

The role of breeding in contemporary forestry: Forest tree breeding in Europe

Luc Pâques

► To cite this version:

Luc Pâques. The role of breeding in contemporary forestry: Forest tree breeding in Europe. 6. session of Winter Forestry School, Forest Research Institute (IBL). IBL - Instytut Badawczy Leśnictwa, POL., Mar 2014, Sękocin, Poland. 28 diapos. hal-02793564

HAL Id: hal-02793564 https://hal.inrae.fr/hal-02793564

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The role of breeding in contemporary forestry Forest tree breeding in Europe

Luc E.Pâques INRA-AGPF-Orléans (France)

6th session of Winter Forestry School

Poland, March 19, 2014

Over 60 years of forest tree breeding: *where do we stand?*

Most breeding programmes have been started in the 50's

Mostly conifers vs broadleaves (planted) (naturally regenerated)

- 1st step: 'Pre-breeding' = genetic diversity studies
 = seed stands &
 provenance recommendations
- 2nd step: 'Breeding': launching of recurrent selection schemes

- = recombination
- = evaluation
- = mass-propagation
- = deployment

Optimisation

Over 60 years of forest tree breeding:

where do we stand?

> 135 'breeding programmes' for 8 species

across 18 countries

+/- 1 programme/species/country !!

> 54 others for 11 species

Source: Treebreedex: Mertens et al.2008

Over 60 years of forest tree breeding:

RESULTS

where do we stand?

Over **65 500** selected seed stands (57% conifers/ 43% broadleaves)

> 1 200 Seed Orchards over7 600 ha for around 40 species

Source: 'Community List of Approved Basic Material for the Production of Forest Reproductive Material, based on the national lists as supplied by the Member States according to Article 10(2) of Council Directive 1999/105/EC

FRM – seed orchards and use

In many countries, most planted material is from improved material (SO) Questions about SO dimensioning?

> Norway spruce Scots pine European larch Douglas-fir 454 А 19310 В 1146 CZ 1081 889 DK 927 5100 2570 FL 5190 F 17330 5087 4371 D 21330 10725 4121 5325 GB 11207 44800 IRL 2330 8808 1889 LI 390 745 166 1067 NL 6760 NO 14052 PL 229 65 RO 3681 105 253 SK 304 S SP 7538 48380

Ratio of planted area vs seed orchard area

Over-sized?

RESULTS

Under-sized?

RESULTS

Expected genetic gains

Examples of predicted genetic gains from different breeding programmes across Europe: Sitka spruce

					Material from	1:	_
Country	Year	Trait	Age	Seed orchard	Vegetative propa- gation (half- sib family mixes)	Vege-tative propa-gation (full sib	l de la construcción de la constru
Great		Diameter	15		20%	20 - 30%	Queen Charlotte Import
Britain	2010	Stem straightness	15		20%	15 - 30%	
		Branching Score	15			10 - 15%	
		Wood density		-10% to 0%	0%	0% - 10%	
		Rotation sawlog volume	Rotation age	approx 40%	approx 50%	approx 60%	Queen Charlotte Import # #
		Rotation volume	Rotation age	approx 20%	approx 30%	approx 30%	-
Ireland	2010	Height		15% to 20%			Unimproved stock
		Stem form		7%			
Denmark	2010	Diameter	15				Unimproved Danish landrace
		Stem straightness	15				
		Volume	18	30%			Unimproved Danish landrace
		Wood density*	18	0%			
		Leader breaks	18	-7%			
		Stem straightness	18	4%			
		Forks	18	-3%			
		Stem straightness	10	11%			Unimproved Danish landrace
		Diameter	10	5%			
		Wood density*	10				
		Flushing score	5	-12%			Unimproved Danish landrace

Source: Forest Tree Breeding in Europe, Springer

'Little gains' ... 'great benefits'

RESULTS

Genetic gain	: 25 %	in volume j	from 2 nd	generation SO
--------------	--------	-------------	----------------------	---------------

		Hypothesis 1	Hypothesis 2	Hypothesis 3
Reforested area	non improved	380000	190000	76000
2002-2020 (ha)	improved	0	190000	304000
Total volume (10 ⁶ m ³)		85.5	96.2	102.6
H2-H1	10 ⁶ m ³		10.7	
	10 ⁶ euros		534	
H3-H1	10 ⁶ m ³			17
	10 ⁶ euros			854

Maritime pine, Landes (FR)

Lesgourgues, 2002

Over 60 years of forest tree breeding: *where do we stand?*

- 1) Probably (one of) the **most significant** human impact in forest management
 - Quantitative & qualitative increase of timber production
 Increase of financial resources from forests

2) **But**...

...

- Cases of *maladaptation*: over-extension: Norway spruce...
- Breeding with a *too narrow genetic basis*: rust and poplars...
- Under-use of some FRM: wild cherry clones...
- *Extra-cost* of some FRM: hybrids, clones
- 'Invasion' by 'exotics': hybrid & Japanese larches, douglas-fir, poplars...
- Still some orphelin species...
- Top-quality FRM: Incentive for pure stands?, *monoculture*?
- FRM & nurseries: *vector* of diseases: *Sphaeropsis* blight, ...

Over 60 years of forest tree breeding: *where do we stand?*

3) In a 'stable' world

Timber production

'Stable' climate 'Known' biotic threats

'Known' abiotic risks

What has changed? What is changing?

A mostly 'un-stable world'

Climate change

Poland '92

Romania '94?

Belgium '09

Austria '05 Switzerland '08 Hungary '07 France ' 07 Slovenia '06

taly '0'

'Conflicting' end-products

What has changed? What is changing?

Management options have enlarged

• Classical plantations

natural regeneration

low density (timber)

clear-cutting

Intensive plantations

high density (biomass)

short-rotation coppice short-rotation high forest

- Mixed plantations
- Plantations with emerging species
- No plantation: natural regeneration

Breeding:

- Species priority
- Long-term / short-term
- Genetic basis
- Traits priority
- Intra/inter-species competition
- Transfer of breeding tools/results to management

What has changed? What is changing?

Pests + diseases

Treebreedex

(sample of 750 SO)

Year of establishment

What is needed?

Reactivity and efficiency

Flexibility

- Adapt: shift species / reprofile breeding populations / review deployment zones / target traits
- Shorten / speed up: breeding/ selection/ FRM mass-production

Integration

- Multi-purposes/ multi-traits
- Multi-disciplines
- ➢ Research →
 Development →
 Management

Up-scaling

- Enlarge environmental conditions
- High-throughput
- ➢ Enlarge views:
 from regional →
 national →
 international

Scrutiny

- Dissect traits
- More precision needed
- Interrelationships

Uncertainty \rightarrow *Reactivity and efficiency* \rightarrow *Joined efforts*

Joined efforts: why?

1) To better circulate information, exchange methodologies, benefit from synergies

SO reproduction engineering Vegetative propagation (cutting, in vitro)

Joined efforts: why?

2) To improve efficiency and valorise breeding efforts

Critical mass: breeding efforts vs reforestation needs?

Coherence?

Survey based on 115 breeding programmes, 28 forest tree species from 19 EU-countries

Breeding	Observed fact	Risk
Closed long-term breeding population	Among-family selection (15 out of 20)	Maintenance of genetic diversity
Recombination of genotypes	Open-pollination instead of controlled pollination	Control of relatedness?
One vs two-stage selection	Progeny testing vs clonal testing	Genetic gain per unit time
Breeding vs multiplication populations	49% not separated	Ineffective deployment
Breeding zones	No consideration for 42% ; only 22% have breeding zones based on climate	Risk for reduced adaptedness
MAS / simulation	4% / 6%	
		Danusevicius et al. 2010

Joined efforts: why?

3) To better tackle challenges of common interest

Priorities for joined breeding

> (Source: Forest Tree Breeding in Europe, Springer)

	NS	SS	SP	La	DF	Sycamore	Ash	W.Cherry
Genetic diversity				X at European scale		×	×	X & margin zones
Climate /adaptation	Reaction norms for B/C/ST		Physiology / GxE	Reaction norms	Frost/ drought	Drought/ frost	phenology, frost, drought GxE	Phenology, drought
Pests	Root rot/ spruce decline						Chalara (genetic and environment)	x
Wood	Non- destructive			Mechanical & durability	Mechanical & durability	Grain		×
Early selection		MAS Blup	MAS & Predictors					
Common protocols			х	x	x			x
Common evaluation	×		GxE	SO	SO / EU- trials	Prov. & clones		SO & clones
Sexual reproduction	Acceleration	Accelerat.	Accelerat.	X HL more efficiency	Managt SO	Reprod. 50	Common SO with resist.clones	Control crosses
Veg.prop.	x	Efficiency	×	X HL more efficiency	×	Clones		Promote existing clones
Breeding zones/deployment	BZ Seed transfer	Seed transfer	х	x	х	x	Review recommendat	х
PLANCER DISCOURSE		2000000000						

'omics'-assisted selection high-throughput genotyping & phenotyping

Assisted-migration of species, seed transfer plasticity & adaptability

Uncertainty \rightarrow *Reactivity and efficiency* \rightarrow *Joined efforts*

How to join efforts?

An opportunity at European Union level:

Long-term integrating effect

Ac3. Geographical structure of Species genetic variability:

towards delineation of breeding zones across Europe

Step 1

Ac4. Structure, organisation and long-term management of FTB material:

towards a joined management of breeding populations

Ac5. Optimisation of Breeding methods and strategies:

towards joint development of breeding activities and genetic research

Ac6. Mass-production & deployment of varieties:

share of expertise for a more efficient dissemination of varieties

Networking activities

Surveys: Breeding programmes/strategies across Europe

Genetic resources National regulations Seed transfer Experimental facilities Methodologies... Cost/benefit of joined breeding

Seminars/ workshops

Adaptability/plasticity, Genetic variability and adaptive potential Long-term breeding strategies

Breeding zones delineation

Breeding programmes

Vegetative propagation

Seed orchard

ABS-DUS

Field experimental network

Optimal deployment and use of FRM, Mutualisation of efforts...

State-of-art reports

- Interspecific hybridisation
- Phenotypic selection
- Regions of provenances
- Guidelines on Genetic Quality of Forest Reproductive Materials
- Roadmap for joined breeding...

Standardisation

Traits assessment protocols

Treebreedex database of genetic resources http://treebreedex.eu/

Proceeding France Description (2014), 87, Nort DesCopper/Web, 86, Reference Present, VBA MJ, 77, Ser C. Propers, ARM, 76, France, Rest/1005, 201

To provide **support tools** for R&D

To provide **support tools** for R&D

To give access to **key-research facilities**

28 research infrastructures in access Cotegory

- Genetics, genomics and tree breeding
 (Eco-) physiology and biotechnology
- (Eco) physiology and biolecritiolog
 Wood science and technology
- Modelling / data analysis
- Genetics, genomics & breeding
- (Eco) physiology & biotechnology
- Wood science & technology
- Modeling

Physical visits (up to 3 months) – remote services – data access

Apply now!!! http://www.trees4future.eu/

MFTLA

Towards a European Tree Breeding Centre?

Step 3

Joined Research projects

Collaborative breeding programmes

Designing Trees for the Future

Joined breeding programmes... Why not in Europe?

Step 4

Thanks for your attention