Agroforestry: Can trees change aggregate stability?
Yogan Monnier, Jean-Luc Maeght, Yves Le Bissonnais, Catherine Roumet, Alexia Stokes

To cite this version:
Yogan Monnier, Jean-Luc Maeght, Yves Le Bissonnais, Catherine Roumet, Alexia Stokes. Agroforestry: Can trees change aggregate stability?. Climate Smart Agriculture 2015, Mar 2015, Montpellier, France. 2015. hal-02793200
Agroforestry: Can trees change aggregate stability?

Why?

Soil erosion in farmlands is a major cause of water quality degradation and reduced crop production potential throughout the European countries. Soil aggregate stability can be positively correlated to soil organic matter content, roots presence and soil biota (Graf & Frei 2013, Pérez et al. 2013).

In agroforests, if the role of tree lines as physical barriers to runoff is easily understanding, processes involving rooting systems and soil erodibility are still unknown.

Objectives

- **Do the presence of a tree line improve soil aggregate stability?**
- **What are the mechanisms underlying?**

Are there effects of the tree line on soil aggregate stability?

Aggregate stability (Mean Weight Diameter, MWD) in different sites and different treatments (crop field (c) & tree line (t)).

![Graph showing aggregate stability](image)

Higher soil aggregate stability in 5 sites =>

- Increment from critical to good levels of stability
- No difference between soil aggregate stability in tree-line and crops field in 3 sites (ED, LB & PS)

What factors drive the soil aggregate stability?

Aerial descriptors of vegetation

- Attraction to mature hedges
- Progressive sampling from 0 to 9 m.
- Several depths: from 0 to 2.3 m.

The root proportion in the soil is positively linked with the aggregate stability.

The strength of the relationship differ between sites.

Then... what next?

Most of sites are too young to reveal a distance effect to the line. => new sampling design with hedges.

Next analysis to better explain our results: Soil organic matter content / Root morphological traits / Microbial activity & metabolic diversity