

### Root development of non-accumulating and hyperaccumulating plants in metal contaminated soils amended with biochar

Frédéric Rees, Thibault Sterckeman, Jean-Louis Morel

#### ▶ To cite this version:

Frédéric Rees, Thibault Sterckeman, Jean-Louis Morel. Root development of non-accumulating and hyperaccumulating plants in metal contaminated soils amended with biochar. 8. 20th World Congress of Soil Science, Jun 2014, Jeju, North Korea. 2014. hal-02794196

#### HAL Id: hal-02794196 https://hal.inrae.fr/hal-02794196

Submitted on 5 Jun2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.





## **ROOT DEVELOPMENT IN METAL CONTAMINATED SOILS AMENDED WITH BIOCHAR**

**Frédéric REES<sup>1</sup>, Thibault STERCKEMAN<sup>1</sup>, Jean-Louis MOREL<sup>1</sup>** \*corresponding author: Frédéric REES, f.rees@gisfi.fr

<sup>1</sup>Université de Lorraine/INRA, Laboratoire Sols et Environnement F-54500 Vandœuvre-lès-Nancy, France

### INTRODUCTION

**Biochar,** the solid product from biomass pyrolysis used as soil amendment, has emerged as a promising carbon sink and soil improver. Its sorbent properties could also be used in the remediation of contaminated soils, particularly in **phytoremediation**.

Biochar's influence on **root growth** is however poorly known <sup>[1]</sup>, *e.g.* for **soils contaminated with heavy metals**. An increase of root surface in those soils may lead to a **decrease of metal leaching**, as less water is percolating, but also to an **increase of metal uptake** by the plant, as the exchange surface between soil and plant is increasing.



In this context, several mechanisms <sup>[1,2,3]</sup> could explain a better root development:

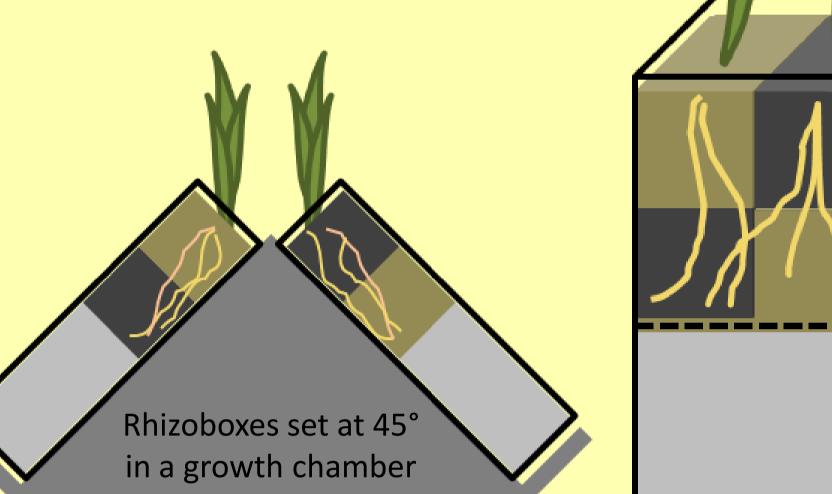
[1] Soil toxicity ↘
[2] Water availability ↗
[3] Resistance to root penetration ↘
[4] Nutrient availability ↗
[5] Beneficial microorganisms are promoted
[6] Biochar induces plant hormonal response

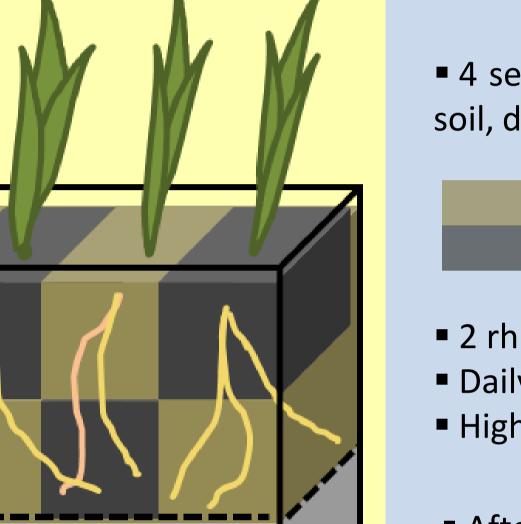
→ A **rhizobox** experiment was designed to:

1) Quantify the effect of biochar on **root** growth in contaminated soils

# 2) Identify a possible root tropism towards biochar, thanks to a specific design

### MATERIALS


- I biochar produced by Carbon Terra at ~450°C from woody biomass, <2mm, untreated (pH 9.2)</p>
- 2 soils contaminated with Cd, Zn, Pb, sampled near smelters, with similar properties but different pH.


pH value and available (/ total) metals of soils (mg kg<sup>-1</sup>)

| Soil   | рН  | Cd                    | Pb                    | Zn                   |
|--------|-----|-----------------------|-----------------------|----------------------|
| Soil A | 5.9 | <b>5.9</b><br>/ 17.6  | <b>1.7</b><br>/ 1120  | <b>684</b><br>/ 3170 |
| Soil B | 8.1 | <b>0.24</b><br>/ 18.6 | <b>0.06</b><br>/ 1080 | <b>2.0</b><br>/ 1380 |

→ With biochar, metal availability strongly rightarrow on Soil A, but only slightly on Soil B due to its higher initial pH <sup>[4]</sup>

- 2 plant species grown in large rhizoboxes:
- Zea mays, non hyperaccumulating, fast growing
- Alpine pennycress, Cd and Zn hyperaccumulator





## **METHODS**

4 seedlings grown per rhizobox with 2000 g of soil, divided in 8 compartments as a chessboard:

> 4 squares with pure soil 4 squares with soil + 5% (w/w) biochar

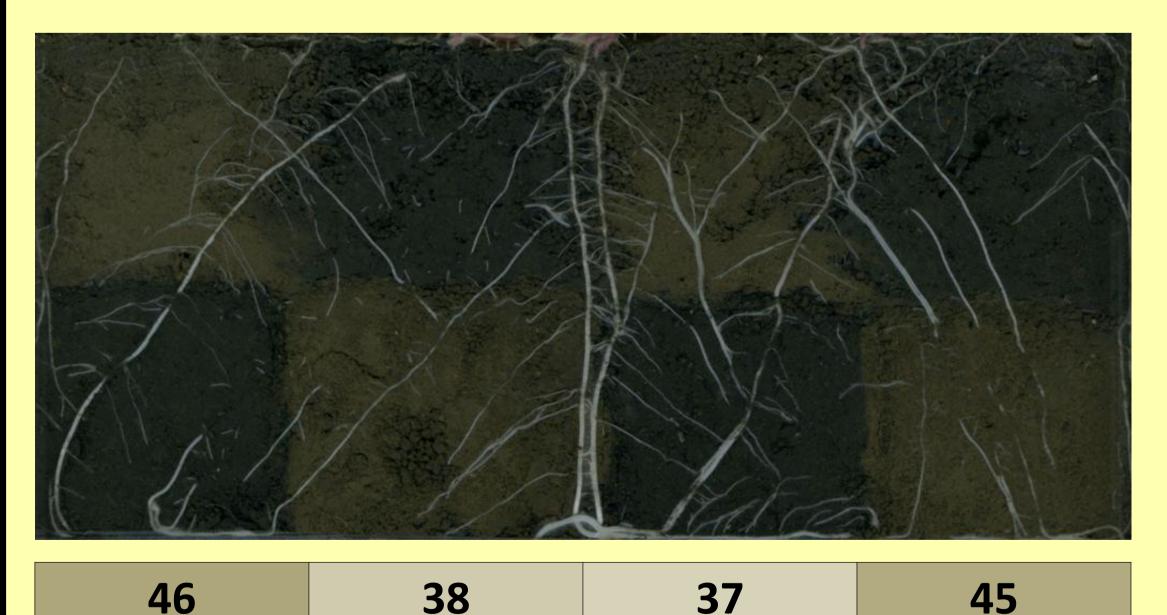
2 rhizoboxes for each plant and soil
Daily watering at 85% of water holding capacity
High-resolution scanning of the soil profile

- After harvest (2 weeks for maize, 9 weeks for alpine pennycress):
- → Recovery of roots and measurement of root surface with Winrhizo software

### **DEVELOPMENT OF ZEA MAYS ROOTS**



## **RESULTS & DISCUSSION**




### **DEVELOPMENT OF ALPINE PENNYCRESS ROOTS**





| 22 | 24 | 22 | 30 |
|----|----|----|----|
| 73 | 20 | 58 | 9  |



The zones with biochar have a higher density of roots

 Roots are generally moving towards the zones with biochar
 → root tropism

=> Biochar has clear positive
effects on root development in a
soil with initial high metal
availability and low pH

ON SOIL B

The zones with biochar do not have a higher density of roots

 No obvious trend of root tropism towards biochar can be observed

=> Biochar has **no significant effects** on root development in a



| 16  | 42 | 25  | 51 |
|-----|----|-----|----|
| 174 | 71 | 141 | 79 |

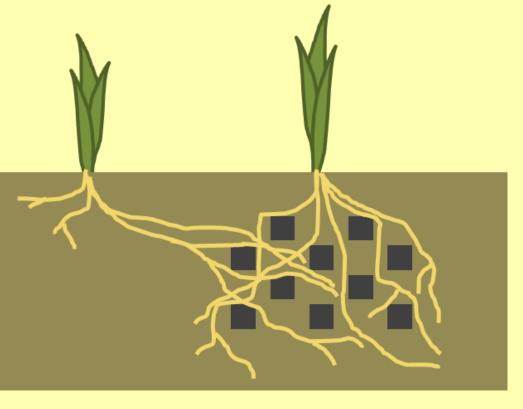


| 50 | 34 | 46 | 53 |
|----|----|----|----|
|    |    |    |    |

High-resolution pictures of soil profiles have been taken just after the harvest

soil with initial low metal availability and high pH

### Tables represent the total root surface for the 8 squares of each soil profile (in cm<sup>2</sup>)


23

19

### CONCLUSIONS

Considering that both soils have similar properties except pH, the better root development with biochar only observed on Soil A may be mainly due to the decrease of soil metal availability.

➔ Modifications of root development only occurs when biochar has a significant effect on chemical soil properties.



## PERSPECTIVES

Positive tropism of roots towards biochar could be an option to reduce the quantity of biochar and the work for biochar amendment.

29

The consequences of a better root development on plant metal uptake and long term growth need further investigations.

[1]Prendergast-Miller, M.T., Duvall, M., Sohi, S.P. 2013. Biochar-root interactions are mediated by [2] Jones et al. 2012. Biochar-mediated changes in soil quality and plant [3] Spokas, K.A., Baker, J.M. and Reicosky, D.C. 2010. Ethylene: [4] Rees et al. 2014. Short-term effects of biochar on soil heavy metal mobility are controlled by biochar on soil nutrient availability. European Journal of Soil Science. growth in a three year field trial. Soil Biology and Biochemistry. potential key for biochar amendment impacts. Plant and Soil. intra-particle diffusion and soil pH increase. European Journal of Soil Science.





This work belongs to the research program LORVER and has been funded by Lorraine Region and FEDER program.



29