

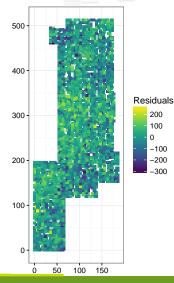
Spatial and competition effects in tree breeding

F. Muñoz, L. Sanchez, E. Cappa Spatial and competition effects in tree breeding

- Spatial auto-correlation and Competition effects (a.k.a. Indirect Genetic Effects):
 - Motivation
 - Diagnostic tools
 - Statistical models available in breedR (Muñoz and Sanchez 2016, Poster #S6.6)
 - Examples using real Douglas-fir trial

Spatial autocorrelation

luñoz, L. Sanchez, E. Cappa 🦳 Spatial and competition effects in tree breedin


Motivation

- Environmental sources of variation
- Bias genetic estimates
- Recommended to routinely include spatial effects (Gilmour, Cullis, and Verbyla 1997; Dutkowski et al. 2002)

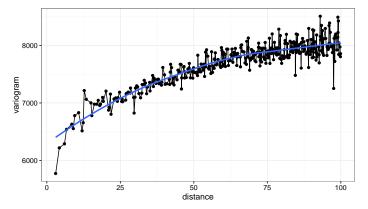
Diagnosis of spatial autocorrelation I

Residuals plot from genetic-only model

- Does this look like random noise?
 - hint: no

Diagnosis of spatial autocorrelation II

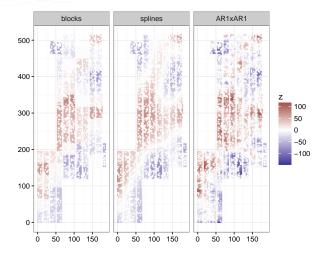
Autocorrelation indices (e.g. Moran's I, Geary's C, etc.)


```
##
##
   Moran I test under randomisation
##
## data: resid.df$Residuals
## weights: doug_s1.wnb
##
## Moran I statistic standard deviate = 18.103, p-value < 2.2e-16
##
  alternative hypothesis: greater
## sample estimates:
## Moran I statistic
                                              Variance
                          Expectation
       0.2668934056 -0.0002570033
                                          0.0002177654
##
```


Diagnosis of spatial autocorrelation III

Empirical (isotropic) semivariogram

$$\gamma(h) = \frac{1}{2}V[Z(\mathbf{u}) - Z(\mathbf{v})], \quad \mathsf{dist}(\mathbf{u}, \mathbf{v}) = h$$



- 2-steps:
 - 1. **Remove spatial trend** with whatever spatial interpolation technique
 - 2. Model the spatially *adjusted* phenotype
- single-step: (generally preferable)
 - Use an spatial effect to account for autocorrelation
 - Including a blocks effect is sometimes good enough

Example of fitted spatial effects

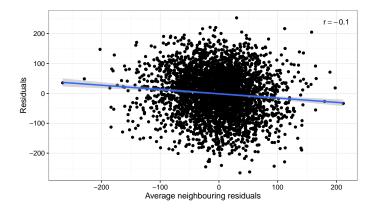
Alternative spatial effects implemented into breedR

Spatial and competition effects in tree breeding

Competition

ňoz, L. Sanchez, E. Cappa – Spatial and competition effects in tree breedin

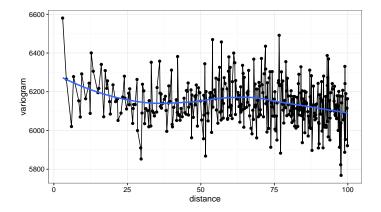
Motivation


- Some of the most fast-growing individuals can be extremely competitive, hampering overall performance
- "IGEs can have profound effects on both the magnitude and the direction of response to selection" (P. Bijma 2013)
- "IGEs may enhance or diminish the response to natural or artificial selection" (Costa e Silva et al. 2013)

Diagnosis of Competition I

Plot of residuals vs average neighbouring residuals

Negative correlation, after accounting for Direct Genetic Effects and Spatial Autocorrelation



Diagnosis of Competition II

Variogram assessment

Peak at the first lag in the variogram of residuals, after accounting for direct genetic effects and spatial autocorrelation

Diagnosis of Competition III

Compare (e.g. AIC) Competition model vs. DGE + Spatial effect

	Competition	Genetic.spatial
AIC	47965	47974
Direct	6235	6515
Competition	193	NA
Spatial	1356	1188
Residual	9457	9551

F. Muñoz, L. Sanchez, E. Cappa Spatial and competition effects in tree breeding

Competition model assumptions

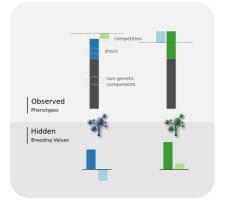
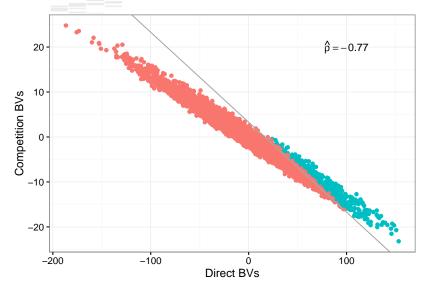



Figure 1: Competition model

- Each individual have two (unknown) Breeding Values (BV):
 - direct BV affects its own phenotype,
 - competition BV affects its neghbours'
- The total effect of the neighbouring competition BVs is given by their distance-weighted sum

Breeding under competition

F. Muñoz, L. Sanchez, E. Cappa

Spatial and competition effects in tree breeding

¥**○** famuvie

A http://famuvie.github.io/breedR/

- **i** Poster #S6.6
- </> Code for reproduction \square

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

F. Muñoz, L. Sanchez, E. Cappa Spatial and competition effects in tree breeding

References

Bijma, P. 2013. "The Quantitative Genetics of Indirect Genetic Effects: A Selective Review of Modelling Issues." *Heredity* 112 (1). Nature Publishing Group: 61–69. doi:10.1038/hdy.2013.15.

- Costa e Silva, João, Brad M. Potts, Piter Bijma, Richard J. Kerr, and David J. Pilbeam. 2013. "Genetic Control of Interactions Among Individuals:
- Contrasting Outcomes of Indirect Genetic Effects Arising from Neighbour Disease Infection and Competition in a Forest Tree." *New Phytologist* 197 (2): 631–41. doi:10.1111/nph.12035.
- Dutkowski, Gregory W., João Costa e Silva, Arthur R. Gilmour, and Gustavo A. Lopez. 2002. "Spatial Analysis Methods for Forest Genetic Trials." *Can. J. For. Res.* 32 (12). NRC Research Press: 2201–14. doi:10.1139/x02-111.
- Gilmour, Arthur R., Brian R. Cullis, and Arūnas P. Verbyla. 1997. "Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments."
- Journal of Agricultural, Biological, and Environmental Statistics 2 (3): 269+. doi:10.2307/1400446.
- Muñoz, Facundo, and Leopoldo Sanchez. 2016. "BreedR: Statistical Methods for Forest Genetic Resources Analysts."

http://famuvie.github.io/breedR/.

