

Effects of tree species diversity on resistance to natural disturbances in planted forests

Herve Jactel, Johanna Boberg, Damien Bonal, Bastien Castagneyrol, Barry Gardiner, José-Ramon Gonzalez, Julia Koricheva, Nicolas Meurisse, Eckehard Brockerhoff

▶ To cite this version:

Herve Jactel, Johanna Boberg, Damien Bonal, Bastien Castagneyrol, Barry Gardiner, et al.. Effects of tree species diversity on resistance to natural disturbances in planted forests. 5. International Eco-Summit. EcoSummit 2016. Ecological Sustainability: Engineering Change., Aug 2016, Montpellier, France. 26 p. hal-02793549

HAL Id: hal-02793549 https://hal.inrae.fr/hal-02793549v1

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Effects of tree species diversity on resistance to natural disturbances in planted forests

Hervé Jactel, Johanna Boberg, Damien Bonal, Bastien Castagneyrol, Barry Gardiner, José-Ramon Gonzalez, Julia Koricheva, Nicolas Meurisse,

An urgent need for new, planted forests

to meet the social demand for wood products including energy wood

to contribute to climate change mitigation through carbon sequestration

to alleviate the logging pressure on natural forests and preserve biodiversity

1. Climate change

temperatures trigger pest outbreaks and range expansion

Mountain pine beetle

Pine processionary moth

1. Climate change

droughts increase the risk of forest fires

Increase tree susceptibility to infection

Global Change Biology

Global Change Biology (2012) 18, 267–276, doi: 10.1111/j.1365-2486.2011.02512.x

Drought effects on damage by forest insects and pathogens: a meta-analysis

HERVÉ JACTEL*, JÉRÔME PETIT†, MARIE-LAURE DESPREZ-LOUSTAU*, SYLVAIN DELZON*, DOMINIQUE PIOU‡, ANDREA BATTISTI§ and JULIA KORICHEVA¶

1. Climate change

↗ wind damage

Figure 1a: Total damage due to disturbances in Europe (Schelhaas 2008a).

2. World trade

globalization results in more biological invasions

Exotic arthropods

Dryocosmus kuriphilus Origine: China

Challenge: design new planted forests less vulnerable on the long term

- \cdot Trees are being planted for decades or centuries
- \cdot Forests will experience disturbances never met before

Is mixing tree species in planted forest an option?

doi:10.1038/nature15374

Diversity – resistance relationships in grasslands

LETTER

Biodiversity increases the resistance of ecosystem productivity to climate extremes

Forest Isbell¹, Dylan Craven^{2,3}, John Connolly⁴, Michel Loreau⁵, Bernhard Schmid⁶, Carl Beierkuhnlein⁷, T. Martijn Bezemer⁸, Catherine Bonin⁹, Helge Bruelheide^{2,10}, Enrica de Luca⁶, Anne Ebeling¹¹, John N. Griffin¹², Qinfeng Guo¹³, Yann Hautier¹⁴, Andy Hector¹⁵, Anke Jentsch¹⁶, Jürgen Kreyling¹⁷, Vojtěch Lanta¹⁸, Pete Manning¹⁹, Sebastian T. Meyer²⁰, Akira S. Mori²¹, Shahid Naeem²², Pascal A. Niklaus⁶, H. Wayne Polley³³, Peter B. Reich^{24,25}, Christiane Roscher^{2,26}, Eric W. Seabloom¹, Melinda D. Smith²⁷, Madhav P. Thakur^{2,3}, David Tilman^{1,28}, Benjamin F. Tracy²⁹, Wim H. van der Putten^{8,30}, Jasper van Ruijven³¹, Alexandra Weigelt^{2,3}, Wolfgang W. Weisser²⁰, Brian Wilsey³² & Nico Eisenhauer^{2,3}

Figure 3 Biodiversity effects on productivity during climate events or normal years. Lines are mixed-effects model fits for each year within each

Resistance of mixed forests to 7 natural disturbances

- 1. Drought
- 2. **Fire**
- 3. Windstorm
- 4. Mammal herbivores
- **5.** Pest insects
- 6. Fungal pathogens
- 7. Invasive species

Patterns of response to tree diversit Underlying ecological mechanisms

Resistance of mixed forests to drought

Tree diversity does not always improve resistance of forest ecosystems to drought

Charlotte Grossiord^a, André Granier^a, Sophia Ratcliffe^b, Olivier Bouriaud^c, Helge Bruelheide^{d,e}, Ewa Chećko^f, David Ian Forrester^g, Seid Muhie Dawud^h, Leena Finéⁱ, Martina Pollastrini^j, Michael Scherer-Lorenzen^k, Fernando Valladares¹, Damien Bonal^{a,1,2}, and Arthur Gessler^{m,n,2}

Resistance of mixed forests to fires

Fire severity in relation to canopy composition within burned boreal mixedwood stands

G.G. Wang* Forest Ecology and Management 163 (2002) 85–92

Species composition	Fire severity class	
	Light	Severe
Softwood	6	16
Softwood-hardwood	15	4
Hardwood-softwood or hardwood	19	0

Fire impacts and crowning in the boreal forest: study of a large wildfire in western Quebec

Resistance of mixed forests to windstorms

REVIEW / SYNTHÈSE

Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes

Verena C. Griess and Thomas Knoke

Jean-Philippe Schütz • Michael Götz Willi Schmid • Daniel Mandallaz

Vulnerability of spruce (*Picea abies*) and beech (*Fagus sylvatica*) forest stands to storms and consequences for silviculture

Fig. 10 Effect of tree mixtures on damage index: ANOVA with different mixed species and proportions. Mixtures classes with different letters were significantly different at P=0.10. 1 Pure spruce/fir ($\geq 90\%$) 2 rich spruce/fir (80–89%), 3 dominant spruce/fir (70–79%), 4 admixture douglas fir ($\geq 5\%$), 5 admixture larch ($\geq 5\%$), 6 admixture pine (>10%) and 7 broad leaved ($\geq 80\%$)

Resistance of mixed forest to mammal herbivor

Contrasting effects on mammal herbivores

ECOGRAPHY 29: 497-506, 2006

Moose and vole browsing patterns in experimentally assembled pure and mixed forest stands

Positive interactions between herbivores and plant diversity shape forest regeneration

Susan C. Cook-Patton, Marina LaForgia and John D. Parker

Resistance of mixed forest to pest insects

Ecology Letters, (2007) 10: 835-848

doi: 10.1111/j.1461-0248.2007.01073.x

LETTER

200%

Tree diversity reduces herbivory by forest insects

Hervé Jactel¹* and Eckehard G. Brockerhoff²

119 case studies, 33 tree species

Tree diversity reduces pest damage in mature forests across Europe

2

3

tree species richness

4

5

Virginie Guyot^{1,3}, Bastien Castagneyrol³, Aude Vialatte^{1,2}, Marc Deconchat¹ and Hervé Jactel³

Resistance of mixed forest to fungal pathogens

Overall better resistance of mixed forests to root rot fungi

Species, diversity, and density affect tree seedling mortality from *Armillaria* root rot

J.P. Gerlach, P.B. Reich, K. Puettmann, and T. Baker

Black Spruce Tamarack Balsam Fir

Resistance or neutral effects for foliar pathogens

Ecology and Evolution

Open Access

Fungal disease incidence along tree diversity gradients depends on latitude in European forests

Diem Nguyen¹, Bastien Castagneyrol^{2,3}, Helge Bruelheide^{4,5}, Filippo Bussotti⁶, Virginie Guyot^{3,7}, Hervé Jactel^{2,3}, Bogdan Jaroszewicz⁸, Fernando Valladares⁹, Jan Stenlid¹ & Johanna Boberg¹

Resistance of mixed forests to invasive species

Tree Diversity Limits the Impact of an Invasive Forest Pest

Virginie Guyot^{1,4}*, Bastien Castagneyrol^{3,4}, Aude Vialatte^{1,2}, Marc Deconchat¹, Federico Selvi⁵, Filippo Bussotti⁵, Hervé Jactel^{3,4}

esistance of mixed forests: common features

Direction and magnitude of effects depend on pest specializati

Castagneyrol et al. 2014

Spill over
Mixing diet

esistance of mixed forests: common features

Forest composition more important than tree species richnes

esistance of mixed forests: common features

^{3.} "Associational resistance" operate at several, nested spatial scales

The insurance hypothesis

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 1463–1468, February 1999 Ecology

Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis

(stochastic dynamic model/species richness/ecosystem processes/temporal variability/ecosystem stability)

SHIGEO YACHI AND MICHEL LOREAU*

Being composed of **several species** with **different functional traits**,

mixed forests have a higher likelihood of containing resistant

trees,

thus providing more opportunities to maintain a forest cover

- Traits complementarity
 - Root depth / drought
 - Bark anatomy / fire
 - Crown architecture / wind

Eur J Forest Res (2015) 134:927-947

- Leaf quality / herbivores
- Niche occupancy / invasive species

Reduced density (amount) of susceptible trees

Gerlach et al. 1997

- herbivores less likely to enter the pl
- lower amount of resources/fuel

 \Leftrightarrow

Ionger distance between host trees

Reduced probability of susceptible trees being hit

physical protection by neighbors diversion (decoy) processes

Fig. 2. The effects of grazing intensity (low and high) and position (in and out) on the browsing frequency (mean proportion ± 1 SE, n = 30) of coniferous and deciduous saplings, after the fourth grazing period. Different letters indicate significantly different means (Tukey post hoc comparisons within each species-group, p < 0.05).

Reinforced multitrophic interactions

decomposers and mycorrhiza natural enemies

Neodiprion sertifer

Conclusions

- Mixed forests : associational resistance > susceptibility
- 2. Tree composition > species richness
- 3. Several scales, many processes involved
- 4. Tradeoffs for resistance to different disturbances?
- **5.** Recommendations to forest managers:
 - · 2 species mixtures might be enough
 - \cdot beyond the conifer broadleaved mixtures

Thank you for your attention

http://mixedwoodecozone.weebly.com/natural-vegetation.html