

Biodiversity and rhizosphere process in plant/soil synchronization

Camille Cros, Gaël Alvarez, Frida Keuper, Sandrine Revaillot, Sébastien

Fontaine

► To cite this version:

Camille Cros, Gaël Alvarez, Frida Keuper, Sandrine Revaillot, Sébastien Fontaine. Biodiversity and rhizosphere process in plant/soil synchronization. Meeting BASIL, Apr 2016, Lleida, Spain. hal-02793854

HAL Id: hal-02793854 https://hal.inrae.fr/hal-02793854

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **BASIL: Biodiversity and ecosystem services**

Biodiversity and rhizosphere process in plant/soil synchronization

Lleida April 2016

Introduction

 Factors controlling plants growth and microorganisms activities are different

 \rightarrow Few probability to observe a synchronization between them

In grassland

• Few leaching \rightarrow N uptake by plant

 \rightarrow Grassland is a quite autonomous agroecosystem

Presence of synchronization between plant N-demand and soil N-offer ?

In grassland: Questions

Do we observe a synchronization between plant demand and soil offer with a grass species ?

How evolve rhizosphere process with a legume intercrop (N treatment)?

How evolve rhizosphere process and ecosystem balance in a elevated CO2 environment in grassland (grass alone and intercrop) ?

In conventional crop

• High leaching \rightarrow N lost in environment

- \rightarrow dependent to fertilizer
- \rightarrow soil exhaustion

Annual cropping

h

In conventional crop: Question

Do we observe a synchronization in conventional annual crop ?

We hypothesize no due to absence of perennial species

 Increasing use of fertilizer , no longer followed by a matching increase in crop-production

Stagnation of production after 2000

Wheat Yield in France

9

)

• Conventional crop: source of high environmental impact

Steffen et al., 2015

 \rightarrow Importance to find another way of production

- We want to use the presence of synchronization in natural ecosystem (ie: grassland) to restore it in crop production
- To observe that we set up wheat / grassland intercrop

Could we observe a synchronization between N demand and soil offer in innovative agroecosystem?

How evolve rhizosphere process according to N fertilizer intensity ?

Transversal question

Understand: how occur plant/soil synchronization according to season?

→ Difference in plant and microbes activities through seasons (Bardgett et al., 2005)

We hypothesize rhizosphere process are different according to season:

 \rightarrow storage during automn/winter and release during spring/ summer

We suppose the importance of perennial species in this plant/soil synchronization

To answer those questions

10 plants treatments with 4 repetitions :

• 3 species

+ Manipulation of Nitrogen and Carbon availability

English Ryegrass

White clover

Questions related to synchronization in grassland ecosystem

Questions related to land use: How evolve synchronization according to management intensity ?

6 treatments

Management intensity

Experimental devices

Labeling plateform (13CO2) and gas exchanges measurments

Labeling plateform (13CO2) and gas exchanges measurments

Labeling plateform (13CO2) and gas exchanges measurments

Elevated CO2 20 **5 octopus** 40 chambers 8 chambers by octopus

Belowground chamber

Leaching collection

Belowground chamber

- Buried at 80 cm
- Check chambers are flat in soil

Day chamber

1 input

 Continuous measures of C fluxes at entry and exit

Day chamber

Night chamber

 Measure respiration of microbes/plant system

→ Permit to determine RPE

Measured ecosystem functions

➤Continuously:

- Net ecosystem exchange
- Ecosystem respiration
- Plant photosynthesis (GPP)

≻Bi-monthly:

- Plant (labeled) C respiration
- Soil (unlabeled) C respiration
- > Rhizosphere priming effect
- Emissions of N20
- Emission or fixation of methane

➢ Seasonally

- Leaching
- Forage production and grain yield

Estimate microbial activity and soil N process according to seasons

 \rightarrow Measurement at each sampling (one per season):

- Sampling soil to evaluate:
 - Microbial biomass
 - gross N mineralization and immobilization
 - Microbial communities: DNA, PLFA ?
- 15N input to follow N distribution into plant/soil system

Greenhouse 1 at ambient CO2

- 8 treatments
- 4 repetitions
- 3 harvest corresponding to 3 seasons

96 pots

Greenhouse 2 at elevated CO2

- 2 treatments
- 4 repetitions
- 3 harvest corresponding to 3 seasons

24 pots

The pots

Unscrew bottom to sample leaching

Soil

- From grassland on 0-90 cm
- 3 layers separated : 5-20, 20-50, 50-90 cm
- Each layer sieved at 1 cm

Soil in pots

34

THANKS FOR YOUR ATTENTION

Introduction

- In grassland, no or few leaching
- In conventional crop, high leaching

- Rotation annual cropping and grassland
- **P** Grassland presence

Common questions

Understand how occur this synchronization according to C and N availability ?

→ According to Perveen et al (2014) and Fontaine and Barot (2006), presence of differences according to nutrients availability

Understand how occur plant/soil synchronization according to season?

→ Difference in plant and microbes activities through seasons (Bardgett et al., 2005)

Set up: space station

Day chamber

Set up to characterize ecosystem C and N cycling

2 types of set up