

Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe

Jean-Michel J.-M. Legave, Yann Guédon, Gustavo Malagi, Adnane El Yaacoubi, Marc M. Bonhomme, Isabelle Farrera

▶ To cite this version:

Jean-Michel J.-M. Legave, Yann Guédon, Gustavo Malagi, Adnane El Yaacoubi, Marc M. Bonhomme, et al.. Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe. ACCAF séminaire "Recherche et Adaptation au Changement Climatique", Mar 2016, Magny le Hongre, France. 1 p., 2016. hal-02793336

HAL Id: hal-02793336 https://hal.inrae.fr/hal-02793336

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Historical phenological responses in apple tree to contrasting warming contexts may clarify future crucial responses in Europe

Jean-Michel Legave 1*, Yann Guédon², Gustavo Malagi ³, Adnane El Yaacoubi ⁴, Marc Bonhomme⁵, Isabelle Farrera⁶ *presenting author: legave@supagro.inra.fr ¹ UMR AGAP, INRA Montpellier - ² Virtual Plants, Inria Montpellier - ³ Faculdade de Agronomia, Pelotas Brazil - ⁴ Université Moulay Ismail, Meknès Maroc - ⁵ UMR PIAF, INRA Clermont-Ferrand - ⁶ Montpellier SupAgro

World region	Latitude/ Longitude	Altitude (m)	Climatic zone Climate type	Temperature data period	Phenological data			Collaborative
Location					Period	Cultivar	Stage(BBCH)	institute
Western Europe			Temperate					
Воля, Germany	50°37'N/6°59'E	160	Continental	1959-2013	1958-2013	Golden D.	61,65	INRES
Gembloux, Belgium	50°34'N/4°41'E	138	Continental	1964-2013	1984-2013	Golden D.	61	CRA-W
Angers, France	47*28'N/0*38'W	38	Oceanic	1968-2013	1963-2013	Golden D.	61	INRA France
Conthey, Switterland	46°13'N/7°18'E	504	Continental	1970-2013	1970-2013 1975-2013	Golden D. Gala	65 65	A gros cope
Trento, Italy	46°4'N/11°7'E	419	Continental	1983-2013	1983-2013	Golden D.	61,65	CRA-FRF
Forli, Italy	44°13'N 12°2'E	34	Mediterranean	1970-2013	1970-2013	Gold en D.	61,65	CRA-FRF
Nîmes, France	43'44'N 4'30'E	52	Mediterran ean	1966-2013	1974-2013 1979-2013 1980-2013	Golden D. Gala Fuj	61,65 61,65 61,65	Ciifl
Northern Africa			Mild					
Ain Taoujdate, Morocco	33*56N/5*13'W	499	Mediterran ean	1973-2013	1984-2013	Golden D.	61,65	INRA Moso coo
Southern Brazil			Mild					
Caçador, Santa Catarina	26°47'8/51°1'W	960	Subtropical	1961-2013	1984-2013 1982-2013 1982-2013	Golden D. Gala Fuj	61,65 61,65 61,65	EPA GRI
Sao Joaquim, Santa Catarina	28*29'3/49*93'W	1353	Subtropical	1955-2013	1972-2013 1972-2013 1976-2003	Golden D. Gala Fui	61,65 61,65 61.65	EPA GRI

Table 1 - Flowering and temperate data collected in climate-contrasting regions for three apple cultivars BBCH61 BBCH65

CONTEXT Floral phenology responses to warming in temperate fruit trees have rarely been compared in contrasting warming contexts. This is an appropriate framework in deciduous woody plants for highlighting varying flowering responses to diverse warming contexts, which would potentially combine chill accumulation declines (warming impact on bud dormancy) and heat accumulation increases (warming impact on bud growth) (Schwartz and Hanes 2010). Future flowering and dormancy responses to continuous warming would be crucial to ensure regular

fruit bearing in apple in the warmest European cropping regions (Legave et al. 2013).

OBJECTIVE and METHODS

This study aims to provide a comprehensive overview of historical flowering responses recorded in apple in contrasting warming contexts. To examine this issue, a dataset was constituted from flowering dates collected for two main BBCH stages and several cultivars in both temperate regions of western Europe suitable for apple cropping and in unsuitable mild regions of northern Morocco and southern Brazil, where insufficient fruit bearing is mainly due to inadequate flowering phenology and intensity (Table 1 and Fig. 1). Additionally, the dynamics of bud dormancy and growth until the blooming phase were compared in southern France (CEHM near Nîmes), northern Morocco (Ain Taoujdate) and southern Brazil (Palmas near Caçador). Multiple change-point models, including piecewise constant and linear models, were applied to series of flowering date, flowering duration and temperature, aiming to statistically analyse both flowering responses and temperature changes (Legave et al. 2015). Two forcing tests (one-bud cuttings and Tabuenca's test) were used to analyse the dormancy and growth dynamics (Malagi et al. 2015).

-50 -48 igure 1 – Geographical distribution of locations in both Hemispheres

-46 -44

RESULTS and DISCUSSION 1. Differentiated responses of flowering date and blooming duration A new overview in space and time of flowering date changes was provided in apple tree highlighting not only flowering date advances, as in previous studies (Guédon and Legave 2008), but also stationary flowering date series (Fig. 2). At global scale, differentiated flowering time patterns resulted from interactions between regional

differences in the thermal determinisms of flowering date and in the impacts of warming context. This may explain flowering date advances in most of European regions (change-point instant at the end of the 1980s, Fig.3) and in Morocco (later instant in 1994) vs. stationary flowering date series in the Brazilian regions. A notable exception in Europe was found in the French Mediterranean region (Nimes) where the flowering date series became stationary from 1974 to 2013 due to both marked winter and spring warming (Fig. 2). Conversely, the durations of the blooming phase were

significantly far longer in mild regions compared to temperate regions, whereas the duration series were stationary whatever the region.

Figure 3 – Change-point distribution for two-segment constant models (BBCH61series)

-56 -54 -52

Figure 2 – Segmentation of BBCH61 stage date series using optimal piecewise constant and linear models in the case of Golden Delicious (Legave et al. 2015):

phases of para- endo- and eco-dormancy were clearly identified for the vegetative buds. Conversely, superficial endo-dormancy was recorded in southern Brazil (Fig. 4).

This was related to relatively low "winter" temperatures in France (min. temperature clearly below 10°C from Nov. to Feb.) vs. high "winter" temperatures from May to August in Brazil, as no mean temperature below 12°C up to mid-July in some years. In addition, the eco-dormancy durations of flower buds were clearly longer in France than in Brazil (Table 2). This was also related to relatively low "spring" mean temperatures in France (10,5°C) vs. high "spring" mean temperatures in Brazil (15,5°C). Such contrasting dynamics of both bud dormancy and growth between France and Brazil might explained adequate flowering at the blooming phase in France (Fig. 5) vs. inadequate flowering

in Brazil (Fig. 6) (Malagi et al. 2015).

Figure 6 – Weak flowering and extended blooming duration in southern Brazil.

WHICH FUTURE CRUCIAL IMPACTS ON FLORAL PHENOLOGY AND CONSEQUENCES ?

European Mediterranean regions of apple cropping might be gradually affected in near future by excessive delays of dormancy release linked to declines in "winter" chill accumulation. This would be especially crucial in the French Mediterranean region (Nîmes) where stationarities of flowering stage dates were found over forty years. In fact, this apparent stationary was the result of both marked chill declines and heat increases (Legave et al., 2013). At tree and orchard scales, this could cause future phenological disorders similar to those observed in mild regions. Continuous warming from autumn to spring in the French Mediterranean region (as in 2015-2016) could excessively increase bud competitions, firstly during the fulfilment of chilling requirements in endo-dormancy and later during the fulfilment of heat requirements in eco-dormancy, finally leading to poor flowering intensity and excessive durations of the blooming phase (Fig. 6).

Reference

Guédon Y., Legave J.M. 2008. Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecological Modelling 219 (1-2) 189-199.

Legave JM, Blanke M, Christen D, Giovannini D, Mathieu V, Oger R 2013. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. International Journal of Biometeorology 57, 317-331.

Legave J.M., Guédon Y., Malagi G., El Yaacoubi A., Bonhomme M. 2015. Differentiated responses of apple tree floral phenology to global warming in contrasting climatic regions. Frontiers in Plant Science 6:1054. Malagi G., Sachet M.R., Citadin I., Herter F.G., Bonhomme M., Regnard J.L., Legave, J.M. 2015. The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees 29, 1365-1380.

Schwartz M.D., Hanes J.M. 2010. Continental-scale phenology: warming and chill. Int. J. Climatol. 30, 1595-1598.