ρWỹ +Xβ +WXγ + ε A combination of SLX and SAC
ε = λWε+ u

Table 1: Summary table of the estimated spatial model specifications

3 Data presentation

3.1 Land use data

The land use data are from the CLC database for France at the scale of 100m x 100m

(1ha8) grids for the year 2000. The land cover classes considered in this paper are agri-

culture, pasture, forest, urban, and other. Table A1 in appendix A summarizes the rules

applied for the land use classification which are depicted in figure 1. We can then calculate

the share of each land use class for each (8km x 8km) grid cell; we know that each cell

includes a maximum of 6,400ha. Land use shares are expressed as the sum of the same

land use classes in hectares divided by the surface of the grid cell. Although these cells

are generated to be homogeneous, they are changed by their intersection with the French

borders. For instance, grid cells on the coast are restricted to their parts on dry land.

3.2 Proxies for agricultural and forestry rents

General information and descriptive statistics for the variables used in the study are

summarized in table 2.
8Areal phenomena’s minimal mapping unit is of 25ha and for linear phenomena the scale is 1ha.
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Figure 1: Corine Land Cover (CLC) data aggregated in five land use classes for the year
2000

Farmers’ revenues Data on farmers’ revenues are from the European Union Farm

Accountancy Data network (FADN) at the European NUTS 2 level (Gross Farm Income

variable, SE410). We focus on the revenues from crop production (cereals, oleaginous and

other field crops) and animal breeding. Revenues from viticulture, horticulture, and other

perennial crops are excluded because of the high profits per hectare and their limited areas

(table A2 in appendix A). For instance, viticulture in France accounts for only 1.5% of

the metropolitan territory but provides about 15% of agricultural sector value.9

Land price As already mentioned in the introduction, land prices generally are assumed

to be the NPV of future land rents (Ricardo, 1817). Frequently, land prices are used in the

context of a hedonic approach to climate change impact assessments, otherwise known

as the Ricardian method proposed initially by Mendelsohn et al. (1994) which focuses

solely on agricultural use. Because of the influence of urbanization on agricultural land

prices, Schlenker, Michael Hanemann and Fisher (2005) account for population density in

their analysis of climate change effects on U.S. agriculture. The standard NPV formula

ignores the possibility of land conversion to other than agricultural use (Clark, Fulton

and Scott, 1993; Gutierrez, Westerlund and Erickson, 2007; Karlsson and Nilsson, 2013)
9FranceAgriMer, www.franceagrimer.fr.
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which might be a rather strong assumption. To address this, Guiling, Brorsen and Doye

(2009) extend the NPV formula. The most profitable conversion is to land development

(switch to urban use). In the case of France, Cavailhès and Wavresky (2003) find that

immediate proximity to a city results in a high development premium which falls sharply

as the distance from the city increases. In the land use literature, Ay et al. (2014) use the

Ricardian approach to assess the effects of climate change on land use, and consequently,

common birds in France. The annual data on land prices used in our paper, are provided

by the statistical department of the French Ministry of Agriculture (Agreste) at the scale

of a French small agricultural region or a group of regions.10

Land shadow price In this study, we test land shadow price used as a proxy; to our

knowledge, this is the first such application in econometric land use share models. The

shadow price captures the non-market value that farmers attribute to their production,

and accounts for the complex interactions between on-farm activities. We use the val-

ues estimated by a European Union mathematical programming model for agriculture,

and apply them to France. The economic supply-side model AROPAj (for a detailed

description see Jayet et al., 2015) is based on FADN data and accounts for the Common

Agricultural Policy. The economic agents in the model are representative farms grouped

by farm types maximizing their gross margins (revenues minus variable costs). For each

farmer the only publicly available information concerning location is the FADN region in

which he/she operates. In order to maximize their profits, in the model farmers allocate

their land to different crops while respecting a total area constraint. We use the LM

associated with this constraint in our comparative study of agricultural returns proxies.

Microeconomic theory tells us that at the optimum, this LM (shadow price or dual value)

should be equal to the annual agricultural rent.11

Shadow prices are used when real market values are not available, or when existing

ones do not include some particularity of the good in question. In the case of France, land
10A small agricultural region is a French territorial division and is a subdivision of the administrative

regions. Their territory varies from some 1,000ha to more than 400,000ha.
11Agricultural rent is the remuneration of land as a factor of production. The equality between the LM

associated with the total land constraint and the agricultural rent results from application of the duality
theorem to the profit maximization problem. Following this approach the profit maximization problem
is equivalent to the cost minimization problem. For a general description see McFadden (1978).
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rental prices are administered by public authorities,12 and thus, the shadow price and

the observed rental prices do not coincide (Dupraz and Temesgen, 2012). Furthermore,

agriculture is a complex system where some products are consumed on-farm,13 and thus,

are not valued on the market. As land prices and rents are upper bounded, they potentially

can underestimate the profits associated with land.

Data on the agricultural rent proxies are available at different scales and for different

years. Some aggregation was necessary in order to obtain data on the same scale. Thus,

farmers’ revenues and land prices are averaged over period of respectively five and six

years.14 In the absence of information on land prices for a given small agricultural region,

we use the mean value for the corresponding French département. The data on land

shadow prices from the AROPAj model are considered at their original scale, namely the

FADN region (corresponding to the NUTS 2 level).

Forestry rents are approximated by expected returns estimated by the partial-equilibrium

model FFSM++ (Caurla and Delacote, 2012; Caurla, Delacote, Lecocq, Barthès and

Barkaoui, 2013; Lobianco, Delacote, Caurla and Barkaoui, 2015) developed by the Forestry

Economics Laboratory at the French Agricultural Research Institute (INRA) in Nancy.

The expected returns are calculated annually starting in 2006, at the scale of the French

administrative region (NUTS2). The revenue is for coniferous and broadleaved forests,

and accounts for the potential switching between these two forest types under a con-

stant forest area hypothesis (for more information, see Lobianco, Delacote, Caurla and

Barkaoui, 2016).

Both the AROPAj and the FFSM++ models include biological modules. AROPAj is

partly coupled with the generic crop model STICS (Brisson et al., 2003; Brisson, Launay,

Mary and Beaudoin, 2009), while FFSM++ uses parameters (tree mortality and growth)

derived from statistical data. Their biological modules allow both models to account
12French Rural Code, Article L411-11. In some regions this regulation is circumvented and new tenants

are often obliged to pay under-the-counter former ones in order to obtain rights on land.
13For instance, manure could be used as a fertilizer on crops while some biomass produced could be

destined for animal feeding.
14Inflation estimates for the period were obtained from the World Bank, http://data.worldbank.

org/indicator/NY.GDP.DEFL.KD.ZG.
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for the effects of climate change (in the case of AROPAj the linkage between modules is

detailed in Leclère, Jayet and de Noblet-Ducoudré, 2013). Also, the economic components

of the models allow simulation of different price and policy scenarios.15

3.3 Demography

In this paper we follow Haim, Alig, Plantinga and Sohngen (2011) and use two proxies for

urban rent: population density, and household revenue. Both indicators are provided by

the French statistical institute (INSEE) and available at the French commune scale. The

justification for using population density to proxy for urban returns is that the pressures

to develop land, and thus, the rents for urban land, are higher in more densely populated

locations. Population density is commonly used in the land use literature to proxy for

urban rent. Most studies using this proxy highlight its limitations, especially the fact that

potentially it is endogenous.

3.4 Physical data

We use data on land topography.

Soils are represented by the data provided by the Joint Research Centre (JRC) (Pana-

gos, Van Liedekerke, Jones and Montanarella, 2012) at the scale of 1:1000000 and further

aggregated at grid cell level. The indicator we use for soil quality is soil texture according

to four levels. The lowest quality, level 1, is used as the reference. Land quality is an

important variable in land use models (Chakir and Le Gallo, 2013; Ahn, Plantinga and

Alig, 2000; Lubowski et al., 2008).

Relief (altitude and slope) is derived from the digital elevation model GTOPO, available

at the scale of 30 arc seconds (approximately 1km). In the model we only introduce slope

because of the high correlation between slope and altitude. Also, slope leads to better

results in terms of the model fit.

Because of the strong correlations between the different climatic and edaphic variables
15For instance, an obligatory set-aside clause increases demand for low quality land and consequently

its rent.
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we perform principal component analysis (PCA) and multiple correspondence analysis

(MCA) in order to determine the main axes of variation and retain composite indicators

for the physical parameters. Based on the results of our analysis we decided to retain only

the two variables described above which were identified as being the most influential.

Variable Description Mean St. dev. Min Max
Land use

sag Share of agricultural use 0.438 0.276 0 1
spa Share of pastures 0.181 0.181 0 0.94
sfo Share of forests 0.262 0.22 0 0.989
sur Share of urban 0.053 0.097 0 0.99
sot Share of other uses 0.065 0.133 0 1

Source: CLC 2000
Scale: aggregated at 8km x 8km

Shadow price Land shadow price (ke/ha) 0.576 0.197 0 1.029
Source: AROPAj v.2 (2002)
Scale: NUTS 2 scale

Farmers’ revenues Farmers’ revenues (ke/ha) 0.651 0.153 0.19 0.975
Source: FADN, mean 1995-1999
Scale: NUTS 2 scale

Land price Price for arable land (ke/ha) 3.035 1.485 0 20.256
Source: Agreste, mean 1995-2000
Scale: French small agricultural re-
gion or département

For revenue Forestry revenues (e/ha) 137.20 65.54 28.93 308.00
Source: FFSM++, results for 2006
Scale: NUTS 2 scale

Pop revenues Households’ revenues 12.424 3.213 0 44.642
(ke/ year/ household)
Source: INSEE, 2000
Scale: French commune

Pop density Population density 5.541 2.973 2.75 140.131
Source: INSEE, 1999
Scale: French commune

Slope Slope (%) 4.363 6.211 0 44.2
Source: GTOPO 30
Scale: 30 arc sec (∼ 1km)

TEXT Soils’ texture classes 1 2 3 4
Number of cells 1179 4256 2858 525
Source: JRC, Panagos et al. (2012)
Scale: 1:1,000,000

Table 2: Summary statistics of land use shares and the explanatory variables
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4 Estimation results

In order to compare estimations and evaluate the gains associated with different spatial

specifications, we consider OLS, SLX, SEM, SAR, SDM, SDEM, SAC, and GNS estima-

tors for each land use share model.16 Each specification is estimated for the three proxies

for agricultural land rents - shadow price, farmer’s revenue, and arable land prices. The

estimated coefficients and other results are presented in the supplementary materials (ap-

pendix D).

Models with different spatial specifications (SLX, SEM, SAR, SDM, SDEM, SAC,

GNS) and different agricultural land rents proxies are estimated, and LM and Hausman

tests are run to compare these specifications. We then compare models according to

three criteria: goodness of fit (log-likelihood, AIC and R-squared), quality of prediction

(NRMSE), and economic interpretation of marginal agricultural land rent effects (elastic-

ities).

4.1 Specification tests

For all OLS models the Moran’s I score17 is significant meaning that the null hypothesis

of no spatial autocorrelation is rejected for the three proxies for agricultural land rents.

There are numerous possible sources of autocorrelation in our dataset. For instance, we

might be introducing artificial spatial autocorrelation by replicating the regional values

of the agricultural and forestry rents to each of the regular grid cells. In order to verify

if this is the case, we estimate the land use models excluding agricultural and forestry

rents and run Moran’s I test on the results for the linear specification. The resulting

statistics remain highly significant, and the values of Moran’s I are close to those obtained

previously. Thus, we can conclude that the spatial autocorrelation in our dataset is due

mostly to factors other than changes to the scale of the explanatory variables. Another

possible source of autocorrelation are the physical parameters (slope and soil texture)

since they are subject to geological processes at a scale which does not coincide with the
16We do not directly account for inter-equation correlation. However, as shown in Chakir and Le Gallo

(2013), since the same explanatory variables are used in each equation, we do not expect this to affect
our results significantly.

17Actual values of the test are provided in the suplementary materials (appendix D), tables D2, D10,
and D18.
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regular grid used in the study.

We use the Hausman test proposed by LeSage and Pace (2009) to test the equality of

the coefficient estimates from OLS and SEM. This test is a good indication of specifica-

tion problems (such as omitted variables correlated with the explanatory variables) not

present in the SEM. Our results for this test show that we reject the null hypothesis of

equality of the SEM and OLS estimates (table 3). According to LeSage and Pace (2009)

this means that the omitted variables represent a serious problem, or are correlated with

the explanatory variables. Consequently, we cannot conclude that SEM is the best spec-

ification since the Hausman test indicates that this model is misspecified. Other spatial

specifications need to be considered.

To compare different spatial model specifications (OLS, SLX, SEM, SAR, SDM, SDEM,

SAC, and GNS) we use the classic LM test proposed by Anselin (1988) and the robust

LM test proposed by Anselin, Bera, Florax and Yoon (1996). Table 4 presents the results

of these tests. Using the classic tests, both hypotheses of no spatially lagged dependent

variable and no spatially autocorrelated error term are rejected at 1% significance for all

models. The robust LM test results show that both SAR and SEM specifications are rel-

evant for ln(pst/oth) and ln(agr/oth).18 This means that the SAC or SDM specifications

can be considered. The results of the SLX and SDM models show that we should consider

the GNS specification.

Proxy ln(pst/oth) ln(agr/oth) ln(for/oth) ln(urb/oth)
Regional dual

312.7065 325.6753 287.0825 106.8259
< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Land prices
315.5557 333.4682 289.641 115.9688
< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Farmers’ revenue
303.3948 330.8311 294.3477 113.4367
< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Table 3: Hausman test for the difference between the OLS and the SEM estimates

All the estimated coefficients for spatial autocorrelation, λ for the SEM and SDEM,
18The complete results of the tests are provided in tables D44 and D45 in the supplementary materials

(appendix D).
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Agricultural land rent proxy

Test Shadow Price Land Price
Farmers’
Revenues

OLS vs. SEM (H0: λ = 0)
LM error 6539.94 *** 6541.02 *** 6537.24 ***

Robust LM error 388.54 *** 386.85 *** 387.84 ***

OLS vs. SAR (H0: ρ = 0)
LM lag 6326.48 *** 6334.06 *** 6327.88 ***

Robust LM lag 175.08 *** 179.9 *** 178.47 ***

OLS vs. SAC (H0: λ = ρ = 0)
LM lag + error 6715.02 *** 6720.92 *** 6715.72 ***

SLX vs. SDEM (H0: λ = 0)
LM error 6632.2 *** 6608.43 *** 6626.52 ***

Robust LM error 8.68 *** 3.2 *** 7.59 ***

SLX vs. SDM (H0: ρ = 0)
LM lag 6651.46 *** 6648.84 *** 6649.84 ***

Robust LM lag 27.94 *** 43.61 *** 30.92 ***

SLX vs. GNS (H0: λ = ρ = 0)
LM lag + error 6660.14 *** 6652.04 *** 6657.44 ***

SAR vs. SAC (H0: λ = 0)
LM error 7.4987 *** 7.6944 *** 7.6126 ***

SDM vs. GNS (H0: λ = 0)
LM error 17.8209 *** 18.3835 *** 18.0562 ***

Table 4: Results for the spatial autocorrelation tests for the agricultural land use models
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and spatial autoregressive coefficient ρ for the SAR and SDM, are significant at 1%.19

In the case of the SAC, λ is significant only in the urban land use equation while ρ is

significant in the other three equations. For the GNS with shadow prices and land prices,

ρ is significant only in the urban model while λ is significant elsewhere. If we use farmers’

revenues, λ is significant for the pastures and agriculture models and ρ is significant for

the other two models. In our results, these two spatial coefficients are never significant

simultaneously. The spatially lagged variables in the SLX are improving the R2 scores

somewhat (compared with the OLS specification). Under this specification and for the

agricultural land models, the coefficients associated with texture are all significant and

the signs for the variable and its spatially lagged values are both positive. The significant

negative impact of slope is valid also for the lagged slope variable, and for population

density.

Population density and household revenue are significant and have the expected posi-

tive signs for the urban model regardless of the agricultural rent proxy employed and the

model specification. However, in the SLX and the SDEM, the lagged variable of density

is not significant, and in the SDM the lagged values have a negative impact. The den-

sity variables in the GNS models have the same coefficients but with opposing signs (the

coefficient of lagged value is negative). This could be the result of the multicollinearity

introduced through the lagged variables.

4.2 Goodness of fit

Table 5 summarizes the results for goodness of fit for the different models. These results

show that compared to the OLS specification, log-likelihood (LL) function and AIC are

improved for all the spatial specifications except the SLX. For land shadow price these

criteria go from LLOLS=-22363 and AICOLS = 44745 to LLGNS=-20251 and AICGNS =

40542. This result is valid for the three agricultural rent proxies which means that the

choice of the best spatial specification is independent of the rent proxy used.

Although there is no equivalent of the R-squared for spatial models, to assess the

goodness of fit of alternative spatial model specifications, we provide a pseudo R-squared
19Full details on estimates are provided in tables D2–D25 in the supplementary materials.
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metric based on Nagelkerke (1991). In the OLS specification, the agricultural vs. other

use and the urban vs. other use models perform better in terms of explained variance,

with R2 close or superior to 40%.20 The other two models, forest vs. other use and pasture

vs. other use, do not score as high; the R2 coefficients of pasture are lower than 30% and

the same coefficient of forest are close to 15%. When spatial component is introduced

the R2 mostly (except the SLX) improve greatly from R2
OLS = 0.425 to R2

GNS = 0.644.

In the case of agricultural land use, and according to the pseudo-R-squared criteria, the

best specification is the GNS model regardless of the agricultural rent proxy used.

Shadow price Land price Farmers’ Revenues
Model R2 LL AIC R2 LL AIC R2 LL AIC
OLS 0.425 -22363 44745 0.424 -22367 44753 0.424 -22366 44751
SEM 0.635 -20356 40734 0.635 -20357 40736 0.635 -20358 40737
SAR 0.638 -20322 40666 0.638 -20321 40665 0.638 -20321 40665
SDM 0.64 -20290 40618 0.641 -20288 40614 0.64 -20290 40619
SAC 0.639 -20311 40645 0.639 -20310 40643 0.639 -20310 40644
SLX 0.439 -22254 44544 0.439 -22252 44539 0.439 -22255 44546
SDEM 0.641 -20289 40615 0.641 -20288 40615 0.64 -20290 40617
GNS 0.644 -20251 40542 0.644 -20251 40541 0.644 -20252 40544

Table 5: Goodness of fit of the different model specifications for the agricultural land use
share model

4.3 Elasticities

Interpretation of the parameter estimates (reported in the supplementary material) is

complicated by both the log-odds transformation of the dependent variables and the

nonlinear specification of land use shares. To deal with these complexities, we calculate

the elasticities of agricultural land shares with respect to the agricultural rents based

on equation 4. The calculated elasticities give the percentage change in the agricultural

share which would result from a 1 percent change in the agricultural land proxy all other

explanatory variables held constant. Appendix C provides more details on the calculus

of these elasticities.
20This and the following figures are available in the supplementary materials (Appendix D), tables

D2–D25.
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∂sag
∂Agr rent

∗ Agr rent
sag

= Total impactagr_rent ∗ Agr rent, (4)

where, the total impact of the agricultural rent is the sum of the direct effects and

indirect effects associated to the agricultural rent proxy. These direct and indirect effects

are calculated for different spatial specifications as in Halleck Vega and Elhorst (2015).

The elasticity estimates are reported in table 6. The results show that the elasticities

of agricultural land use with respect to the shadow price are similar for the OLS, SLX,

SDM, SDEM, and GNS specifications. The figures are higher for the SEM and lower for

the SAR and SAC. In the case of the land price proxy, the elasticities have the expected

signs in the SEM, SAR, SAC, SDEM, and GNS. For farmers’ revenue, they are positive

only for the OLS and SLX. These results show that only the shadow price proxy provides

stable and intuitive results since this rent always ahs a positive and significant impact on

agricultural land use.

Model Shadow Price Land Price Farmers’ Revenues
OLS 0.3105 -0.0743 0.266

[0.0979 ; 0.5231] [-0.1439 ; -0.0047] [0.1406 ; 0.3914]
SEM 0.5114 0.148 -0.0828

[0.1613 ; 0.8615] [0.0094 ; 0.2866] [-0.1218 ; -0.0438]
SAR 0.0817 0.2156 -0.4302

[0.0257 ; 0.1377] [0.0137 ; 0.4175] [-0.633 ; -0.2274]
SDM 0.1812 -0.0749 -0.0203

[0.0571 ; 0.3053] [-0.145 ; -0.0048] [-0.0299 ; -0.0107]
SAC 0.0384 0.3248 -0.5455

[0.0121 ; 0.0647] [0.0206 ; 0.629] [-0.8026 ; -0.2884]
SLX 0.209 -0.1529 0.2447

[0.0659 ; 0.3521] [-0.2961 ; -0.0097] [0.1294 ; 0.36]
SDEM 0.2774 0.1278 -0.0095

[0.0875 ; 0.4673] [0.0081 ; 0.2475] [-0.014 ; -0.005]
GNS 0.3125 0.2849 -0.1373

[0.0985 ; 0.5265] [0.018 ; 0.5518] [-0.202 ; -0.0726]

Table 6: Elasticities for the agricultural land use share model with respect to agricultural
land rent proxies. 95% confidence intervals in brackets.
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4.4 Predictions

There are generally three types of predictors for spatial econometric models. The first

type is the fitted values obtained when the model is estimated and response variables are

observed. The second type is based on a set of observations for which response variables

are available but which are related to a set of individuals for whom the response variables

are unknown (Thomas-Agnan, Laurent and Goulard, 2014; Kelejian and Prucha, 2007).

In our comparison, we use the first type which is based on available information concerning

the response variables.

In order to compare the quality of the prediction for the different spatial model spec-

ifications with different rent proxies we calculate the NRMSE as follows:

RMSEk =

√∑n
i=1 (ŷik − yik)2

n
(5)

NRMSEk =
RMSE

ymaxk − ymink

(6)

Table 7 presents the values of the NRMSE for the three rent proxies, and the different

spatial specifications for the agricultural land use share. Table 7 shows that accounting

for spatial dependence is reducing the NRMSE when predicting agricultural land use,

regardless of the proxy for the agricultural rent. According to our results, the GNS model

seems to provide the most accurate prediction regardless of the agricultural rent proxy.

Table B1 in the appendix provides the NRMSE scores for the other land use shares.

Model Shadow Price Land Price Farmers’ Revenues
OLS 0.2340 0.2294 0.2348
SEM 0.1218 0.1204 0.1214
SAR 0.1269 0.1253 0.1264
SDM 0.1234 0.1222 0.1230
SAC 0.1288 0.1277 0.1285
SLX 0.2289 0.2240 0.2289
SDEM 0.1235 0.1222 0.1232
GNS 0.1190 0.1175 0.1185

Table 7: Normalized root-mean-square error results for the agricultural land use models
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Figure 2: Observed land use shares (top row) and predicted. Proxy for the agricultural
rent: shadow price; in-sample fit (dependent variables known)
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5 Conclusion

The objective of this paper was to compare land use models based on three different

proxies for agricultural land rent – farmers’ revenues, land prices, and shadow land prices

- derived from a mathematical programming model. We estimated land use share models

for France at a homogeneous (8km x 8km) grid scale, and considered five land use classes:

(1) agriculture, (2) pasture, (3) forest, (4) urban, and (5) other. We investigated what

determines the shares of land in alternative uses using economic, physical, and demo-

graphic explanatory variables. We modeled spatial dependence between grid cells, and

compared prediction accuracy and estimated elasticities for the different spatial model

specifications (OLS, SLX, SEM, SAR, SDM, SDEM, SAC, GNS). We then compared

these spatial specifications using the three rent proxies. These comparisons are based on

several criteria: quality of economic explanation (significance of agricultural rents and

their marginal impacts), prediction quality (NRMSE), specification tests (LM tests) and

goodness of fit (LL, R2, AIC).

The results of LM tests from the OLS, SEM, SAR, and SLX specifications show that

the SDM, SDEM, SAC, and GNS models should be considered. According to the goodness

of fit criteria (pseudo-R squared, log-likelihood, and AIC) and prediction quality criteria

the GNS is the specification which best fits our data. In a context of aggregated land

use, the existence of autocorrelation, is due mainly to the spatially correlated errors –

essentially a data measurement problem. This is true especially in our case since we use

artificially constructed grids, and because of different scales for the explanatory variables

and land use data.

Our results show also that including spatial dependence in land use share models

improves the quality of the predictions (NRMSE indicators) which confirms previous

results in the aggregated land use literature (Chakir and Le Gallo, 2013; Ay et al., 2016).

Our results show also that prediction quality is similar for the three agricultural rent

proxies. This might be explained by the fact that the three agricultural rent proxies are

observed at very aggregated scales, and do not explain much of the total variation in land

use shares.

Concerning the comparison between the different rent proxies, from the statistical
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point of view, they give the same results in terms of prediction accuracy (NRMSE) and

goodness of fit of different spatial specifications. However, from an economic viewpoint

the results show that only the shadow price proxy provides stable and intuitive results; it

always has a positive and significant impact on agricultural land use.

Our model could be used to simulate climate change impacts on land use and to

simulate the effects of mitigation policies. This would be useful for policy makers to

provide insights into future LUC climate change scenarios, and to evaluate policy mech-

anisms designed to reduce the negative environmental externalities of LUC (greenhouse

gas emissions, loss of biodiversity, reduced water quality, etc.).
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A Data

Land Cover class CLC value LU class
1 Artificial Surfaces 1, ..., 11 Urban
2 Agricultural Areas 12, ..., 17 Agriculture

and 19, ..., 22
2.3 Pastures 18 Pastures
3 Forest and Semi Natural Areas 23, 24 and 25 Forest
3.2.1 Natural grasslands 26 Other
3.2.2 Moors and heathland 27 Other
3.2.3 Sclerophyllous vegetation 28 Other
3.2.4 Transitional woodland-shrub 29 Other
3.3 Open spaces with little or no vegetation 30, ..., 34 Other
4 Wetlands 35, ..., 39 Other
5 Water bodies 40, ..., 44 Other

Table A1: Extract from the CLC classification and the corresponding LU aggregation

Agricultural activity Profit before tax Average farm surface
(1000 euros) (ha)

Cereals and protein crops 24.1 68
Horticulture 30.7 7
Wine under geographical label 52,9 12∗

Other wine 13.1 12∗

Fruits and others 10.5 13
Bovine (milk) 28.8 58
Bovine (meat) 24.2 46
Bovine (mixed) 33.1 75
Sheep and other 17.6 25
Pig, poultry and other 36.6 34
Mixed farming 27.0 48
∗ Average for viticulture in general

Table A2: Average farmers’ profits for 2005 per agricultural activity. The data on farms’
size in hectares is for 2000. Source: Agreste, French Ministry of agriculture
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B Predictions and NRMSE

.

The fitted values are obtained by exploiting the R package spdep. The estimates use

the available response variables (the equations are presented in table 1), and the fitted

values are calculated as the difference between the residuals and the model response

variables. For more details, see the documentation accompanying R package spdep.

Table B1 provides the scores for the in-sample fit if the dependent variables are known.

s_ot s_ag s_pa s_fo s_ur
Shadow Price

OLS 0.1211 0.2340 0.1882 0.1882 0.0676
SEM 0.0778 0.1218 0.0772 0.1141 0.0545
SAR 0.0766 0.1269 0.0779 0.1176 0.0544
SDM 0.0767 0.1234 0.0769 0.1139 0.0539
SAC 0.0741 0.1288 0.0744 0.1129 0.0583
SLX 0.1197 0.2289 0.1860 0.1822 0.0675

SDEM 0.0772 0.1235 0.0776 0.1137 0.0531
GNS 0.0741 0.1190 0.0736 0.1093 0.0515

Land price
OLS 0.1230 0.2294 0.1850 0.1865 0.0667
SEM 0.0781 0.1204 0.0768 0.1135 0.0546
SAR 0.0770 0.1253 0.0779 0.1166 0.0542
SDM 0.0768 0.1222 0.0769 0.1133 0.0543
SAC 0.0744 0.1277 0.0745 0.1120 0.0596
SLX 0.1213 0.2240 0.1834 0.1805 0.0673

SDEM 0.0774 0.1222 0.0772 0.1130 0.0533
GNS 0.0743 0.1175 0.0729 0.1086 0.0520

Farmers’ Revenues
OLS 0.1248 0.2348 0.1942 0.1921 0.0660
SEM 0.0781 0.1214 0.0775 0.1144 0.0544
SAR 0.0769 0.1264 0.0783 0.1177 0.0543
SDM 0.0771 0.1230 0.0775 0.1140 0.0540
SAC 0.0742 0.1285 0.0746 0.1126 0.0583
SLX 0.1241 0.2289 0.1917 0.1854 0.0663

SDEM 0.0775 0.1232 0.0781 0.1139 0.0531
GNS 0.0739 0.1185 0.0745 0.1093 0.0517

Table B1: In-sample estimation fit
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Figure B1: Observed land use shares (top row) and predicted. Proxy for the agricultural
rent: land price; in-sample fit (dependent variables known)

33



Figure B2: Observed land use shares (top row) and predicted. Proxy for the agricultural
rent: farmers’ revenues; in-sample fit (dependent variables known)
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C Elasticities

Calculus for the elasticities.

∂ln
(
sag
sot

)

∂Agr rent
= Total effectagr_rent

∂
(
sag
sot

)

∂Agr rent
∗ sot
sag

= Total effectagr_rent

∂sag
∂Agr rent

∗ 1

sot
∗ sot
sag

= Total effectagr_rent

∂sag
∂Agr rent

= sag ∗ Total effectagr_rent
∂sag

∂Agr rent
∗ Agr rent

sag
= sag ∗ Total effectagr_rent ∗

Agr rent

sag
∂sag

∂Agr rent
∗ Agr rent

sag
= Total effectagr_rent ∗ Agr rent (7)

The total effect of the agricultural rent is the sum of the direct and indirect effects

(spillovers from neighbors). These direct and indirect effects are calculated as in Halleck

Vega and Elhorst (2015).

35



Agr rent Model Min. 1st Qu. Median Mean 3rd Qu. Max St.Dev

Shadow price
OLS 0 0.235 0.264 0.31 0.367 0.555 0.106
SLX 0 0.158 0.178 0.209 0.247 0.374 0.072
SEM 0.001 0.387 0.435 0.511 0.605 0.914 0.175
SAR 0 0.062 0.07 0.082 0.097 0.146 0.028
SDM 0 0.137 0.154 0.181 0.214 0.324 0.062
SDEM 0 0.21 0.236 0.277 0.328 0.496 0.095
SAC 0 0.029 0.033 0.038 0.045 0.069 0.013
GNS 0 0.236 0.266 0.312 0.37 0.559 0.107

Land price
OLS -0.441 -0.09 -0.068 -0.074 -0.052 0 0.035
SLX -0.907 -0.186 -0.139 -0.153 -0.108 0 0.072
SEM 0 0.104 0.134 0.148 0.18 0.878 0.069
SAR 0 0.152 0.196 0.216 0.262 1.279 0.101
SDM -0.444 -0.091 -0.068 -0.075 -0.053 0 0.035
SDEM 0 0.09 0.116 0.128 0.155 0.758 0.06
SAC 0 0.229 0.295 0.325 0.395 1.927 0.152
GNS 0 0.201 0.259 0.285 0.346 1.691 0.133

Farmers’ revenues
OLS 0.078 0.229 0.251 0.266 0.31 0.399 0.063
SLX 0.072 0.211 0.231 0.245 0.285 0.367 0.058
SEM -0.124 -0.096 -0.078 -0.083 -0.071 -0.024 0.02
SAR -0.645 -0.501 -0.406 -0.43 -0.37 -0.126 0.101
SDM -0.03 -0.024 -0.019 -0.02 -0.017 -0.006 0.005
SDEM -0.014 -0.011 -0.009 -0.01 -0.008 -0.003 0.002
SAC -0.818 -0.635 -0.515 -0.546 -0.47 -0.16 0.129
GNS -0.206 -0.16 -0.13 -0.137 -0.118 -0.04 0.032

Table C1: Elasticities of agricultural land with respect to different agricultural rent proxies
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