Variables and domains

Definition

Set X = {x 1 , • • • , x n } of variables, each with a domain D i Set Φ of functions ϕ S involving variables of S ⊂ X (scope).

A joint function on X, x ∈ D X :

F(x) = ϕ S ∈Φ ϕ S (x S )
Why Graphical ? a vertex per variable an edge when 2 variables interact in a ϕ S ∈ Φ Allows to describe knowledge on a lot of variables concisely Usually hard to manipulate (NP-hard queries). Can we color all vertices in such a way that no edge connects two vertices of the same color ?
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Variables and domains as usual

Cost functions ϕ S : D S → {0, . . . , k} (k finite or not)

Combined by bounded addition 8

F(x) = ϕ S ∈Φ ϕ S (x[S]) ϕ ∅ : lower bound A solution has cost < k. Optimal if minimum cost.

Benefits Defines feasibility and cost homogeneously

A constraint is a cost function with range {0, k} only

Stochastic Graphical Models

Markov Random Fields, Bayesian Networks Random variables X with discrete domains joint probability distribution p(X) defined through the product of positive real-valued functions:

p(X = x) ∝ ϕ S ∈Φ ϕ S (x S )
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Massively used in Assume that the optimum cost on x 1 . . . x i-1 is known for every value of D i-1
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Store f i as a message

Assume that the optimum cost on x 1 . . . x i-1 is known for every value of D i-1

We can extend this to D i for x 1 . . .

x i Let f i = min x i-1 (ϕ i-1 + ϕ i,i-1 )

Store f i as a message

Solves Berge acyclic MRF/BN (acyclic Factor Graphs) Does not converge on graphs (Loopy Belief Propagation) Massively used to produce "good" solutions (turbo-decoding [START_REF] Thomas | The capacity of low-density parity-check codes under message-passing decoding[END_REF] ) Not an equivalence preserving transformation! Tightening by cost shifting Assume that initially ϕ ∅ = 0, k = 4

Shift 1 to left b ← 1 3 1 x 1 x 2 1 3 x 1 x 2 a b a b ⇓ Shift 1 from ϕ 1 to ϕ ∅ Shift 1 to left b ← x 1 x 2 3 1 3 x 1 x 2 a b a b ⇓ Shift 1 from ϕ 1 to ϕ ∅ ϕ ∅ = 1
Tightening by cost shifting Assume that initially ϕ ∅ = 0, k = 4

Shift 1 to left b ← x 1 x 2 1 3 x 1 x 2 a b a b ⇓ Shift 1 from ϕ 1 to ϕ ∅ ϕ ∅ = 1
Preserves the joint function F(•) below k

Properties

Solves tree structured problems, optimum in ϕ ∅

Reformulation: incremental

May loop indefinitely (graphs)

No unique fixpoint (when it exists)

Already used by Ukrainian school [START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Va Kovalevsky | A diffusion algorithm for decreasing energy of max-sum labeling problem[END_REF][START_REF] Vk Koval | Two-dimensional programming in image analysis problems[END_REF][START_REF] Werner | A Linear Programming Approach to Max-sum Problem: A Review[END_REF] and for a subclass of ILP. [START_REF] Wedelin | An algorithm for large scale 0-1 integer programming with application to airline crew scheduling[END_REF] Independently introduced in 2003 in ML as "reparametrizations" 51 q ija : amount of cost shifted from ϕ ij to a ∈ D i OSAC [START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Koster | Frequency assignment: Models and Algorithms[END_REF][START_REF] Cooper | Optimal soft arc consistency[END_REF][START_REF] Werner | A Linear Programming Approach to Max-sum Problem: A Review[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF] Maximize n i=1 u i subject to 

ϕ i (a) -u i + (ϕ ij ∈Φ) q ija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ D i ϕ ij (a, b) -q ija -q jib ≥ 0 ∀ϕ ij ∈ Φ, ∀(a, b) ∈ D ij M C.
c i (a) • x ia + c ij ∈C a∈D i ,b∈D j c ij (a, b) • y iajb s.t a∈D i x ia = 1 ∀i ∈ {1, . . . , n} (1) 
b∈D j y iajb -

x ia = 0 ∀c ij /c ji ∈ C, ∀a ∈ D i (2) 
1 v ia : value a used for variable x i .

2 p iajb : pair (a, b) used for x i and x j

The MRF local polytope [START_REF] Werner | A Linear Programming Approach to Max-sum Problem: A Review[END_REF] 

Minimize

i,a c i (a) • x ia + c ij ∈C a∈D i ,b∈D j c ij (a, b) • y iajb s.t a∈D i x ia = 1 ∀i ∈ {1, . . . , n} (1) b∈D 
j y iajb -x ia = 0 ∀c ij /c ji ∈ C, ∀a ∈ D i (2) 
OSAC is its dual: u i multiplier for (1) and q ija for (2).

1

Soft convergent ACs find feasible (but non necessarily optimal) solutions of the dual.
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Soft convergent ACs find feasible (but non necessarily optimal) solutions of the dual.

Optimal does not mean more efficient for tree search.

2015: universality of the local polytope

Prusa and Werner [START_REF] Prusa | Universality of the local marginal polytope[END_REF] showed that any "normal" LP can be reduced to such a polytope in linear time (constructive proof).
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2015: universality of the local polytope

Prusa and Werner [START_REF] Prusa | Universality of the local marginal polytope[END_REF] showed that any "normal" LP can be reduced to such a polytope in linear time (constructive proof).

Could soft arc consistency (eg. VAC) speed-up LP?

Genetic mapping with CarthaGene GM learning + TSP optimization. CFN: decision variables + cost functions/utilities/feasibility distribution.

Mixed graphical models with decision and stochastic variables

Influence diagrams [START_REF] Ronald | Influence diagrams[END_REF] Stochastic constraint programming [START_REF] Walsh | Stochastic constraint programming[END_REF] Plausability-feasibility-utility networks 37 

1 Variables and domains 2 ϕ

 2 S are Boolean functions (constraints, t ≡ 0 < 1 ≡ f)3 Minimize joint function (⊕ = ∧ = max) F(x) = max ϕ S ∈Φ ϕ S (x S )Graph coloring/RLFAP-feas 1 A graph G = (V, E) and m colors.
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4 Shift 1

 41 1 use ϕ ∅ and ϕ i (•) to store optimum cost over (x 1 , . . . , x i ) 2 Preserves equivalence by "cost shifting" 45,53,42 T. Schiex. "Arc consistency for soft constraints". In: Principles and Practice of Constraint Programming -CP 2000. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411-424Assume that initially ϕ ∅ = 0, k =

S

  . de Givry, M. Bouchez, P. Chabrier, D. Milan, et al. "CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. " In: Bioinformatics 21.8 (2005), pp. 1703-4 V. Laurent, E. Wajnberg, B. Mangin, T. Schiex, et al. "A composite genetic map of the parasitoid wasp Trichogramma brassicae based on RAPD markers. " In: Genetics 150.1 (1998), pp. 275-82 Gene finding with EuGene Semi-CRF + optimization. RNA Gene finding: MilPat, Darn! CSP/CFN + string algorithms P. Thebault, S. de Givry, T. Schiex, and C. Gaspin. "Searching RNA motifs and their intermolecular contacts with constraint networks. " In: Bioinformatics 22.17 (2006), pp. 2074-80 M Zytnicki, C Gaspin, and T Schiex. "DARN! A soft constraint solver for RNA motif localization". In: Constraints 13.1 (2008), pp. 91-109 MendelSoft: pedigree debugging CFN for MPE on Bayesian nets M Sanchez, S de Givry, and T Schiex. "Mendelian error detection in complex pedigrees using weighted constraint satisfaction techniques". In: Constraints 13.1 (2008), pp. 130-154 T. Faraut, S. de Givry, P. Chabrier, T. Derrien, et al. "A comparative genome approach to marker ordering. " In: Bioinformatics 23.2 (2007), e50-6 MRF/BN: stochastic variables + probability distribution. Can be learnt (RBM for deep learning).
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use ϕ ∅ and ϕ i (•) to store optimum cost over (x 1 , . . . , x i )

Preserves equivalence by "cost shifting"[START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (Syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Wedelin | An algorithm for large scale 0-1 integer programming with application to airline crew scheduling[END_REF][START_REF] Schiex | Arc consistency for soft constraints[END_REF] 

Breaking the loops, strengthening ϕ ∅ 2000: Arc consistency[START_REF] Schiex | Arc consistency for soft constraints[END_REF][START_REF] Larrosa | On Arc and Node Consistency in weighted CSP[END_REF] 2003: Full Directional AC[START_REF] Cooper | Reduction operations in fuzzy or valued constraint satisfaction[END_REF][START_REF] Larrosa | In the quest of the best form of local consistency for Weighted CSP[END_REF][START_REF] Larrosa | Solving weighted CSP by maintaining arc consistency[END_REF] 2005: Existential DAC[START_REF] Larrosa | Existential arc consistency: getting closer to full arc consistency in weighted CSPs[END_REF] 2008: Virtual AC[START_REF] Martin C Cooper | Virtual Arc Consistency for Weighted CSP[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF] 2007: Optimal Soft AC[START_REF] Cooper | Optimal soft arc consistency[END_REF] (LP)

q ija : amount of cost shifted from ϕ ij to a ∈ D i

Optimal does not mean more efficient for tree search.

Exact solvers: DEE/A * (DEE [START_REF] Desmet | The dead-end elimination theorem and its use in protein side-chain positioning[END_REF] ), ILP [START_REF] Carleton L Kingsford | Solving and analyzing side-chain positioning problems using linear and integer programming[END_REF] By far the most used: simulated annealing (Rosetta 21 ).

Seydou Traoré, David Allouche, Isabelle André, Simon de Givry, et al. "A new framework for computational protein design through cost function network optimization". In: Bioinformatics 29.17 (2013), pp. 2129-2136