Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe
Jean-Michel Legave, Yann Guédon, Gustavo Malagi, Adnane El Yaacoubi, Marc Bonhomme, Isabelle Farrera

To cite this version:
Jean-Michel Legave, Yann Guédon, Gustavo Malagi, Adnane El Yaacoubi, Marc Bonhomme, et al. Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe. ACCAF séminaire "Recherche et Adaptation au Changement Climatique", Mar 2016, Magny le Hongre, France. 1 p., 2016. hal-02793336

HAL Id: hal-02793336
https://hal.inrae.fr/hal-02793336
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe

Jean-Michel Legave 1,*, Yann Guédon 2, Gustavo Malagi 3, Adnane El Yaaouobi 4, Marc Bonhomme 5, Isabelle Farrerra 6

1 UMR AGAF, INRA Montpellier - 2 Virtual Plants, Inria Montpellier - 3 Facultad de Agronomía, Pelotas Brazil - 4 Université Moulay Ismaïl, Meknès Morocco - 5 UMR PIAF, INRA Clermont-Ferrand - 6 Montpellier SupAgro

presenting author: legave@agrocampus.org

CONTEXT

Floral phenology responses to warming in temperate fruit trees have rarely been compared in contrasting warming contexts. This is an appropriate framework to deciduous woody plants for highlighting varying flowering responses to diverse warming contexts, which would potentially combine chill accumulation declines (warming impact on bud dormancy) and heat accumulation increases (warming impact on bud growth) (Schwartz and Hanes 2010).

Future flowering and dormancy responses to continuous warming would be crucial to ensure regular fruit bearing in apple in the warmest European cropping regions (Legave et al. 2013).

OBJECTIVE and METHODS

This study aims to provide a comprehensive overview of historical flowering responses recorded in apple in contrasting warming contexts. To examine this issue, a dataset was constituted from flowering dates collected for two main BBCH stages and several cultivars in both temperate regions of western Europe suitable for apple cropping and in unsuitable mild regions of northern Morocco and southern Brazil, where insufficient fruit bearing is mainly due to inadequate flowering phenology and intensity (Table 1 and Fig. 1). Additionally, the dynamics of bud dormancy and growth until the blooming phase were compared in southern France (CEHIM near Nîmes), northern Morocco (Aïn Tzaoujdate) and southern Brazil (Palmas near Caçador). Multiple change-point models, including piecewise constant and linear models, were applied to series of flowering date, flowering duration and temperature, aiming to statistically analyse both flowering responses and temperature changes (Legave et al. 2015). Two forcing tests (one-bud cuttings and Tabuena’s test) were used to analyse the dormancy and growth dynamics (Malagi et al. 2015).

RESULTS and DISCUSSION

1. Differentiated responses of flowering date and blooming duration

A new overview in space and time of flowering changes was provided in apple tree highlighting not only flowering date advances, as in previous studies (Guédon and Legave 2008), but also stationary flowering date series (Fig. 2). At global scale, differentiated flowering time patterns resulted from interactions between regional differences in the thermal determinisms of flowering date and in the impacts of warming context. This may explain flowering date advances in most of European regions (change-point instant at the end of the 1980s, Fig. 3) and in Morocco (later instant in 1994) vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region (Nîmes) where the flowering date series became stationary from 1974 to 2013 due to both marked winter and spring warming (Fig. 2). Conversely, the durations of the blooming phase were significantly far longer in mild regions compared to temperate regions, whereas the duration series were stationary whatever the region.

2. Differentiated dynamics of bud dormancy and growth

In the temperate conditions of southern France, the successive phases of para- dormancy, endo- and eco-dormancy were clearly identified for the vegetative buds. Conversely, superficial endo-dormancy was recorded in southern Brazil (Fig. 4). This was related to relatively low “winter” temperatures in France (min. temperature clearly below 10°C from Nov. to Feb.) vs. high “winter” temperatures from May to August in Brazil, as no mean temperature below 12°C up to mid-July in some years. In addition, the eco-dormancy durations of flower buds were clearly longer in France than in Brazil (Table 2). This was also related to relatively low “spring” mean temperatures in France (10.5°C) vs. high “spring” mean temperatures in Brazil (15.5°C). Such contrasting dynamics of both bud dormancy and growth between France and Brazil might explained adequate flowering at the blooming phase in France (Fig. 5) vs. inadequate flowering in Brazil (Fig. 6) (Malagi et al. 2015).

WHICH FUTURE CRUCIAL IMPACTS ON PHENOLOGICAL AND CONSEQUENCES ?

European Mediterranean regions of apple cropping might be gradually affected in near future by excessive delays of dormancy release linked to declines in “winter” chill accumulation. This would be especially crucial in the French Mediterranean region (Nîmes) where stationarities of flowering stage dates were found over forty years. In fact, this apparent stationarity was the result of both marked chill declines and heat increases (Legave et al., 2013). At tree and orchard scales, this could cause future phenological disorders similar to those observed in mild regions. Continuous warming from autumn to spring in the French Mediterranean region (as in 2015-2016) could excessively increase bud competitions, firstly during the fulfilment of chilling requirements in endo-dormancy, and later during the fulfilment of heat requirements in eco-dormancy, finally leading to poor flowering intensity and extended blooming phase (Fig. 6).

REFERENCES


