

Analysis of soil and micro-organisms diversity at landscape scale: approach by digital mapping of the upper horizon

Chloé Swiderski, Nicolas N. Saby, Dominique D. Arrouays, Céline Ratié, Claudy C. Jolivet, Samuel Dequiedt, Paul-Olivier Redon

▶ To cite this version:

Chloé Swiderski, Nicolas N. Saby, Dominique D. Arrouays, Céline Ratié, Claudy C. Jolivet, et al.. Analysis of soil and micro-organisms diversity at landscape scale: approach by digital mapping of the upper horizon. Pedometrics 2015, Sep 2015, Cordoue, Spain. 2015. hal-02794485

HAL Id: hal-02794485 https://hal.inrae.fr/hal-02794485

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analysis of soil and micro-organisms diversity at landscape scale : approach by digital mapping of the upper horizon

Swiderski C.1, SABY N.P.A. 1, ARROUAYS D1, RATIE C. 1, JOLIVET C. 1, DEQUIEDT S. 2, REDON P.O3.

ITRODUCTION

In 2007, the Perennial Observatory of the Environment (OPE) was established to support research on environment long term evolution. As part of its overall objective, a soil monitoring and observation network was set within a 240 km² area in northern France.

This network is based on systematic sampling with 117 sites located at regular spatial intervals, following a 1.5 km-square grid. The aim of this study was to find the factors controlling the spatial distribution of chemical and physical soil properties and systematic sampling on 1.5 km-square

MATERIAL & METHODES

OPE : 240 km ²	Covariates:	Inputs: 1.5*1.5 km grid
Soil parent material : limestone, marls and clay Land use : field crop (50%), grassland (17%), forest (32%), urban (1%) Regular grid 1.5km x 1.5km • 117 samples	 Morphometric : data extracted from Digital Elevation Model (25m) : elevation, slopes, curves, Beven index, distance from the nearest river system, Landform, Soil : geology and pedology(1/50 000) Land use : Corine Land Cover, graphic parcel register 	35 environmental covariates Response variables: 3 firsts PCA axis of soil, bacterial and fungi matrix i) Data processing : Extraction of learning data set: spatial intersection of soil information with available predictive covariates ii) Rule-based predictive models : Cubist, GBM iv) Computation of models performance index LOO Validation > Extrapolation of learning rules
We used a 3 steps approach combining a multivariate analysis, a boosting regression tree (BRT) models and universal kriging. The first three principal components resulting from a spatially constrained PCA (R package multispati) of pedological properties, fungal and bacterial communities matrix were first modelled using cubist and gbm function. The predictions of the BRT models were then used as the fixed effect in a geostatistical linear mixed model. The		Prédict soil properties with predictive models iii) Spatial predictive model : Kriging iV) Computation of models performance index LOO Validation Residual krigging

entire process was tested by "leave-one-out" cross validation.

RESULTS

	Regression			Regression kriging		
Target variables	model	R²	RMS E SD	R²	RMSE mean	RMSE median
Bacterial communities axis 1	GBM	0,18	2,9	0,52	1,107	0,402
Bacterial communities axis 2	GBM	0,17	0,79			
Bacterial communities axis 3	Cubist	0,14	0,799			
Fungal communities axis1	GBM	0,23	0,601	0,88	1,138	0,326
Fungal communities axis 2	GBM	0,30	0,451	0,82	1,044	0,484
Fungal communities axis 3	GBM	0,08	0,481			
Pedological properties axis 1	Cubist	0,48	2,22	0,94	0,955	0,149
Pedological properties axis 2	GBM	0,58	1,09	0,94	1,048	0,2787
Pedological properties		0.45	1 0 0			

SCIENCE & IMPAC

Pedological properties were a combination of soil texture, cation exchange capacity, pH, carbon to nitrogen ratio, organic carbon content, limestone content, total nitrogen, available phosphorus, total and exchangeable cations.

The first PCA's axis represented a global mineral richness of the soil upper horizon. The second axis reflected the anthropogenic effects of land use, allowing the distinction between forest soils and arable soils. The third axis sorted soils by their saturation of cation exchange capacity. The three axes were combined to create this colour composition map on the right (RGB ratio).

and dels with the best accuracy were found for pedological properties. Ordinary kriging led to improuve R². The most important predictor variables for soil properties were related to heigth and distance of the nearest hydrographic system, pedology (axis1); land use (axis 2) and geology, curvature and direction slope (axis 3).

Interpretation of microbial PCA's axis had no meaning because variables represented a relative number of individuals. Interpretation was limited to a genetic similarity of individuals sharing the same scores. Fungal and bacterial communities seemed to be related to watershed and topographical conditions, but the link between these variables and spatial distribution of microbial properties was not strong (R²<30%). Microbial processes have to be studied at finer scales and interlinked scales from landscape to soil micro-aggregates.

Spatial distribution of pedological properties Distribution spatiale des 3 premiers axes de l'ACP des propriétés pédologique sur la zone OPE

Spatial distribution of bacterial and fungal communities

CONCLUSION

By using different statistical methods, we showed that identifying influencing factors and predicting spatial distribution of chemical, physical and biological soil properties is possible at landscape scale.

Predicting spatially constrained principal components is a useful technique tor homogeneous areas, or when modelling individual soil properties results in poor prediction quality indicators.

L: INRA, US 1106 Infosol, F-45075 Orléans, France.

2 : INRA, UMR 1347 Agroécologie – plateforme GenoSol, F-1065 Dijon, France.

3 : Andra, (Agence nationale pour la gestion des déchets radioactifs), direction Recherche et Développement, Centre de Meuse Haute Marne, Route départementale 960, F-54280 Bure.

References

v) Mapping of final predicted soil property

Arrouays D. et al., Large trend in French topsoil characteristics are revealed by spatially constrained multivariate analysis. Geoderma 161. 2011. 107-114. Odeh, I.O.A et al, Futher results on prediction of soil properties from terrain attributes : heterotopic cokriging and regression-kriging. Geoderma. 1995. 251-226.

De Souza E. et al., Comparing spatial prediction methods for soil property mapping in Brazil : A case study for the Rio Doce Bassin. GlobalSoilMap. 2014. 267 - 271.

Software

R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

