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2 CHEMICAL REACTION NETWORK THEORY

1. Notations

All operations (xy, ln(x)), inequalities (x ≥ 0), etc are to be understood component-wise.
The support of a vector x is the set of indices supp(x) = {i , xi > 0}.

2. Network definition

• Species: Finite set E = {E1 , · · · , Ed}. We identify RE  Rd
• Complexes: Finite set C = {y1 , · · · , yn}. We identify y ∈ C as a vector in Rd,

y =

 y1

...
yd

 , yi = stoichiometry of Ei in y.

Moreover, We identify RC  Rn, and {ey1 , · · · , eyn} = {e1 , · · · , en} as the canonical
orthonormal basis.
• Reaction: Finite set R = {y → y′}. We identify y → y′ with the vector y′ − y in Rn.

We denote the cardinal by | R |= r.
• Law of mass action, kinetic rates: Finite set κ = {κy→y′ , y → y′ ∈ R}

3. Deterministic mass-action CRN

The deterministic system associated to the CRN (E , C,R, κ) is given by an initial condition
x(0) = x0 ∈ Rd+ and

dx

dt
=

∑
y→y′∈R

κy→y′x
y(y′ − y) . (1)

4. Stochastic mass-action CRN

The stochastic system associated to the CRN (E , C,R, κ) is given by an initial condition
X(0) = X0 ∈ Nd and

X(t) = X(0) +
∑

y→y′∈R
Py→y′

(∫ t

0

λy→y′(X(s))ds

)
(y′ − y) , (2)

where λy→y′(n) = κy→y′
n!

(n−y)!1n≥y, and (Py→y′ , y → y′ ∈ R) is a family of standard indepen-

dent Poisson processes.

Remark 1. Other formulations

• Continuous Time Markov chain on Nd with transition

n 7→ n+ y′ − y , with rate λy→y′(n) (3)

• Infinetesimal Generator

Aϕ(n) =
∑

y→y′∈R
λy→y′(n) [ϕ(n+ y′ − y)− ϕ(n)] (4)

• Chemical Master Equation

dpt(n)

dt
=

∑
y→y′∈R

λy→y′(n− y′ + y)pt(n− y′ + y)− pt(y)
∑

y→y′∈R
λy→y′(n) (5)
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5. Mapping

• Complex composition matrix: Y : Rn → Rd is the linear application defined by
Y (ey) = y, for all y ∈ C.

In particular, Y can be represented as a Md×n matrix, with

Yij = yji , 1 ≤ i ≤ d , 1 ≤ j ≤ n . (6)

• Complex graph matrix: Aκ : Rn → Rn defined by

Aκ(z) =
∑

y→y′∈R
κy→y′zy(ey′ − ey) . (7)

In particular, Aκ can be represented as a Mn×n matrix, with

Aijκ =

κj→i , if j 6= i ,

−
∑
l 6=j

κj→l , if j = i . (8)

We also have Aκ = A− diag(1TA), where

Aij =

{
κj→i , if j 6= i ,

0 , if j = i .
(9)

• Propensity vector: Ψ : Rd → Rn defined by

Ψ(x) =
∑
y∈C

xyey . (10)

We identify Ψ(x) as a vector in Rn,

Ψ(x) =

 xy
1

...

xy
n

 .

Thus, the deterministic system can be re-written

dx

dt
= f(x(t)) =

∑
y→y′∈R

κy→y′x
y(y′ − y) = Y ◦Aκ ◦Ψ(x(t)) . (11)

Also, we can notice that

ln(Ψ(x)) = Y T ln(x) . (12)

The last two relations are summarized with

RE = Rd f−−→ RE = Rd

Ψ ↓ ↑ Y

RC = Rn Aκ−−→ RC = Rn

,

Rd>0
Ψ−−→ Rn>0

ln ↓ ↑ exp

Rd YT

−−→ Rn

• Reaction stoichiometry matrix Γ : Rr → Rd is the linear application defined as a
Md×r matrix, with

Γij = y′i − yi , 1 ≤ i ≤ d , 1 ≤ j ≤ r , where y → y′ ∈ Ris the j th reaction. (13)
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• Complex Incidence matrix I : Rr → Rn is the linear application defined as aMn×r
matrix, where columns are in one-to-one correspondence with the edges (reactions) and
rows in one-to-one correspondence with the nodes (complexes), eg:

Ij̇ = ek − ei , 1 ≤ j ≤ r , where yi → yk ∈ R is the j th reaction. (14)

• We verify that

Γ = Y I . (15)

If we further define

k(x) := [k1(x), · · · , kr(x)] , (16)

with, for 1 ≤ j ≤ r,

ki(x) = κjx
y , where y → y′ ∈ R is the j th reaction , (17)

then Eq. (11) can be re-written

dx

dt
= f(x(t)) =

∑
y→y′∈R

κy→y′x
y(y′ − y) = Γr(x(t)) = Y Ir(x(t)) . (18)

Remark 2. Any non-zero row-vector ν ∈ Rd that satisfies

νΓ = 0 , (19)

induces a conserved quantity,
∑d
i=1 νiEi. The network is said conservative if there exists a

positive such row-vector ν.

Remark 3. The chemical reaction network is sometimes summarized by the set

d∑
i=1

αijEi →κj

d∑
i=1

βijEi , j = 1 , · · · , r . (20)

Then the reaction vectors have coordinates (βij − αij)i=1,··· ,d and the matrix Γ is imply the
matrix form of the reaction vectors, that is

Γij = βij − αij , i = 1 , · · · , d , j = 1 , · · · , r . (21)

6. Network structure

• Fixed point: x ∈ Rd≥0 such that f(x) = 0.

• Positive Fixed point: x ∈ Rd>0 such that f(x) = 0.

• Complex balanced equilibrium: x ∈ Rd>0 such that AκΨ(x) = 0, e.g. such that for
all y ∈ C,

(inflow into y)
∑

y′→y∈R
κy′→yx

y′ =
∑

y→y′∈R
κy→y′x

y (outflow from y) . (22)

• Stoichiometric subspace: S = span{y′ − y | y → y′ ∈ R} . Dimension s := dimS.
• Stoichiometric compatibility class: for all x∈ Rd, Sx = (x + S) ∩ Rd+ (or SX =

(X + S) ∩ Nd).
• Stoichiometric Complex subspace: T = span{ey′ − ey | y → y′ ∈ R} . Dimension:

dimT = n− l, where l is the number of linkage classes (see definition 1 and proposition
2).
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Remark 4. It is clear that the dynamics of the dynamical system (1) or (2) is constrained to
stay in a given stoichiometric compatibility class, x(0) +S or X(0) +S, according to the initial
condition. Thus the effective dimension of the system is at most s ≤ d. A more sharper notion
is given by the kinetic subspace (see [22, Appendix IV]) which is based on the observation that
Eq. (1) can be re-written

dx

dt
=

n∑
i=1

 d∏
j=1

x
yij
j

 ∑
y′: yi→y′∈R

κyi→y′(y
′ − yi) . (23)

Thus, the effective dynamics lies inside the space generated by the linear combination of the
vectors

di =
∑

y′: yi→y′∈R

κyi→y′(y
′ − yi) . (24)

It is clear however that the kinetic subspace depends on the precise value of the reaction rates

6.1. Linkage classes. We say y, y′ are directly linked, denoted by y ↔ y′, if either y → y′ ∈
R or y′ → y ∈ R. We define

Definition 1 (Linkage class). The linkage relation is the equivalence relation on C, denoted
by y ∼ y′, given by y ∼ y′ if either y = y′ or if it exists y1, · · · ym such that y = y1 ↔ y2 ↔
· · · ym = y′. The linkage classes are the equivalence classes for the relation ∼, and are denoted
by L1 , · · · , Ll. Thus l is the number of Linkage classes.

The Linkage classes are the connected components of the non-directed graph R.

Remark 5. Any two reaction networks with the same complexes and the same linkage classes
(but not necessarily the same reactions) also have the same stoichiometric dimension s.

We also define characteristic vector associated to linkage classes,

eLi :=
∑
y∈Li

= ey. (25)

We say that y ultimately reacts to y′, denoted by y ⇒ y′, if either y = y′ or if it exists
y1, · · · ym such that y = y1 → y2 → · · · ym = y′. We define

Definition 2 (strong Linkage class). The strong Linkage relation is the equivalence relation
on C, denoted by y ≈ y′, given by y ≈ y′ if both y ⇒ y′ and y′ ⇒ y. The strong Linkage classes
are the equivalence classes for the relation ≈, and are denoted by L1 , · · · , Lp. Thus p is the

number of strong Linkage classes. If i ∈ L, we also note L = [i].

Strong Linkage classes induces a sub-partition of the partition induced by the Linkage classes
on the set of complexes. Thus, every Linkage class is a union of strong Linkage class (and then
p ≥ l).

Definition 3 (Terminal strong Linkage class). The strong Linkage class L is terminal if no
complex in L reacts to a complex outside L. The Terminal strong Linkage classes are denoted
by T1 , · · · , Tt. Thus t is the number of Terminal strong Linkage classes.

Note that each linkage class necessarily contains at least one terminal strong linkage class
(there is a finite number of reactions): in particular t ≥ l. Hence,

p ≥ t ≥ l . (26)

We also define the partial order on strong Linkage classes by
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• [i] 4 [j] if, and only if, i ⇒ j (this does not depend on the chosen element of each
equivalent classes).
• We can re-order the strong Linkage classes and complexes such that, if Lu 4 Lv, then
u ≤ v, and such that Aκ and A are block-wise triangular inferior,

A =


A1 0 0 0

A(1, 2)
. . . 0 0

...
. . .

. . . 0
A(1, p) · · · A(p− 1, p) Ap

 (27)

6.2. Reversibility.

Definition 4 (Reversibility). (E , C,R) is reversible if for any y → y′ ∈ R, then y′ → y ∈ R.
(E , C,R) is weakly reversible if the strong linkage classes coincide with the linkage classes,

or, equivalently,
if y ⇒ y′ then y′ ⇒ y. (28)

Remark 6. Weakly reversible networks are precisely those for which linkage classes, strong
linkage classes and terminal strong Linkage classes coincide (p = t = l). For such networks, A
and Aκ are block-wise diagonal. Similarly, one can show that networks such that each strong
linkage class is a terminal strong linkage class (p = t), is a weakly reversible network. On the
other hand, the networks for which t = l is strictly larger than the set of weakly reversible
networks (one may have p > t = l, see examples).

We will see when we will study the kernel of Aκ that

Proposition 1 ( [21][Corollary 4.2). ] Weak reversibility is equivalent to the existence of a
strictly positive vector in the kernel of Aκ (or I).

6.3. Deficiency.

Definition 5 (Deficiency). The deficiency of a network is defined as

δ = n− l − s . (29)

Remark 7. Along with remark 5, one can show that a network composed with n complexes
and l linkage classes have a stoichiometric subspace whose dimension cannot exceed n − l.
Indeed, consider the minimal reaction network that connect complexes with a minimal number
of reactions. It is not difficult to see that there is in such way only n − l reactions, hence
dimS = s ≤ n− l. Thus, δ ≥ 0. We will provide in Proposition 3 a more intuitive definition of
the deficiency.

Remark 8. It also derives from remark 5 that the value of the deficiency of a network depends
only of its complexes and the linkage classes (and not precisely on the nature of reactions within
each linkage class).

7. Complex balanced

7.1. Deterministic. A complex balanced equilibrium is a concentration c ∈ Rd≥0 such that,
for all z ∈ C, ∑

y: y→z∈R
κy→zc

y

inflow

= cz
∑

y′: z→y′∈R
κz→y′

outflow

(30)

Note that complex balanced equilibrium might be located at the boundary of the state space.
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A chemical reaction network (E , C,R, κ) is said complex balanced if there exists a positive
complex balanced equilibrium. A chemical reaction network (E , C,R) is said undonditionnaly
complex balanced if there exists a positive complex balanced equilibrium, whatever the choice
of rate constants κ.

7.2. Stochastic. We need futher definition

Definition 6. Let (E , C,R) be a CRN.

a a reaction y → y′ is active on x ∈ Nd if x ≥ y.
b A stat u is accessible from x if there is q ≥ 0 and a sequence (yj → y′j)j=1...q) such that

u = x+

q∑
j=1

y′j − yj (31)

and yh → y′h is active on x+
∑h−1
j=1 y

′
j − yj , for all 1 < h ≤ q.

c A nonempty set Γ ⊆ Nd is an irreducible component of (E , C,R) if for all x ∈ Γ, all
u ∈ Nd, u is accessible from x if, and only if, u ∈ Γ.

d A network is essential if the state space if the union of irreducible components, and
almost essential if the state space if the union of irreducible components except for a
finite number of states

e For an irreducible component Γ, the subnetwork (EΓ, CΓ,RΓ) is the network composed
of reactions that are active o some x ∈ Γ.

f An irreducible component Γ is said positive if RΓ = R

Any irreducible component is contained in a stoichiometric compatibility class, and a stoi-
chiometric compatibility class may contain several irreducible components. A weakly reversible
network is essential [29].

The notion of complex balanced equilibrium has been adapted to stochastic network, by [11]

Definition 7. a A stationary distribution πΓ on an irreducible component Γ is said to
be complex balanced if, for all z ∈ C,∑

y∈C:y→z∈R
λy→z(x− z + y)πΓ(x− z + y)

inflow

= πΓ(x)
∑

y′∈C:z→y′∈R
λz→y′(x)

outflow

, ∀x ∈ Γ.

b A stochastic CRN (E , C,R) is said stochastically complex balanced if there exists a
complex balanced distribution on a positive irreducible component.

8. Deficiency 0 theorem

8.1. Deterministic.

Theorem 1 (Horn, Jackson, Feinberg, 70′). Soit (E , C,R) un réseau qui vérifie les deux con-
ditions suivantes:

• La déficience δ = 0
• Faiblement réversible.

Alors, le modèle déterministe associé vérifie:

• Quelque soit les choix des constantes κ, à l’intérieur de chaque classe de compatibilité
stoechiométrique, il y a exactement un point fixe strictement positif.

• Ce point fixe est localement asymptotiquement stable.
• Ce point est un point d’équilibre des complexes.
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Remark 9. For sharper conclusion on zero deficiency network, and information on which species
might extinct, see [22, Section 6.1]. In particular, it is proven there that for zero deficiency
network, if x∗ is a steady state, then, for any complex y, supp(c∗) contains supp(y) only if y is
a member of a terminal strong linkage class.

We also have a reciprocal property

Theorem 2 ( [25]). A chemical reaction network (E , C,R) is unconditionally complex balanced
(e.g. there exists a positive complex balanced equilibrium, whatever the rate constants are) if,
and only if,:

• The deficiency δ = 0
• It is weakly-reversible.

Furthermore, the following say that weakly-reversible non-zero deficiency network are some-
how more intricate

Theorem 3 ( [25]). Let x ∈ Rd>0 be some positive concentration of the species space of a given
weakly reversible chemical reaction network (E , C,R). Then the following hold:

a There exists a set of reaction rates κ such that (E , C,R, κ) is complex balanced and for
which x is an equilibrium concentration.

b In addition, if the network has non-zero deficiency, there is a set of reaction rates κ such
that (E , C,R, κ) is not complex balanced and for which x is an equilibrium concentration.

We also have a complete characterization of zero-deficiency network

Theorem 4 ( [22]). Let (E , C,R) be a zero-deficiency chemical reaction network. Then

a If the network is not weakly-reversible, then there exists no positive equilibria
b If the network is weakly-reversible, then there exists a unique positive equilibrium within

each stoichiometric compatibility class (which is asymptotically stable).

8.2. Stochastic.

Theorem 5 ( [4]). Soit (E , C,R) un réseau qui vérifie les deux conditions suivantes:

• La déficience δ = 0
• Faiblement réversible.

Alors, le modèle stochastique associé a pour distribution stationnaire le produit de loi de Poisson

π(x) =

d∏
i=1

cxii
xi!

e−ci , x ∈ Nd . (32)

où c est un vecteur positif d’équilibre des complexes. De plus

• Si Nd est irréductible, l’unique distribution est un produit de distribution de Poisson
indépendante donné par (32).

• Si Nd n’est pas irréductible, alors chaque distribution stationnaire s’écrit

π =
∑

Γ

αΓπΓ , (33)

où les πΓ sont donnés par

πΓ(x) = MΓ

d∏
i=1

cxii
xi!

, x ∈ Γ , πΓ(x) = 0 otherwise. (34)

avec MΓ une constante positive de normalisation, et Γ une composante irréductible.
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Dans le deuxième cas, la distribution est multinomiale (produit de Poisson indépendante
dont la somme est contrainte) sur chaque composante irréductible.

The result in [4] is actually stronger:

Theorem 6. If the network (E , C,R) is complex balanced, then there exists a unique stationary
distribution on every irreducible component Γ, given by Eq. (34).

In particular, the proof of this result only uses the existence of a positive complex balance
equilibrium. The authors in [11] provide few additional interesting results

Theorem 7. Let (E , C,R) be a CRN, and Γ an irreducible component. If there exists a complex
balanced stationary distribution πΓ on Γ, then RΓ is weakly reversible. Morover, there exists
such stationary distribution if, and only if, (EΓ, CΓ,RΓ) is (deterministically) complex balanced.

In particular, we deduce that stochastically complex balance and deterministically complex
balance are equivalent notions for a CRN. They also provide a full characterization of zero
deficiency network

Theorem 8. Let (E , C,R) be a zero-deficiency CRN. Then

• if R is not weakly reversible, then there exist no positive irreducible component. More-
over, let Γ an irreducible component. Then y → y′ ∈ R is active on Γ only if y → y′ is
terminal, and the stationary distribution has the product form

πΓ(x) = MΓ

∏
i:Ei∈E∗

cxii
xi!

, x ∈ Γ , πΓ(x) = 0 otherwise, (35)

where (E∗, C∗,R∗) is the subnetwork composed by the set of terminal reactions.
• if R is weakly reversible, then it is essential, and there exists a unique stationary dis-

tribution on every irreducible component (given by Eq. (34)).

The characterization of network such that the stationary distribution is product-form on
some or all irreducible components is partially provided by

Theorem 9 ( [11]). Let (E , C,R) be an almost essential CRN, and c ∈ Rd>0. Then the probability
distribution given by Eq. (34) is stationary on all irreducible components if, and only if c is a
complex balanced equilibrium.

However, it is shown in the examples that the class of network that has a product form
stationary distribution is actually strictly bigger.

9. Exemple

9.1. Number of linkage classes and weak-reversibility.

A1 � A2 +A3 → A4 → A5

↖ l
2A6

A4 +A5 → A7

• E := {A1, · · · , A7}
• | C |= 7
• l = 2, p = 4, t = 2
• Not weakly reversible
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A1 � A2 +A3 → A4 → A5

↘ l
2A6

A4 +A5 � A7

• E := {A1, · · · , A7}
• | C |= 7
• l = 2, p = 4, t = 2
• Not weakly reversible

B ← A → C

• E := {A,B,C}
• C = {A,B,C}
• l = 1, p = 3, t = 2
• Not weakly reversible. δ = 0 (n = 3, s = 2, l = 1).

B ← A → C
B + C → 2A

• E := {A,B,C}
• C = {A,B,C,B + C, 2A}
• l = 2, p = 5, t = 3
• Not weakly reversible. δ = 1 (n = 5, s = 2, l = 2).
• Depending on the kinetic rates, there may be no steady states or an infinite number

of positive steady states in each stoichiometric compatibility class, but a single one in
each kinetic compatibility class (see [22, Appendix IV])

9.2. Deficiency and weak-reversibility.

A � 2B
A+ C � D
↖ ↙

B + E

• E := {A,B,C,D,E}
• C := {A, 2B,A+ C,D,B + E}
• Weakly-reversible, δ = 0 (n = 5, l = 1, s = 2).

A+ E � AE → B + E

• E := {A,B,E}
• C := {A+ E,AE,B + E}
• Not weakly-reversible, δ = 0 (n = 3, l = 1, s = 2).

A+ E � AE � B + E

• E := {A,B,E}
• C := {A+ E,AE,B + E}
• Weakly-reversible, δ = 0 (n = 3, l = 1, s = 2).

A+B � 2A

• E := {A,B}
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• C := {A+B, 2A}
• l = 1, p = 1, t = 1, Weakly-reversible
• δ = 0 (n = 2, l = 1, s = 1).
• There exists boundary complex balanced equilibrium : (0, x2) for any x2 > 0.

A+B → 3A
↑ ↓

2B ← 2A+ C

• E := {A,B,C}
• C := {A+B, 3A, 2A+ C, 2B}
• l = 1, p = 1, t = 1, Weakly-reversible
• δ = 0 (n = 4, l = 1, s = 3).
• There exists boundary complex balanced equilibrium : (0, 0, x3) for any x3 > 0.

A+ E � AE � B + E
B → ∅ → A

• E := {A,B,E}
• C := {A+ E,AE,B + E,A,B, ∅}
• Not weakly-reversible, δ = 1 (n = 6, l = t = 2, s = 3).
• but there exists a unique positive equilibrium point in each stoichiometric classes

A+ E � AE → B + E
B + F � BF → A+ F

(36)

• E := {A,B,E, F}
• C := {A+ E,AE,B + E,B + F,BF,A+ F}
• Not Weakly-reversible
• δ = 1 (n = 6, l = t = 2, s = 3).
• but there exists a unique positive equilibrium point in each stoichiometric classes

3A → A+ 2B
↑ ↓

2A+B ← 3A

• E := {A,B}
• C := {3A,A+ 2B, 3B, 2A+B, 3A}
• Weakly-reversible (l = t = p = 1)
• δ = 2 (n = 4, l = 1, s = 1).
• It may admit three positive steady states in each stoichiometric compatibility classes.

However, if all kinetic rates are equal to 1, then it is complex balanced.

A1 +A2 � A3 → A4 +A5 � A6

2A1 → A2 +A7

↖ l
A8

• E := {A1, · · · , A8}
• | C |= 8
• l = 2, p = 3, t = 2. Not weakly reversible.
• δ = 0 (n = 7, s = 5, l = 2).
• No positive steady state nor sustained oscillations.



12 CHEMICAL REACTION NETWORK THEORY

0 � A → B
2A+B → 3A

• ”Brusselator”
• E := {A,B}
• C := {0, A,B, 2A+B, 3A}
• l = 2, p = 4, t = 2, Not weakly-reversible
• δ = 1 (n = 5, l = 2, s = 2).
• (for certain kinetic rates), it admits an unstable positive steady-state and a positive

limit cycle.

A � 2A
A+B � C � B

• ”Edelstein network”
• E := {A,B,C}
• C := {A,B,A+B,C, 2A}
• l = 2, p = 2, t = 2, Weakly-reversible
• δ = 1 (n = 5, l = 2, s = 2).
• (for certain kinetic rates), it admits three positive steady-states in a stoichiometric

compatibility class, one of which is unstable.

A � 2A
A+B � C � 2B

• Modification of the ”Edelstein network”
• E := {A,B,C}
• C := {A,B,A+B,C, 2B}
• l = 2, p = 2, t = 2, Weakly-reversible
• δ = 0 (n = 5, l = 2, s = 3).
• For any kinetic rates, it admits a unique positive steady-states in each stoichiometric

compatibility class, which is asymptotically stable (Deficiency zero theorem).

A � 2A
l

A+B � C � 2B

• Another Modification of the ”Edelstein network”
• E := {A,B,C}
• C := {A,B,A+B,C, 2B}
• l = 1, p = 1, t = 1, Weakly-reversible
• δ = 1 (n = 5, l = 1, s = 3).
• For any kinetic rates, it admits a unique positive steady-states in each stoichiometric

compatibility class, which is asymptotically stable (Deficiency one theorem).

9.3. Detailed balance.

A � B � C � A

• E := {A,B,C}
• C := {A,B,C}
• (Weakly-)Reversible, δ = 0 (n = 3, l = 1, s = 2).
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• Detailed balance equilibrium for

k1k2k3 = k−1k−2k−3 . (37)

9.4. No complex balanced equilibrium but an equilibrium.

A → B
2B → 2A

• E := {A,B}
• C := {A,B, 2A, 2B}
• Not weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
• No complex balanced equilibrium (as not weakly-reversible) but there is a positive

equilibrium.

∅ � A � 2A � ∅
• E := {A}
• C := {∅, A, 2A}
• (Weakly-)reversible, δ = 1 (n = 3, l = 1, s = 1).
• No complex balanced equilibrium but there is a positive equilibrium.

2A � A+B � 2B � 2A

• E := {A,B}
• C := {2A, 2B,A+B}
• (Weakly-)reversible, δ = 1 (n = 3, l = 1, s = 1).
• No complex balanced equilibrium but there is a positive equilibrium.

9.5. (positive) Oscillations.

A → 2A
A+B → 2B
B → ∅

• E := {A,B}
• C := {∅, A, 2B,A+B,B}
• Not weakly-reversible, δ = 1 (n = 6, l = 3, s = 2).
• There exists a positive equilibrium, but the long term behavior is a limit cycle.

9.6. stochastic example.

2A → 2B
A+ 3B → 3A+B

• E := {A,B}
• C := {2A, 2B,A+ 3B, 3A+B}
• Not weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
• The stoichiometric compatibility class {xA + xB = 6} contains two irreducible compo-

nents ( {(0, 6)} and {(1, 5), (3, 3), (5, 1)} ) and the three other states are transient (not
in any irreducible class)
• Note that the behavior of the stochastically modeled system and the deterministic

one can be quiet different, as extinction may occur for A in the stochastic case, while
convergence to a positive equilibrium always hold in the deterministic case.
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The following two examples have the same complex balance stationary distribution on Γθ =
{x1 + x2 = θ}, for θ < 10, but a deterministic behavior that differs substantially

A � B
10A � 10B

And
A � B

10A → ∅
in both cases, the Γθ subnetwork is deficiency weakly reversible network, given by

A � B

and thus has a product form stationary distribution. Note that Γθ is not positive, and we
cannot conclude that both network are stochastically complex balanced (and indeed, they are
not for some choice of rate constants).

For ρ > 0 and θ ≥ 2, be an integer,

A →ρ(θ−1) B
2B →ρ 2A

• E := {A,B}
• C := {A,B, 2A, 2B}
• Not weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
• The stationary distribution on the irreducible component {x1 +x2 = θ} has the product

form with c = (1, 1),

πθ(x) = Mθ
1

x1!x2!
(38)

• However, this CRN is not complex balance (it is not weakly reversible). It does not
have a product-form stationary distribution on all irreducible components.

For ρ1, ρ2, ρ3 > 0 and θ ≥ 2, be an integer,

A �ρ(θ−1)+ρ2
ρ2 B

2B �ρ1+ρ3
ρ3 2A

• E := {A,B}
• C := {A,B, 2A, 2B}
• Not weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
• The stationary distribution on the irreducible component {x1 +x2 = θ} has the product

form with c = (1, 1),

πθ(x) = Mθ
1

x1!x2!
(39)

• However, this CRN is not complex balance (the deficiency is not 0). It does not have a
product-form stationary distribution in any other irreducible components.

A � B
A+B � 2A+B

• E := {A,B}
• C := {A,B,A+B, 2A+B}
• Weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
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• The stationary distribution everythe irreducible component Γθ = {x2 = θ} has the form
with

πθ(x) = Mθ
1

x!

(
κ2 + κ4θ

κ1 + κ3θ

)x
(40)

• However, it is not a product form as in Eq. (34), as the rate of the Poisson distribution
depends on θ (and thus on Γ).

9.7. Absolute Concentration Robustesse.

A+B →α 2B
B →β A

• E := {A,B}
• C := {A,B,A+B, 2B}
• Not weakly-reversible, δ = 1 (n = 4, l = 2, s = 1).
• The deterministic equilibrium is given by

xA =
β

α
, xB = M − β

α
, M := xA(0) + xB(0) . (41)

Thus xA reaches the same equilibrium values whatever is the initial condition (provided

M > β
α )

• The stochastic system has a single accessible absorbing state, given by

(xA, XB) = (M, 0) . (42)

• It is conjectured in [5] that in this setting, quasi-stationary distribution are of Poisson
product-forms, and proved in [2] that appropriate scaling of the stochastic models yields
a finite time distribution that converges towards a product-form Poisson distribution.

10. proof of stochastic deficiency 0 theorem

D’après le théorème de la déficience 0 déterministe, il existe un point d’équilibre des com-
plexes: c ∈ Rd>0, tel que, pour tout z ∈ C,∑

y: y→z∈R
κy→zc

y

inflow

=
∑

y′: z→y′∈R
κz→y′c

z

outflow

(43)

π est stationnaire ssi, for all x ∈ Nd,∑
y→y′∈R

λy→y′(x− y′ + y)π(x− y′ + y) = π(x)
∑

y→y′∈R
λy→y′(x) .

which is equivalent to∑
y→y′∈R

κy→y′
(x− y′ + y)!

(x− y′ + y − y)!
1x−y′+y≥y

cx−y
′+y

(x− y′ + y)!
=
cx

x!

∑
y→y′∈R

κy→y′
x!

(x− y)!
1x≥y .

By simplification, we obtain∑
y→y′∈R

κy→y′
cy−y

′

(x− y′)!
1x≥y′ =

∑
y→y′∈R

κy→y′
1x≥y

(x− y)!
,

which can be re-written as∑
z∈C

∑
y: y→z∈R

κy→z
cy−z

(x− z)!
1x≥z =

∑
z∈C

∑
y′: z→y′∈R

κz→y′
1x≥z

(x− z)!
.
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We finally obtain∑
z∈C

c−z

(x− z)!
1x≥z

∑
y: y→z∈R

κy→zc
y =

∑
z∈C

1x≥z
(x− z)!

∑
y′: z→y′∈R

κz→y′ .

The latter is clearly implied by Eq. (43)

Remark 10. We have shown that the stochastic deficiency 0 theorem actually holds with the
only hypothesis that there exists a positive complex-balanced equilibrium for the deterministic
system.

11. Proof of deterministic deficiency 0 theorem

11.1. Network structure and dimension.

Proposition 2. Dimension of the complex stoichiometric space. We have

dim T = n− l . (44)

Proof. We calculate the dimension of the orthogonal T⊥. For all i = 1 , · · · , l, and any couple
y, y′ directly linked, we have

〈eLi , ey′ − ey〉 = 0 , (45)

thus {eL1
, · · · , eLl} ∈ T⊥, and these vectors are linearly independent (the linkage relation is

an equivalence relation and induces a partition on the set of complexes). Reciprocally, let
z =

∑
u∈C zyey ∈ T⊥. For any couple y, y′ directly linked, 〈ey′−ey, z〉 = 0 implies that z′y = zy.

Hence, z is constant on any linkage classes. Thus, z ∈ span{eL1
, · · · , eLl}. We conclude that

T⊥ = span{eL1
, · · · , eLl} (46)

�

Remark 11. Note also that we may write T as the direct sum

T = span(U1)⊕ · · · ⊕ span(Ul) , Ui := {ey′ − ey | y, y′ ∈ Li} (47)

let ni be the number of complexes in Li, and y1, · · · , yni the elements of Li. Then any element
of span(Ui) can be written as the linear combinaison of the independent vector

ey2 − ey1 , · · · eyni − ey1 . (48)

Thus, dim span(Ui) = ni − 1 and dimT =

l∑
i=1

ni − 1 = n− l.

Proposition 3. Deficiency Lemma. We have

0 ≤ dim (kerY ∩ ImAκ) ≤ δ = dim kerY|T (49)

Proof. We use

dimT = dim kerY|T + dim ImY|T , (50)

and, due to its definition, for all complexes y, we have Y (ey) = y, thus Y|T is clearly a surjection
from T = span{ey′ − ey | y → y′ ∈ R} to S = span{y′ − y | y → y′ ∈ R}. Thus,

dim ImY|T = s ,⇒ dim kerY|T = dimT − dim ImY|T = n− l − s ,
thanks to proposition 2. Finally, it is clear from the definition ofAκ(z) =

∑
y→y′∈R κy→y′zy(ey′−

ey) that ImAκ ⊆ T , so that kerY ∩ ImAκ ⊆ kerY|T . �

Corollary 1. Y|T is an isomorphism if, and only if, δ = 0.
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Remark 12. Note that δ = 0 is equivalent to n − l = s, which, thanks to proposition 2, is
equivalent to dimT = dimS. If δ > 0, then T is ”bigger” than S.

Remark 13. We will show in the next subsection that dim kerAκ = t. As a side consequence,
it turns out that the second inequality in (49) is an equality if the network is weakly-reversible.
Indeed, in such case, t = l, and dim ImAκ = n− l = dimT .

Remark 14. It is easy to see that

ker (Y Aκ) = kerAκ ⊕∆ , ∆ = {ν ∈ Rn , Aκν ∈ ker(Y ) \ {0}} ∪ {0} , (51)

and clearly
dim ∆ = dim (kerY ∩ ImAκ) (52)

Thus the deficiency δ provides an upper bound on the dimension of the set of fixed point that
are not complex balanced.

Remark 15. It is clear that if kerY = {0}, then all equilibrium are necessarily complex balanced
equilibrium. The latter condition is valid if all complex vectors are linearly independent, which
is trivially true for mono-molecular reaction systems. Note that δ = 0 for mono-molecular
reaction systems.

11.2. Kernel of Aκ.

Proposition 4. Block structure Up to a re-ordering of complexes, we may write Aκ and A as
block-wise triangular inferior matrices, with

A =


A1 0 0 0

A(2, 1)
. . . 0 0

...
. . .

. . . 0
A(p, 1) · · · A(p, p− 1) Ap

 (53)

and

diag(1⊥A) =


∆1 0 0 0

0
. . . 0 0

0 0
. . . 0

0 0 0 ∆p

 (54)

For a vector z ∈ Rn, we denote by z(i), i = 1, · · · , p the block that corresponds to the strong
linkage class L1. Note that ∆i = diag(1⊥A)(i) .

Lemma 1. We have the following assertions:

1. (Aκz ≥ 0)⇒ (Aκz = 0)
2. (z ∈ kerAκ)⇒ (| z |∈ kerAκ)
3. If z ∈ kerAκ, then (zi = 0)⇒ (zj = 0 ,∀j → i)

Proof. For the first point, multiplying by the left by 1⊥, we get 1⊥Aκz =
(
1⊥A− 1⊥diag(1⊥A)

)
z =

0. Thus, 1⊥Aκz is a sum of non negative term which is equal to zero, so that each term is zero
and Aκz = 0.

For the second point, Aκz = 0 implies | Az |=| diag(1⊥A)z |= diag(1⊥A) | z |. By the
triangular inequality, | Az |≤ A | z |, so that Aκ | z |≥ 0, hence | z |∈ kerAκ by the first point.

Finally, for the last point, we may assume z ≥ 0. Then Aκz = 0 implies∑
j 6=i

κj→izj =

∑
j 6=i

κi→j

 zi (55)
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Then zi = 0 implies each term on the left hand-side is zero, e.g. zj = 0 for each j → i. �

Lemma 2. Let z ∈ kerAκ. If L1 is not terminal, then z(1) = 0. Else there exists a vector
χ1 ≥ 0 with supp(χ1) = L1 such that on z(1) = λχ1(1).

Proof. Thanks to lemma 1, we may assume z ≥ 0. Assume z(1) > 0 and that L1 is not terminal.
As z ∈ kerAκ, we have

A1z(1) = ∆1z(1) = diag(1⊥A)z(1) > diag(1⊥A1)z(1) , (56)

where the last inequality comes from the non-terminal assumption, that implies that there exists
a non-diagonal non-zero block A(j, 1), for a given j ≥ 2. Now, considering L1 as a sub-network
(that is only the complexes that belongs to L1 and the reactions between them) in its own right.
The matrix corresponding to the labelled, directed graph is A1. But then, we have exhibited
a vector for which

(
A1 − diag(1⊥A1)

)
z(1) > 0, which is in contradiction to the first point of

lemma 1.
Now, if L1 is terminal. If the cardinal of L1 is one, we do not have anything to prove. Else,

by the strong linkage relationship, there must be non-zero elements in each column of A1, so
that diag(1⊥A1) is invertible. Then z ∈ kerAκ implies

A1z(1) = diag(1⊥A)z(1) = diag(1⊥A1)z(1) , (57)

so that

A1

(
diag(1⊥A1)

)−1
z(1) = z(1) , (58)

e.g. z(1) is an eigenvector of M = A1

(
diag(1⊥A1)

)
, associated to the eigenvalue 1. Clearly,

M is irreducible (by the strong linkage relationship), and as 1⊥M = 1⊥, its spectral radius is
one. We conclude by the Perron-Frobenius theorem. �

We may now proceed by recurrence to prove the following proposition

Proposition 5. kerAκ = span{χ1, · · · , χt}, où supp(χi) = Ti

Proof. it remains to prove that the lemma 2 can be applied repeatedly. Indeed, if z ∈ kerAκ,
then, for any i,

Aiz(i) +
∑

1leqj<i

A(i, j)z(j) = ∆iz(i) (59)

But either Lj is terminal, so that A(i, j) = 0, or Lj is not terminal, so that z(j) = 0. Then, by
induction, we prove that necessarily, z(i) is solution of

Aiz(i) = ∆iz(i) , (60)

and we are lead to the same dichotomy as in the case i = 1 (see lemma 2). �

11.3. Complex-balanced Fixed points AκΨ(x) = 0.

Proposition 6. Si ∃x ∈ Rd>0 tel que AκΨ(x) = 0 alors R est faiblement réversible.

Proof. Thanks to Proposition 5, if x is a positive complex-balanced fixed point, then Ψ(x) =∑t
i=1 λiχi, with λi > 0. thus z =

∑t
i=1 λiχi is an element of kerAκ, with supp(z) = {1, · · · , d}.

Then, by lemma 2 each strong linkage classes are terminal. Now, let two complexes i, j be in the
same linkage class, i ∼ j, and suppose that they are not in the same strong linkage class, [i] 6= [j].
Then either [i] or [j] is not terminal, which is in contradiction with the above statement. Then
[i] = [j] and each linkage class is also a strong linkage class. Thus, R is weakly reversible. �

We can also now prove the characterization of weak reversibility:
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Proof of the proposition 1. Suppose the network is not weakly reversible. Then there is a com-
plex y ∈ C that is not any terminal strong linkage class. Since by Proposition 5, every vector
in kerAκ is a linear combination of vectors with support in the terminal strong linkage classes,
then xy = 0 for every x ∈ kerAκ. Thus, there is no strictly positive vector in kerAκ.

On the other hand, if the network is weakly reversible, then every complex is a member of
some terminal strong linkage class. In such case, x =

∑t
i=1 χi ∈ kerAκ is strictly positive. �

Proposition 7. Soit Z = {x ∈ Rd>0 , AκΨ(x) = 0}. Soit Z = ∅, soit lnZ = ln(x) + S⊥. Dans

ce dernier cas, Z rencontre chaque classe de compatibilité Sx = (x+ S) ∩ Rd+ une et une seule
fois.

Proof. We will use the basis of the kernel of Aκ, as obtained by proposition 5. First, if Z 6= ∅,
by Proposition 6, R is weakly reversible so that each linkage class is a terminal strong linkage
class. Hence, by proposition 5, kerAκ = span{χ1, · · · , χl},, with supp(χi) = Li.

Let x∗ ∈ Z. Then Ψ(x∗) ∈ kerAκ, so that

Ψ(x∗) =

l∑
i=1

λi(x
∗)χi , λi(x

∗) > 0 . (61)

On the other hand,

Ψ(x∗) =

d∑
i=1

(x∗)yey =

l∑
i=1

∑
y∈Li

(x∗)yey =

l∑
i=1

λi(x
∗)χi , (62)

which implies that, for all i = 1, · · · l,∑
y∈Li

(x∗)yey = λi(x
∗)χi . (63)

For any x ∈ Z, we may repeat the same argument, hence, for all i = 1, · · · l,

χi =
∑
y∈Li

(x∗)y

λi(x∗)
ey =

∑
y∈Li

xy

λi(x)
ey . (64)

As {ey} is an orthonormal basis, we deduce

(x∗)y

λi(x∗)
=

xy

λi(x)
, ∀i = 1, · · · , l ,∀y ∈ Li . (65)

Finally, we conclude that, for any x ∈ Z, xy

(x∗)y is constant on each linkage class.

Reciprocally, if x is such that xy

(x∗)y is constant on each linkage class, then, for all i = 1, · · · l,∑
y∈Li

xyey = µi
∑
y∈Li

(x∗)yey = µiλi(x
∗)χi , (66)

and

Ψ(x) =

l∑
i=1

µiλi(x
∗)χi ∈ kerAκ . (67)

Thus,

Z = {x > 0 ,
xy

(x∗)y
is constant on each linkage class } . (68)

For any x ∈ Z, ln
(

xy

(x∗)y

)
= 〈y, ln(x)− ln(x∗)〉 is constant on each linkage class, so that

〈y′ − y, ln(x)− ln(x∗)〉 = 0 ,∀y → y′ . (69)
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Then, ln(x)− ln(x∗) ∈ S⊥. Reciprocally, if ln(x)− ln(x∗) ∈ S⊥, we verify that xy

(x∗)y is constant

on each linkage class.
For the last part of the proposition, notice that we may write Z as

Z = {x∗eu , u ∈ S⊥} . (70)

Using Hahn-Banach theorem, for any x > 0, we prove that there exists a unique u ∈ S⊥ such
that x∗eu − x ∈ S. Thus Z ∩ (x+ S) = {x∗eu} �

Proposition 8. Si Z 6= ∅, x∗ ∈ Z, alors tout point fixe positif vérifie AκΨ(x) = 0, et f(x) =∑
y→y′∈R κy→y′x

y(y′ − y) vérifie

〈f(x), ln(x)− ln(x∗)〉 ≤ 0 , (71)

avec égalité si, et seulement si, x ∈ Z.

Proof. Let x∗ ∈ Z, and x > 0, we define u := ln(x)− ln(x∗). Thus, xy = e〈y,u+ln(x∗)〉. Then

f(x) =
∑

y→y′∈R
κy→y′x

y(y′ − y) =
∑

y→y′∈R
κy→y′(x

∗)ye〈y,u〉(y′ − y) , . (72)

Thus, by convexity,

〈f(x), u〉 =
∑

y→y′∈R
κy→y′(x

∗)ye〈y,u〉(〈y′, u〉 − 〈y, u〉)

≤
∑

y→y′∈R
κy→y′(x

∗)y(e〈y
′,u〉 − e〈y,u〉)

≤ 〈
∑

y→y′∈R
κy→y′(x

∗)y(ey′ − ey),
∑
y∈C

e〈y,u〉ey〉 , (73)

where the inequality is an equality if, and only if, 〈y′ − y, u〉 = 0 for any y → y′, e.g. if, and
only if u ∈ S⊥, e.g. if, and only if x ∈ Z. In particular, we proved that

〈f(x), ln(x)− ln(x∗)〉 ≤ 0 , (74)

with equality if, and only if, x ∈ Z. �

Corollary 2. h(x) = 〈x ln(x)−x−x ln(x∗)+x∗,1〉 est une fonction de Lyapounov stricte pour
x∗, au sein de classe de compatibilité Sx∗ = (x∗ + S) ∩ Rd+.

Proof. It is immediate that ∇h = ln(x)− ln(x∗), so that

〈f(x),∇h〉 ≤ 0 , (75)

with equality if an only i x ∈ Z. By proposition 7, the inequality is strict in Sx∗ except in x∗.
Moreover, is is immediate that h(x) ≥ 0 with h(x) = 0 if, and only if, x = x∗. �

Before continuing, we summarize all Propositions 6-7-8 in the following

Theorem 10 (Horn and Jackson). Si il existe un point d’équilibre des complexes x∗ ∈ Rd>0 (tel
que Aκ(Ψ(x∗)) = 0), alors

• Il n’existe pas de point fixe x∗ ∈ Rd>0 tel que Aκ(Ψ(x∗)) 6= 0.
• Le réseau est faiblement réversible.
• Chaque classe de compatibilité stoechiométrique a exactement un point fixe positif (tel

que Aκ(Ψ(x∗)) = 0).
• Un tel point fixe est localement asymptotiquement stable.

Deficiency theorem can now be obtained with the last
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Proposition 9. Si R a une déficience nulle, alors ∃x ∈ Z si, et seulement si, R est faiblement
réversible.

Proof. We are looking for an element x > 0 such that Ψ(x) ∈ kerAκ. Finding such element
is greatly simplified by the following observation. If there exists u > 0, u ∈ kerAκ, and
ln(u) ∈ ImY T , then there is an element in Z. Indeed, for such u, there exists x, such that
ln(u) = Y Tx. Now define z = ex. We have

ln(u) = Y T ln(z) = ln(Ψ(z)) , (76)

so that u = Ψ(z) and z ∈ Z. Hence,(
ln (kerAκ)

+ ∩ ImY T 6= ∅
)
⇒ (Z 6= ∅) .

By Proposition 5, ln (kerAκ)
+

is a coset of span {eT1 , · · · , eTt}. Indeed, define for all i =

1, · · · , t, all y ∈ Ti, pi,y = 〈χi, ey〉. then χi =
∑
y∈Ti pi,yey. It is clear that (kerAκ)

+
=

{
∑t
i=1 λiχi , λi > 0}. Then

ln

(
t∑
i=1

λiχi

)
= ln

 t∑
i=1

∑
y∈Ti

λipi,yey

 =

t∑
i=1

ln(λi)
∑
y∈Ti

ey +

t∑
i=1

∑
y∈Ti

ln(pi,y)ey

=

t∑
i=1

ln(λi)eTi +

t∑
i=1

∑
y∈Ti

ln(pi,y)ey . (77)

Let
U = ImY T + span{eT1

, · · · , eTt} ,
If R is weakly reversible, each linkage class is a strong linkage class, so that by Proposition 2,

T⊥ = span{eT1
, · · · , eTt} .

We have ImAκ ⊆ T , and by Proposition 5, dim ImAκ = n− t, while by Proposition 2, dimT =
n − l. Then, as R is weakly reversible, each linkage class is a terminal strong linkage class, so
that l = t and

T = ImAκ . (78)

Hence,

U = ker(Y )⊥ + (ImAκ)
⊥

= (ker(Y ) ∩ ImAκ)
⊥
. (79)

For a deficiency 0 network, by Proposition 3, dim (ker(Y ) ∩ ImAκ) = 0, so that U = Rn.

Finally, ln (kerAκ)
+ ⊆ U , and as ln (kerAκ)

+
is a coset of span{eT1

, · · · , eTt},

ln (kerAκ)
+ ∩ ImY T 6= ∅ . (80)

�

Note that we actually proved that

Theorem 11 (Deficiency Zero Theorem - Feinberg). Si le réseau a une déficience nulle, alors il
a un point fixe x∗ ∈ Rd>0 tel que Aκ(Ψ(x∗)) = 0 si, et seulement si, il est faiblement réversible.

12. Miscellaneous

12.1. Detailed balance equilibrium. In the case of reversible networks, it may be possible
to look for detailed balance equilibrium, which are in general dependent of the kinetic rates.
See the general results in [31]. In particular, the same Lyapounov function as in holds Corollary
2 in the case of existence of a detailed balance equilibrium.
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12.2. Persistence. We denote w(x) the orbit of the solution of Eq. (1) associated to the initial
condition x(0) = x.

Definition 8 (persistence). A network is called persistent if

w(x) ⊂ (0,∞)d , ∀x ∈ (0,∞)d (81)

Definition 9 (Siphon). A set Σ ⊂ E is called a siphon if for each reaction that has some species
of Σ as a product, there exists at least one of its reactant which is in Σ.

Remark 16. Clearly, if all the species of a siphon starts at 0, they stay at 0 for ever.

Theorem 12 ( [9]). Let (E , C,R) be a conservative network, such that each siphon contains
the support of a strictly positive conserved quantity. Then, the network is persistent.

Remark 17. Example (36) satisfies the hypothesis of the above theorem.

Theorem 13 ( [9]). Let (E , C,R) and x0 ∈ (0,∞)d giving rise to bounded solution such that
w(x0) ⊂ (0,∞)d. Then there exists a positive ν ∈ (0,∞)r such that

Γν = 0 . (82)

These results are in particular important in light of the following characterization of ω-limit
set for complex balanced network.

Theorem 14 ( [21], [34]). Let (E , C,R, κ) be a complex balanced network, and x0 ∈ Rd≥0. Then

the ω-limit set ω(x0) consists either of boundary points of complex balanced equilibria, or of a
single positive point of complex balanced equilibrium.

Thus the only missing gap towards a full characterization of the long term dynamics of
complex balanced CRN is the possibility or not to reach the boundary. This has been names
the Global attractor conjecture, and is thus related to persistence properties. More results
on persistence for special cases are contained in [1, 8, 34], and a general proof of the Global
Attractor Conjecture is contained in [15]

12.3. Existence of unique positive equilibria (Deficiency 1 theorem). Deficiency one
theorem guarantees the existence of a unique positive equilibrium (that might not be complex
balanced)

Theorem 15 ( [22]). Let (E , C,R) a CRN with l linkage classes, each containing a single strong
linkage class. Assume that the deficiency of the network δ, and the deficiency of each linkage
class δi, i = 1..l, satisfies

a δi ≤ 1 , i = 1, 2, · · · , i
b
∑l
i=1 δi = δ.

Then, for any choice of the kinetic rate κ, there can not be more than one positive steady-states
in each stoichiometric compatibility classes. If the network is weakly-reversible, there is precisely
one such steady-states.

12.4. Multiple equilibria. Results for a particular class of networks, called CFSTR are con-
tained in [12–14, 16], using the notion of the species-reaction graph (SR graph, close to petri
nets formalism).

Using the notion of toric steady states, see [20].

12.5. Monotone systems. See [9].
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12.6. Algebraic geometry and multi-stationarity. Sign conditions to preclude multi-stationarity
have a long history in the study of polynomial equations, which goes back at least to Descartes’
rule of signs. Among recent results going towards generalization to a multivariate Descartes’
rule of signs, see [20,27].

Let us denote by V the kinetic order matrix, V ∈Mr×n, such that the row of V are composed
of the stoichiometries of the reactant species of each reaction. For a vector x ∈ Rn, we denote
by σ(x) ∈ {−, 0,+}n its sign vector, and by

σ(S) = {σ(x) | x ∈ S} , Σ(S) = σ−1(σ(S)) . (83)

As a particular result in [27], we write

Theorem 16. Let (E , C,R) be a reaction network, and f given by (11). Then, the following
statements are equivalent

1. f is injective on every stoichiometric compatibility classes, for all kinetic rates κ > 0.
2. σ(ker Γ) ∩ σ (V (Σ(S∗))) = ∅

Further results in [27] guarantee the existence of multiple steady states.

12.7. Laplacian matrix. L = −Aκ is a weighted Laplacian matrix. If there exists a complex
balanced equilibrium x∗ ∈ Rd>0, satisfying

AκΨ(x∗) = −L exp
(
Y > ln(x∗)

)
= 0 , (84)

then
L(x∗) = L diag

(
exp(Y >i ln(x∗))

)
i=1,...,d

, (85)

is a balanced Laplacian matrix, 1⊥L(x∗) = L(x∗)1 = 0, and the dynamics (11) can be re-written

ẋ = −Y L(x∗) exp
(
Y > ln(

x

x∗
)
)

(86)

See [35] for a link between complex balancedness and Kirchoff’s Matrix tree theorem and
relation with consensus dynamics.

12.8. Stationary distributions and Lyapounov functions. A systematic link is drawn be-
tween scaling limit of non-equilibrium potential of stationary distributions of a complex balance
network, and its Lyapounov functions, in [3]. In particular, it shown that, within the classical
”Kurtz’s scaling”,

lim
V→∞

− 1

V
ln
(
πV (xV )

)
= h(x) , as xV → x , V →∞ . (87)

Such relationship is also proved for non complex balanced birth-and-death models.
This relationship may suggest a general large deviation result may holds for complex balanced

networks, as in [26,28].

12.9. other.

• Results on possibility of oscillations, extinction of species, higher deficiency networks,
behavior of subnetworks, are contained in [22]

• Toric dynamical systems and computational algebraic geometry [15]
• Necessary conditions for multi-stationarity, cycle limite [12–14,16]
• Absolute robustesse (steady-state of some species are independent of the total mass,

extinction in stochastic) [32,33], [2, 5]
• Parameter identifiability [17]
• Generalized mass-action systems
• Computional approaches
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• Mutiscale networks, slow-fast reduction, hybrid limit [6, 7, 10,18]
• Model reduction, dynamical equivalence and linear conjugacy
• Reaction-diffusion models [30], [19,23,24]
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