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Thanks 
• Organisers for organizing everything & inviting me 
• Projects GenSSeq and X-Gen (INRA) 

 
• Work that I have been doing primarily with I Misztal (UGA, 

US), I Aguilar (INIA, Uruguay) and many other people 
 

• Other group led by OF Christensen (University of Aarhus, 
DK) developed the theory in parallel  
– with fruitful cross-fecundation 
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Example 
• Pedigree; grey is genotyped 
• Numbers are records of a quantitative trait (e.g. weight) 
• Can’t easily assign a record to a genotyped individual 

8 

Percy 

9 Lola=3.9 

Daisy 

Matt 

8.1 7.9 

Millet=11.5 

5.9 

John=9.1 

11.2 3.5 7.3 
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How do we predict? 
Estimate heritablity? etc 



Plan 
• Intro: pedigree & genomic relationship, why we need 

them 
• Derivation of a joint matrix H 
• Compatibility of genomic and pedigree relationships 
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Pedigree relationships: A 
• Additive relationships= 2*(kinships or coancestries) 

• 𝐴𝑖𝑗 = 2𝜙𝑖𝑗 

 
• Pedigrees describe how genes are potentially transmitted 
• Systematic “tabular” rules to compute any 𝐴𝑖𝑗 (Emik & 

Terrill 1947) 
• The whole array of 𝐴𝑖𝑗 is disposed in a matrix 𝑨. 
• 𝑨−1 is very sparse and easy to create(Henderson 1976) 

• Extraordinary development of whole-pedigree methods in livestock 
genetics 

 

5 



Genomic (or molecular) relationships: G 
• The predecessors are poorly known 

• Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 
2002, VanRaden 2008 and many others 

 
• Genomes are of finite size 

• Some sib pairs are more equal than others (Hill & Weir 2011, etc) 
• Pedigree relationships are not “fair” 
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Genomic (or molecular) relationships: G 
• If we could see genes then we could just count 
• Instead of genes, we see markers, which are not genes 

• Markers are stretches of DNA that can be accurately read across 
individuals 

• Biallelic SNP markers are used right now (e.g. A/a). Many of them: 
50,000 to 800,000 / individual 
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VanRaden genomic relationships 
• (VanRaden, 2008, more known as Yang et al., 2010) 
• Crossproduct across numerically coded genotypes 

 

• 𝐺𝑖𝑗 =
𝒛𝑖𝒛𝑗

2∑𝑝𝑘𝑞𝑘 
  

 
• 𝒛𝑖 : vector of 𝑛 elements  

• with standardized genotypes as 0,1,2 − 2𝑝𝑘 for genotypes {𝐴𝐴, 𝐴𝑎, 𝑎𝑎} 
at locus 𝑘 = 1, 𝑛 

• 𝑝𝑘 : across-population frequency of 𝑎  at locus 𝑘 
 

• Whole-population 𝑮 = 𝒁𝑫𝒁′ 
• Semipositive definite, not easy to invert 
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Genomic and pedigree relationships 
• Pedigree (A) are estimated IBD relationships, assuming 

« unrelated » founders 
• Genomic (G) are Identical by state (IBS) relationships, 

corrected to be in IBD scale (see later) 
• Genomic relationships are similar to pedigree 

relationships but more accurate 
 

• If pedigree correct, typically crude 𝑠𝑑 𝑮 − 𝑨 ≈ 0,04 
and 𝑐𝑜𝑟 𝑨, 𝑮 ≈ 0,80  
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Applications 
• Most applications come from the model 
• 𝒚 = 𝑿𝒃 +𝑾𝒖 + 𝒆 

• Phenotype = environmental effects + genetic value + residual 

• Assuming 
• 𝑉𝑎𝑟 𝒖 = 𝑨𝜎𝑢2 
• 𝑉𝑎𝑟 𝒖 = 𝑮𝜎𝑢2 
• 𝑉𝑎𝑟 𝒆 = 𝑹 

• In (G)BLUP equations we use relationships: 
𝑿′𝑹−1 𝑿 𝑿′𝑹−1 𝑾
𝑾′𝑹−1𝑾 𝑾′𝑹−1 𝑾 + 𝑉𝑎𝑟 𝒖 −1

𝒃 
𝒖 

= 𝑿′𝑹−1𝒚
𝑾′𝑹−1𝒚

 

• 𝑉𝑎𝑟 𝒖 −1 = 𝑮−1𝜎𝑢−2 or perhaps 𝑉𝑎𝑟 𝒖 −1 = 𝑨−1𝜎𝑢−2 
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Relationships 

Typically simple structure 



Genomic predictions and Pedigree 
predictions 
• Relationships can be obtained from pedigree (pedigree 

relationships) or from markers (genomic relationships) 
• We expect markers to be better than pedigree because they are 

more “real” but they are expensive… (40-150 $ / individual) 
 

• We expect Artificial Selection based on markers (“Genomic 
Selection”) to be more efficient than based on pedigree 
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Genomic predictions and Pedigree 
predictions 
• genomic predictions are 10-25% more accurate than 

pedigree predictions in terms of cross-validation 𝑅2 
• e.g. VanRaden et al. 2009 (dairy cattle) 
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• Similar results in sheep, pigs, chicken and goats (and 
plants)  
 

VanRaden et al J. Dairy Sci. 92:16–24 

pedigree genomic 



Pedigrees in livestock genetics 
• They are deep and connect most animals  
• From 100,000’s to 1,000,000’s  
• However, only some animals are genotyped 

• Important animals such as bulls, also recent animals 
• MANY animals are ungenotyped (perhaps 99%) 

• This makes us unhappy 
• A spans all animals but has no marker information and is less 

precise 
• G is more precise but does not include all animals 
• So far, we use horrible procedures for precorrection  

13 



Example 
• Grey is genotyped 
• Numbers are records (e.g. weight) 
• Can’t easily assign a record to a genotyped individual 

8 

Percy 

9 Lola=3.9 

Daisy 

Matt 

8.1 7.9 

Millet=11.5 

5.9 

John=9.1 

11.2 3.5 7.3 
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Plan 
• Intro: pedigree & genomic relationship, why we need them 
• Derivation of a joint matrix H 
• Compatibility of genomic and pedigree relationships 
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• Things would be simple if we had genomic relationships 
for everyone (Legarra et al., 2009) 

• Things would be simple if we could add genotypes for all 
animals (Christensen et al., 2010) 
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• Things would be simple if we had genomic relationships 
for everyone (Legarra et al., 2009) 

• Things would be simple if we could add genotypes for 
all animals (Christensen et al., 2010) 
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Single Step as a missing data problem 
 

• We can see genotype as a missing data problem 
(Christensen & Lund, 2010) 

• Use the prediction and the distribution of the prediction 
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Missing data 
Fill-in missing data: data augmentation 
• « data augmentation refers to a scheme of augmenting 

the observed data so as to make it more easy to 
analyze » (Tanner & Wong, 1987) 
 

• Augmenting = adding genotypes 
 

• Imputing algorithms work from low to high density markers 
• For animals nongenotyped (at all), they may give a point 

estimate based on most likely genotype 
• Why is this bad? 
 



Problem with point estimates of genotypes 
• Imagine a major gene 

?? 
y=1 

Aa 
y=6 

?? 
y=10 

Aa 
y=5 

• Point estimate of genotype of the 
descendants: “Aa” 

• Clearly, based on 𝒚 there is Mendelian 
segregation where one descendant 
received “AA” and the other “aa” 
 

• There is variation of true genotype 
around the point estimate of the genotype 
 

• If we do not consider this variation we 
consider the offspring as identical twins 
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Augmenting genotypes 
• Gengler et al. (2007) conceived an algebraic way to deal with these 

point estimates (== to McPeek et al. 2004) 
• Christensen & Lund (2010) showed how to take the variation into 

account 
 

• Genotype of descendants = half their parents + Mendelian sampling 

Aa 

?? 

AA 

E(Genotype) = 3
2
"𝐴" + 1

2
"𝑎“ 

Variance(Genotype)=1
4
"A" + 1

4
"𝑎" 

AA with probability ½ 
Aa with probability ½  
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Augmenting genotypes 

• Yes this is weird but it allows linear and algebraic treatment 
of an almost impossible problem 

• You can see it as a linear simplification of a superpolynomial 
problem 
 

• This allows using the classical machinery of animal 
breeding (relationships and matrix algebra) 
 

Genotype = 3
2
"𝐴" + 1

2
"𝑎“ 

Variance(Genotype)=1
4
"A" + 1

4
"𝑎" 
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Inferring genotypes 
• Gengler’s gene content prediction (2007) 

• Linear approximation to the imputation problem 
• This method can be applied to any member of a 

pedigree and generalized to a set of individuals 
 

� � � �
� � � � � �

1
1,2 2,2

1
1,1 1,2 2,2 2,1

ˆ |

ˆ | 2

non genotyped non genotyped genotyped genotyped

non genotyped non genotyped genotyped

E p

Var Var pq

�

�

  �

  �

z z z A A z 2

z z z A A A A

11 12

21 22

=
ª º
« »
¬ ¼

A A
A

A A
Let 

  genotyped 

  non genotyped 

Expected 
genotype 

Observed 
genotype 
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𝒖 =
𝒖𝒏𝑔
𝒖𝑔 =

𝒁𝒏𝑔
𝒁𝑔

𝒂 

Var 𝒖 =
𝒁 𝑛𝑔
𝒁𝑔

𝑉𝑎𝑟 𝒂 𝒁 𝑛𝑔 𝒁𝑔′ + 𝑉𝑎𝑟 𝒁 𝑛𝑔 𝟎
𝟎 𝟎

𝑉𝑎𝑟 𝒂  

1/2Σ𝑝𝑖𝑞𝑖 

Breeding values SNP effects 

Chistensen & Lund use 𝑉𝑎𝑟 𝐴 = 𝐸 𝑉𝑎𝑟 𝐴|𝐵 + 𝑉𝑎𝑟 𝐸 𝐴|𝐵  to 
consider the prediction of the genotype and its variance 

𝐸 𝒁𝑛𝑔 𝒁𝑔  𝑉𝑎𝑟 𝒁𝑛𝑔 𝒁𝑔  

Resulting in: 

ng: « non genotyped » 
g: « genotyped »  

Christensen & Lund key idea: 

Using Gengler’s results Using Gengler’s results 
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1 11 12

2 21 22

1 1 1 1
11 12 22 21 12 22 22 21 12 22

1
22 21

=Var
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© ¹ ¬ ¼
ª º� �
« »
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u H H
H

u H H

A A A A A A GA A A A G
GA A G

non genotyped 

  genotyped 

Covariances of all animals 
Legarra et al. 2009; Aguilar et al., 2010; Christensen & Lund, 2010 
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21 22

=
ª º
« »
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A A
A

A A
Let 

  non genotyped 
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1 11 12

2 21 22

1 1 1 1
11 12 22 21 12 22 22 21 12 22

1
22 21

=Var

� � � �

�

§ · ª º
  ¨ ¸ « »

© ¹ ¬ ¼
ª º� �
« »
« »¬ ¼

u H H
H

u H H

A A A A A A GA A A A G
GA A G

Covariances of all animals 

G comes from genotypes 

This is the variance of prediction 
of genotypes from genotyped to 

non-genotyped 

This is the error in the 
prediction 

The prediction « generates » a 
covariance 
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• Incredibly: H-1 is very simple: 
 
 
 

1 11 12

2 21 22

1 1 1 1
11 12 22 21 12 22 22 21 12 22

1
22 21

=Var

� � � �

�

§ · ª º
  ¨ ¸ « »

© ¹ ¬ ¼
ª º� �
« »
¬ ¼

u H H
H

u H H

A A A A A A GA A A A G
GA A G

Inverse of the regular pedigree 
relationship matrix  

Correcting for genomic 
relationships…  

…and avoiding « double 
counting »  
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• Things would be simple if we had genomic 
relationships for everyone (Legarra et al., 2009) 

• Things would be simple if we could add genotypes for all 
animals (Christensen et al., 2010) 
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Overall modification 
• Look at A as a « prior » (pedigree) relationship and to G 

as an « observed » (genomic) relationship  
• G is observed for some individuals only, whose « a priori » 

(pedigree) relationship matrix was A22 

• Try to construct a « posterior » relationship matrix 
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Joint distributions 

� � � �2 , andp N u 0 G

� � � � � �1 2 2 1 2,p p p u u u u u

Unconditional distribution of genetic values of Genotyped individuals 

Conditional distribution of Non-Genotyped individuals 

� � � �1 1
1 2 12 22 2 11 12 22 21,p N � � �u u Α A u Α Α A Α

Joint distribution 

After seeing their genotypes ! 

Because they have no 
genotypes, this depends 

only on pedigree 
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Joint distributions 
1 2 1 2 2

1 2 2

1 11 1 1
1 12 22 2 1 12 22 2 2 2

11 11 1
112 22

1 2 1 11 1 1 11 1
222 21 22 21 12 22

( , ) ( , | ) ( )

( | ) ( )

exp[ 0.5( ) ( )]exp[ 0.5 ]

exp 0.5

exp 0.5

p p p

p p
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�

� � � �

 

 

c cv � � � �

§ ·ª � º ª º
c c � ª º¨ ¸« » « »¬ ¼¨ ¸� � ¬ ¼¬ ¼© ¹

c �

u u u u u

u u u

u A A u A u A A u u G u

uA A A A
u u

uA A A G A A A A A

11 12
1

1 2 21 1 22 1
222

.
� �

§ ·ª º ª º
cª º¨ ¸« » « »¬ ¼¨ ¸� � ¬ ¼¬ ¼© ¹

uA A
u u

uA G A A

…for those inclined to algebra 

"Genomic" 
relationships 

prediction of non genotyped 
from genotyped 
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1 11 12

2 21 22

1 1 1 1
11 12 22 21 12 22 22 21 12 22

1
22 21

=Var

� � � �

�

§ · ª º
  ¨ ¸ « »

© ¹ ¬ ¼
ª º� �
« »
¬ ¼

u H H
H

u H H

A A A A A A GA A A A G
GA A G

non genotyped 

  genotyped 

Covariances of all animals 
Legarra et al. 2009; Aguilar et al., 2010; Christensen & Lund, 2010 

Exactly same results… 
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Overall modification: example 
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Overall modification: example 
 

This is the regular relationship matrix. Assume now that 
animals 9 to 12 have a genomic relationship of 0.7 
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Overall modification: example 
 

This 
parents now 
are related 

 

This guy 
now is 
inbred 

 

G 
 



Understanding H matrix 
• It is a projection of G matrix on the rest of individuals “so that” G 

matrix makes sense 
• e.g. parents of two animals related in G should be related in A 

 
• It is a Bayesian updating of the pedigree matrix based on new 

information from genotypes 
• The approximation of multivariate normality is good because we have 

many markers  
 

• Typically 
• A-1 in the millions but extremely sparse  
• G and A22 in the thousands 
• Leads to a very efficient method of genomic evaluation:  

• Single Step GBLUP 
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Single step GBLUP 

1 1 1

1 1 1 2 1

ˆ

ˆuV

� � �

� � � � �

c c ª º cª º ª º
 « »« » « »� ¬ ¼¬ ¼ ¬ ¼

X R X X R W X R yb
WR X WR W H WR yu

1 1

1 1
22

� �

� �

 � ª º
« »�¬ ¼

H A 0 0
0 G A

W: incidence matrix of 
animals on data 

A: pedigree 
relationship matrix 

G
This G could be any matrix 
describing « genomic » covariances 
of breeding values;  
it does not restrict to VanRaden’s 
(2008) GBLUP 

A22: pedigree matrix among 
genotyped individuals 

Single Step = Your regular BLUP with small modifications 



Single Step GBLUP 
• Easy modification to a general purpose BLUP software 

• Only changes: addition of 𝑮−1 and 𝑨22
−1 

• Matrices 𝑮−1 and 𝑨22
−1 can be computed with external tools 

 
• Can fit any model (probit, GxE,…) 

 
• Simple extraction of SNP effects for prediction or 

(multimarker) GWAS: 
𝒂 = 𝒁′𝑮−1𝒖 2/𝑘 
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Some results in Pigs 
• Christensen et al., 2012 

• Joint two-trait analysis: daily gain (massively recorded) and feed 
efficiency (scarcely recorded) 

• 2600 genotyped, 300,000 records 
• Single Step increased accuracy by 0.10 in both traits compared to 

pedigree BLUP and reduced bias compared to simple GBLUP 

• Lourenço et al., 2014, PIC data 
• Litter size, fertility 
• 2,000,000 animals in data, 5,000 animals genotyped 
• Single Step increased accuracy by 0.10-0.20 compared to pedigree 

BLUP 
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Single-Step Heat Stress GWAS 
• Aguilar et al., unpublished 
• Multiple-Trait Test-Day model heat tolerance 

• ~ 90 millions records, ~ 9 millions pedigrees 
• ~ 3,800 genotyped bulls 

• Computing time 
• Complete evaluation ~ 16 h 

Milk yield no Heat stress Heat stress 

Marker effects (after backsolving) 



Plan 
• Intro: pedigree & genomic relationship, why we need them 
• Derivation of a joint matrix H 
• Compatibility of genomic and pedigree relationships 
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Compatibility of marker and pedigree 
relationships 
• Populations evolve with time, but genotypes came years 

after pedigree started 
• Genomic Predictions  are shifted from Pedigree 

Predictions 
• This makes them not directly comparable 

 

• Underlying hypothesis of Christensen & Lund (allelic 
frequencies constant across time) or Legarra et al. 
(average genetic value does not change) false 
 

• This can be modelled in a quantitative framework 

42 



Compatibility of marker and pedigree 
relationships 
𝑮 = 𝒁𝒁′/𝑘 or 𝑮 = 𝒁𝑫𝒁′ 
Consider a model 𝒚 = 𝜇 + 𝒖 + 𝒆, 𝑉𝑎𝑟 𝑢 = 𝑮 
• Adding or substracting constants from G shifts 𝒖  by a 

constant absorbed by 𝜇  
• Multiplying G by a constant changes the genetic variance  
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Compatibility of marker and pedigree 
relationships 
• The population for which average 𝒖 = 0 and for which the 

genetic variance is defined is called the genetic base 
• Founders of the pedigree in classical A 
• Whole set of genotyped animals in most typical G 

 
• Typically, genotyped animals come after pedigree starts 

• e.g. Lacaune sheep pedigree go back to 1960 but genotypes start 
in 1995 

•  Drift (and selection) causes : 
• Average genetic values “drift” (in particular in small populations) 
• Genetic variance reduces 
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Compatibility of marker and pedigree 
relationships 
• Vitezica et al. (2011) and Christensen et al. (2012) provided an 

unbiased method that forces the same genetic base across G 
and A : 
• 𝑮∗ = 𝑎 + 𝑏𝑮 
• 𝑎 accounts for old relationships among non genotyped ancestors 
• 𝑏 accounts for reduction in the genetic variance 
• 𝑎 and 𝑏 can be obtained equating average inbreeding and average 

relationships: 
𝑎 + 𝑏 𝑮 = 𝑨 22 

 
𝑎 + 𝑏 𝑑𝑖𝑎𝑔(𝑮) = 𝑑𝑖𝑎𝑔 𝑨𝟐𝟐  

 
In H-W 𝑏 = 1 − 𝑎/2 and this is Wright’s fixation index (Powell et al., 2011): 
 

1 −
𝐺𝑖𝑗∗

2
= 1 −

𝐺𝑖𝑗
2

1 −
𝑨 𝟐𝟐 − 𝑮 

2
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Christensen, 2012 
• Christensen (2012) suggests fitting A to G instead of the 

opposite 
• Ancestral relationships that can be seen in G go undetected in A 

• Christensen analitically integrates out 𝑝𝑖 (=allele 
frequencies) in a model that 
• uses 𝑝 = 0.5 as reference in ALL loci 
• uses a relationship matrix 𝐀𝛾 with related founders 
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Relationship across founders 
Classically we assume 

𝑨 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

• Christensen changes this into: 

𝐀𝛾 =

1 +
𝛾
2

𝛾 𝛾 𝛾

𝛾 1 +
𝛾
2

𝛾 𝛾

𝛾 𝛾 1 +
𝛾
2

𝛾

𝛾 𝛾 𝛾 1 +
𝛾
2

 

He was unaware of Jacquard (1974) who posited this structure 
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Conclusions 
• We have a rather good theory on mixing pedigree and 

genomic relationships for a single population 
• This theory is useful for genomic predictions and for 

GWAS in complex scenarios such as livestock 
• The associated computational methods are quite efficient 

 
• BUT 
• It is sensible to pedigree or genotyping mistakes (label 

switching) 
• Compatibility needs a reasonable data set (representative 

samples) 
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TODO list 
• Extend to multiple origins (=crosses of lines or breeds) 
• Include linkage among markers (useful ?) 
• Improve computational algorithms 

 
• Understand those differences between realized (G) and 

expected (A) relationships, in order to come up with a 
comprehensive theory 
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