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NP-complete optimization and its applications
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The second era of AI

Spring of AI

AI algorithms win chess championship, Deep Blue II, 1997.
Computing power, RAM, search and a bit of ML (evaluation function)

Now Go !
2016, AlphaGo wins over a world champion Go player .
Computing power, RAM, Monte Carlo Tree Search, deep learning.

New Spring of AI

Mostly computing power, ML and data.
Before that, NP-hard problem solving (CP, SAT, search) has been
providing major contributions to AI, in its theory and applications.
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The power of NP-hard problem solving

Inside AI and computer science
1 Model Based Diagnosis, Planning,…
2 Scheduling, Configuration, Resource Allocation,…
3 Verification, Cryptography, Testing

SAT, CSP, CP, ASP: satisfiability/feasibility

Finding perfect solutions to perfectly defined problems

The world is often more complex
ML gives us the capacity to build models of complex systems from data.



The power of NP-hard problem solving

Inside AI and computer science
1 Model Based Diagnosis, Planning,…
2 Scheduling, Configuration, Resource Allocation,…
3 Verification, Cryptography, Testing

SAT, CSP, CP, ASP: satisfiability/feasibility

Finding perfect solutions to perfectly defined problems

The world is often more complex
ML gives us the capacity to build models of complex systems from data.



The power of NP-hard problem solving

Inside AI and computer science
1 Model Based Diagnosis, Planning,…
2 Scheduling, Configuration, Resource Allocation,…
3 Verification, Cryptography, Testing

SAT, CSP, CP, ASP: satisfiability/feasibility

Finding perfect solutions to perfectly defined problems

The world is often more complex
ML gives us the capacity to build models of complex systems from data.



Perfect solution to perfect problems

Early planning for GPS navigation

A digital model of roads
A shortest path algorithm for planning
GPS navigation monitors plan execution

Static model of reality
Exact and efficient algorithm to decide from this “exact” model
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From data to decisions: data analytics

Modern planning for GPS navigation

Data on travel time on each road, at all time
Feeds a stochastic model of duration
Planning by minimizing expected time
GPS navigation monitors plan execution

Data analytics: what do we need ?

Massive data
A family of (stochastic) models that can be learnt
On which optimization algorithms may apply
Minimum requirement: efficient/tight bounds.
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Graphical Model

Definition
1 Set X = {x1, · · · , xn} of variables, each with a domain Di

2 SetΦ of functions ϕS involving variables of S ⊂ X (scope).
3 A joint function on X, x ∈ DX:

F(x) =
⊕
ϕS∈Φ

ϕS(xS)

Why Graphical ?
1 a vertex per variable
2 an edge when 2 variables interact in a ϕS ∈ Φ

3 Allows to describe knowledge on a lot of variables concisely
4 Usually hard to manipulate (NP-hard queries).
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A Constraint Network is a graphical model

Constraint Network
1 Variables and domains
2 ϕS are Boolean functions (constraints, t ≡ 0 < 1 ≡ f)
3 Minimize joint function (⊕ = ∧ = max)

F(x) = max
ϕS∈Φ

ϕS(xS)

Graph coloring/RLFAP-feas
1 A graph G = (V, E) and m colors.
2 Can we color all vertices in such a way

that no edge connects two vertices of
the same color ?
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Beyond feasibility... optimization

Biology has very few general laws

Need to shift from perfect knowledge
processing to approximate/imperfect
knowledge processing

Valued CSP
Shift from a conjunction of boolean functions to
a more general combination of functions with a
totally ordered co-domain (preferences, costs,
priorities…)

T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction Problems: hard and easy problems”. In: Proc. of the 14th IJCAI.
Montréal, Canada, Aug. 1995, pp. 631–637

S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, et al. “Semiring-based CSPs and Valued CSPs: Frameworks, Properties and Comparison”. In:
Constraints 4 (1999), pp. 199–240
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Additive functions

Cost Function Networks - Weighted Constraint Networks - GAI models

Variables and domains as usual
Cost functions ϕS : DS → {0, . . . , k} (k finite or not)
Combined by bounded addition8

F(x) =
∑
ϕS∈Φ

ϕS(x[S]) ϕ∅ : lower bound

A solution has cost< k. Optimal if minimum cost.

Benefits
Defines feasibility and cost homogeneously
A constraint is a cost function with range {0, k} only
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Stochastic Graphical Models

Markov Random Fields, Bayesian Networks

Random variables X with discrete domains
joint probability distribution p(X) defined through the product of
positive real-valued functions:

p(X = x) ∝
∏
ϕS∈Φ

ϕS(xS)

Massively used in 2/3D Image Analysis, Statistical Physics, NLP,
planning/reasoning under uncertainty…

Maximum a Posteriori MAP-MRF
MRF≡ CFN up to a (− log) transform.
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Binary CFN/MRF as 01LP

1 No constraint or determinism: infinite k, finite costs
2 via: value a used for variable xi.
3 piajb: pair (a, b) used for xi and xj

Minimize
∑
i,a

ϕi(a) · via+
∑
ϕij∈Φ

a∈Di,b∈Dj

ϕij(a, b) · piajb subject to

∑
a∈Di

via = 1 ∀i ∈ {1, . . . , n}

∑
b∈Dj

piajb = via ∀ϕij ∈ Φ,∀a ∈ Di

via, piajb ∈ {0, 1}

Continuous relaxation : the local polytope45,25,54



Graphical Model Processing

Exact approaches (beyond ILP)
1 Dynamic programming (Variable and join-tree elimination,2,12

resolution11,40,13)
2 Tree search + fast, incremental approximate local reasoning (CP, SAT)

Fast, approximate reasoning with some guarantees

Arc Consistency in CSP/CP
Message Passing (MRF/BN)
Soft Arc Consistency in CFN



Arc Consistency = local dynamic programming

AC as Dynamic programming

Imagine a CSP with a linear graph
Assume we know which values of Di−1

belongs to a solution on x1 . . . xi−1

We can extend this to Di for x1 . . . xi

Let fi = minxi−1
(max(ϕi−1, ϕi,i−1))

Include fi in the problem

Revise: Equivalence Preserving Transformation

The resulting problem is equivalent (same set of solutions)
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(Directional) AC solves Berge-acyclic CN

Rooted tree CN
Revise from leaves to root
Root domain: values that belong
to a solution

Thomas Schiex, Jean-Charles. Régin, Chistine Gaspin, and Gérard Verfaillie. “Lazy Arc Consistency”. In: Proc. of AAAI’96. Portland, OR:
AAAI Press, Aug. 1996



(Directional) AC solves Berge-acyclic CN

Tree CN
Revise from leaves and back
All domains: values that belong
to a solution
Resulting problem solved
backtrack-free19,18

Thomas Schiex, Jean-Charles. Régin, Chistine Gaspin, and Gérard Verfaillie. “Lazy Arc Consistency”. In: Proc. of AAAI’96. Portland, OR:
AAAI Press, Aug. 1996



Can be done on any CN, with arbitrary graph

Arc consistency (Waltz 1972)
1 Linear time (tables)
2 Unique fixpoint (confluent)
3 Preserves equivalence
4 May detect infeasibility
5 Problem transformation

(incremental)

Thomas Schiex, Jean-Charles. Régin, Chistine Gaspin, and Gérard Verfaillie. “Lazy Arc Consistency”. In: Proc. of AAAI’96. Portland, OR:
AAAI Press, Aug. 1996



MRF/BN/Factor graphs (− log domain)

MP - Dynamic Programming35,28

1 Assume that the optimum cost on
x1 . . . xi−1 is known for every value
of Di−1

2 We can extend this to Di for x1 . . . xi

3 Let fi = minxi−1
(ϕi−1 + ϕi,i−1)

4 Store fi as a message

xi-1

xi

a b c d

a b c d

1

4

3

250

2

2

13

1 Solves Berge acyclic MRF/BN (acyclic Factor Graphs)
2 Does not converge on graphs (Loopy Belief Propagation)
3 Massively used to produce “good” solutions (turbo-decoding39)
4 Not an equivalence preserving transformation!
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Soft Arc Consistency≈MP through transformation

Soft AC as Dynamic programming
1 use ϕ∅ and ϕi(·) to store optimum

cost over (x1, . . . , xi)
2 Preserves equivalence by “cost

shifting”45,53,42

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS.
Singapore, Sept. 2000, pp. 411–424
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Tightening by cost shifting

Assume that initially ϕ∅ = 0, k = 4

Shift 1 to left b Shift 1 to right a
← →x1 x2

3

1 3

x1 x2

a

b

a

b

1 4

x1 x2

←
Shift 1 from right a⇓ Shift 1 from ϕ1 to ϕ∅

ϕ∅ = 1

Preserves the joint function F(·) below k
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Properties

Solves tree structured problems, optimum in ϕ∅

Reformulation: incremental
May loop indefinitely (graphs)
No unique fixpoint (when it exists)
Already used by Ukrainian school45,27,26,54 and for a subclass of ILP.53

Independently introduced in 2003 in ML as “reparametrizations”51

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice of Constraint Programming - CP 2000. Vol. 1894. LNCS.
Singapore, Sept. 2000, pp. 411–424

M C. Cooper and T. Schiex. “Arc consistency for soft constraints”. In: Artificial Intelligence 154.1-2 (2004), pp. 199–227



Convergent Soft Arc Consistencies

Breaking the loops, strengthening ϕ∅

1 2000: Arc consistency42,29

2 2003: Full Directional AC6,31,32

3 2005: Existential DAC30

4 2008: Virtual AC10,9

5 2007: Optimal Soft AC7 (LP)

O(ed) space, equivalent to the CSP variants on CSP (except OSAC).
Implemented in toulbar2, with many other bells & whistles

Javier Larrosa and Thomas Schiex. “Solving weighted CSP by maintaining arc consistency”. In: Artif. Intell. 159.1-2 (2004), pp. 1–26

M. Cooper, S. de Givry, M. Sanchez, T. Schiex, et al. “Soft arc consistency revisited”. In: Artificial Intelligence 174 (2010), pp. 449–478

http://www.inra.fr/mia/T/toulbar2/
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Optimal Soft Arc Consistency (finite costs, k =∞)

LP variables, binary CFN with no constraint/determinism
1 ui: amount of cost shifted from ϕi to ϕ∅
2 qija: amount of cost shifted from ϕij to a ∈ Di

OSAC45,25,7,54,9

Maximize
n∑

i=1

ui subject to

ϕi(a)− ui +
∑

(ϕij∈Φ)

qija ≥ 0 ∀i ∈ {1, . . . , n}, ∀a ∈ Di

ϕij(a, b)− qija − qjib ≥ 0 ∀ϕij ∈ Φ, ∀(a, b) ∈ Dij

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In: Proc. of IJCAI’2007. Hyderabad, India, Jan. 2007, pp. 68–73
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Remember the local polytope ?

01 LP Variables, for a binary CFN
1 via: value a used for variable xi.
2 piajb: pair (a, b) used for xi and xj

The MRF local polytope54

Minimize
∑
i,a

ci(a) · xia+
∑
cij∈C

a∈Di,b∈Dj

cij(a, b) · yiajb s.t

∑
a∈Di

xia = 1 ∀i ∈ {1, . . . , n} (1)

∑
b∈Dj

yiajb − xia = 0 ∀cij/cji ∈ C,∀a ∈ Di (2)

OSAC is its dual: ui multiplier for (1) and qija for (2).
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Better understanding

1 Soft convergent ACs find feasible (but non necessarily optimal)
solutions of the dual.

2 Optimal does not mean more efficient for tree search.

2015: universality of the local polytope

Prusa and Werner38 showed that any “normal” LP can be reduced to such
a polytope in linear time (constructive proof).

Could soft arc consistency (eg. VAC) speed-up LP?
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VAC faster than LP, close/same bound

CPLEX V12.4.0.0
Problem '3e4h.LP' read.
Root relaxation solution time = 811.28 sec.
...
MIP - Integer optimal solution: Objective = 150023297067
Solution time = 864.39 sec.

tb2 and VAC
loading CFN file: 3e4h.wcsp
Lb after VAC: 150023297067
Preprocessing time: 9.13 seconds.
Optimum: 150023297067 in 129 backtracks, 129 nodes and 9.38 seconds.
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Progress

Radio Link Frequency Assignment Problems

Assign frequencies to radio link in order to minimize interferences.

CELAR 06, n = 100, d = 44 - one core
1 1997: 26 days of a Sun UltraSparc 167 MHz.
2 2015: optimum found in 7”, proved in 73” (2.1GHz CPU)

12.5 fold increase in frequency
More than 30,000 times faster
All min-interference instances closed. Most resisted ILP (fap.zib.de)

B. Cabon, S. de Givry, L. Lobjois, T. Schiex, et al. “Radio Link Frequency Assignment”. In: Constraints Journal 4 (1999), pp. 79–89

http://fap.zib.de/problems/CALMA/


Computational Protein Design48,1

Design new enzymes for biofuels, drugs…cosmetics too

graphical model capturing molecule stability based on atom-scale
forces (electrostatics, solvation, torsion, Van der Waals…)

Few variables (from 10 to few hundreds)
Huge domains (typ. d = 450)
Exact solvers: DEE/A∗ (DEE14), ILP24

By far the most used: simulated annealing (Rosetta21).

Seydou Traoré, David Allouche, Isabelle André, Simon de Givry, et al. “A new framework for computational protein design through cost
function network optimization”. In: Bioinformatics 29.17 (2013), pp. 2129–2136



Multi-paradigm comparison - QP,SDP,ILP,Maxsat,MRF,CFN

David Allouche, Isabelle André, Sophie Barbe, Jessica Davies, et al. “Computational protein design as an optimization problem”. In:
Artificial Intelligence 212 (2014), pp. 59–79

Barry Hurley, Barry O’Sullivan, David Allouche, George Katsirelos, et al. “Multi-language evaluation of exact solvers in graphical model
discrete optimization”. In: Constraints 21.3 (2016), pp. 413–434



Faster than dedicated simulated annealing46

David Simoncini, David Allouche, Simon de Givry, Celine Delmas, et al. “Guaranteed discrete energy optimization on large protein design
problems”. In: Journal of chemical theory and computation 11.12 (2015), pp. 5980–5989

Seydou Traoré, Kyle E Roberts, David Allouche, Bruce R Donald, et al. “Fast search algorithms for computational protein design”. In:
Journal of computational chemistry (2016)
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David Simoncini, David Allouche, Simon de Givry, Celine Delmas, et al. “Guaranteed discrete energy optimization on large protein design
problems”. In: Journal of chemical theory and computation 11.12 (2015), pp. 5980–5989

Seydou Traoré, Kyle E Roberts, David Allouche, Bruce R Donald, et al. “Fast search algorithms for computational protein design”. In:
Journal of computational chemistry (2016)



Graphical models for biology

Genetic mapping with CarthaGene

GM learning + TSP optimization.

S. de Givry, M. Bouchez, P. Chabrier, D. Milan, et al. “CarthaGene:
multipopulation integrated genetic and radiation hybrid
mapping.” In: Bioinformatics 21.8 (2005), pp. 1703–4

V. Laurent, E. Wajnberg, B. Mangin, T. Schiex, et al. “A composite
genetic map of the parasitoid wasp Trichogramma brassicae
based on RAPD markers.” In: Genetics 150.1 (1998), pp. 275–82

Gene finding with EuGene
Semi-CRF + optimization.

Tomato Genome Consortium et al. “The tomato genome
sequence provides insights into fleshy fruit evolution”. In:
Nature 485.7400 (2012), pp. 635–641

C. Mathé, M. F. Sagot, T. Schiex, and P. Rouzé. “Current methods
of gene prediction, their strengths and weaknesses.” In:
Nucleic Acids Res 30.19 (2002), pp. 4103–17

RNA Gene finding: MilPat, Darn!

CSP/CFN + string algorithms

P. Thebault, S. de Givry, T. Schiex, and C. Gaspin. “Searching RNA
motifs and their intermolecular contacts with constraint
networks.” In: Bioinformatics 22.17 (2006), pp. 2074–80

M Zytnicki, C Gaspin, and T Schiex. “DARN! A soft constraint
solver for RNA motif localization”. In: Constraints 13.1 (2008),
pp. 91–109

MendelSoft: pedigree debugging

CFN for MPE on Bayesian nets

M Sanchez, S de Givry, and T Schiex. “Mendelian error detection
in complex pedigrees using weighted constraint satisfaction
techniques”. In: Constraints 13.1 (2008), pp. 130–154

T. Faraut, S. de Givry, P. Chabrier, T. Derrien, et al. “A
comparative genome approach to marker ordering.” In:
Bioinformatics 23.2 (2007), e50–6
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Beyond optimization

Graphical models with decision and stochastic variables

MRF/BN: stochastic variables + probability distribution. Can be learnt
(RBM for deep learning).
CFN: decision variables + cost functions/utilities/feasibility
distribution.

Mixed graphical models with decision and stochastic variables

Influence diagrams22

Stochastic constraint programming52

Plausability-feasibility-utility networks37

H. Fargier, J. Lang, R. Martin-Clouaire, and Thomas Schiex. “A constraint satisfaction framework for decision under uncertainty”. In: Proc.
of the 11th Int. Conf. on Uncertainty in Artificial Intelligence. Montréal, Canada, Aug. 1995

H. Fargier, J. Lang, and T. Schiex. “Mixed Constraint Satisfaction: a framework for decision problems under incomplete knowledge”. In:
Proc. of AAAI’96. Portland, OR: AAAI Press, Aug. 1996

C Pralet, G Verfaillie, and T Schiex. “An algebraic graphical model for decision with uncertainties, feasibilities, and utilities”. In: Journal of
Artificial Intelligence Research 29 (2007), pp. 421–489
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Beyond optimization

Beyond NP

Marginal probability: weighted counting50

Marginal MAP: maximize probability with unobservable variables.
Maximize expected utility…

Clément Viricel, David Simoncini, Sophie Barbe, and Thomas Schiex. “Guaranteed Weighted Counting for Affinity Computation: Beyond
Determinism and Structure”. In: International Conference on Principles and Practice of Constraint Programming. Springer. 2016,
pp. 733–750

C Pralet, T Schiex, and G Verfaillie. “From influence diagrams to multioperator cluster DAGs”. In: Proc. of UAI’2006. Boston, MA, 2006



Beyond optimization

Graphical models

Provide a strong and grounded basis for data analytics, from data to
decision.

We need efficient anytime anyspace algorithms, with associated modelling
langages and solvers.
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Questions ?
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