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Nucleation Time in Coagulation-Fragmentation models

Becker-Döring model for Nucleation

Reversible one-step agregation

C i `C1 a i ÝÝá âÝÝ b i`1 C i`1 (1)
The nucleation time is given by the following First Passage Time,

T N,M 1,0 :" inftt ě 0 : C N ptq " 1 | C i pt " 0q " Mδ i"1 u .

(2) More generally, we can look at T N,M ρ,h :" inftt ě 0 : C N ptq ě ρM h | C i pt " 0q " Mδ i"1 u .

(3) for given positive constant ρ and 0 ď h ď 1.

Remark C 1 ptq `ÿ i iC i ptq " M .

"Large number limit" of the nucleation time

What are the dependencies of the nucleation time with respect to the model parameters ?

Here, we ask : what is the nucleation time for very large initial quantity M and nucleus size N ? lim M,NÑ8

T N,M ρ,h

Première approche "standard" "petits M,N"

on peut décrire l'ensemble du système, écrire la matrice de passage entre les états et résoudre l'équation linéaire correspondante.
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Dimension du système 7tconfig. tC u,

N ÿ i"1 iC i " Mu « M N N!

Simplified model 1) Constant Monomer formulation

The model with Constant C 1 is Linear, we have 'exact' solution

Proposition E " T N,M ρ,h ‰ " MÑ8 C te pa, Nq M 1 M p1´hq{pN´1q
(5)

where C te pa, nq is a constant that depends on apiq, i ď N and N.

pC i q i follows a Poisson distribution of mean the solution of a linear ODE (constant monomer original Becker-Döring formulation) dc dt " Ac `B,

dc n dt " c 1 c n´1 , (6) 
for which we can show

c N ptq « ´N´1 ź k"1 apkq ¯C N 1 t N´1 pN ´1q! ,
Simplified model 2) Single-cluster formulation

If we suppose that a single cluster can be present at a time, then the model is one-dimensional, 'exact' solution and classical FPT theory gives (it's a 1D discrete random walk)

Proposition E " T N,M 1,0 ‰ " N´1 ÿ i"1 i ÿ j"1 b i b i´1 . . . b j`1 a i a i´1 . . . a j 1 pM ´iq . . . pM ´jqM δ j"1

Remark

Similar results with "Pre-equilibrium" hypothesis when b Ñ 8.

General idea : rescaling strategy

Consider the deterministic irreversible aggregation model

dc i dt " a i c 1 pc i´1 ´ci q, c 1 `ÿ i ic i " m, t ˚" inftt ě 0 : c N ptq " ρm | c 1 p0q " mu Then with c 1 i " c i m , τ " mt, dc 1 i dτ " a i c 1 1 pc 1 i´1 ´c1 i q, c 1 1 `ÿ i ic 1 i " 1, τ ˚" inftt ě 0 : c 1 N ptq " ρ | c 1 1 p0q " 1u This strategy shows that t ˚" C te m .
Asymptotic for finite N

The same results holds

Proposition E " T N,M ρ,h ‰ " MÑ8 C te pa, Nq M 1 M p1´hq{pN´1q (7)
where C te pa, nq is a constant that depends on apiq, i ď N and N.

Indeed, C i pMtq M is "close" to the solution of the SDE

dc ε " Jpc 1 qcdt `?εBpc 1 qcdw t (8)
where the variance is of order ε " 1 M and the nucleation time can be comuted by

T N,M ρ,h " inftτ ě 0 : c ε N pτ q " ρε 1´h | c i pτ " 0q " 1δ i"1 u . (9)
But ! There are complex behavior for 'intermediate' M. Indeed T N,M 1,0 may be § bimodal § nearly independent of M over several log. 

T ? M,M 1,0 " inftt ě 0 : C ? M ptq " 1 | C i pt " 0q " Mδ i"1 u " MÑ8 ? M . ( 10 
)
We need a limit theorem when N, M Ñ 8...

Choose a fix state space

With ε " 1 N " 1 ? M Ñ 0, we obtain a fix state space by looking at

µ ε t p. q " ÿ iě2 ε α C ε i pε γ tqδ iε p. q P M b pR `q (11)
The nucleation time is thus

T ? M,M 1,0 " inftt ě 0 : µ ε t pt1uq " ε α ą 0 | µ ε 0 " 0u, (12) 
The scaling exponents α, γ need to be adjusted in order to obtain a non-trivial limit (and according to other scaling hypotheses on a, b...).

Rescaled Equation ( 1)

ÿ i ϕpiεqC i ptq " ÿ i ϕpiεqC i p0q `Oϕ t `ż t 0 ϕp2εq " a 1 pC 1 psqq 2 ´b2 C 2 psq ‰ ds `ż t 0 ÿ i pϕpiε `εq ´ϕpiεqqa i C 1 psqC i psq ds `ż t 0 ÿ i pϕpiε ´εq ´ϕpiεqqb i C i psq . xµ ε t , ϕy " xµ ε in , ϕy `Oε,ϕ t ż t 0 ϕp2εq " a ε 1 pC ε 1 psqq 2 ´bε 2 C ε 2 psq ‰ ds `ε ż t 0 ż ∆ ε pϕqpa ε pxqC ε 1 psq ´bε pxqqµ ε s pdxq ds (13)
Rescaled Equation (2)

Hence, if the flux pa ε pxqC ε 1 psq ´bε pxqq is of order ε ´1), we may expect everything to converge nicely, except the red term !

xµ ε t , ϕy " xµ ε in , ϕy `Oε,ϕ t ż t 0 ϕp2εq " a ε 1 pC ε 1 psqq 2 ´bε 2 C ε 2 psq ‰ ds `ż t 0 ż `8 0 ∆ ε pϕqpa ε pxqC ε 1 psq ´bε pxqqµ ε s pdxq ds (14)
We need to look at the term

C ε 2 " xµ ε s , 1 2ε y !

Fast variable

The equations on C ε 2 involves C ε 3 , which involves C ε 4 and so on...and there are fast variables.

C ε i´1 1 ε a ε pεpi´1qqC ε 1 C ε i´1 Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý 1 ε b ε pεiqC ε i C ε i 1 ε a ε pεiqC ε 1 C ε i Ý ÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝ Ý 1 ε b ε pεpi`1qqC ε i`1 C ε i`1 ,
We cannot hope a convergence in a standard function space. We need a functional space that do not see the fast variations, such as MpR `, l 1 pR `qq, (with respect to the weak topology) for the occupation measure, defined by, for measurable sets U of l 1 , Γ ε ´r0, T s ˆU¯: "

ż t 0 1 tpC ε i psqq i PUu ds
Theorem (Under some conditions...) pµ ε , pC ε i qq converges in DpR `, pM, p1 `xqdxqq ˆMpR `, l 1 pR `qq towards xµ t , ϕy " xµ in , ϕy

`ż t 0 ϕp0q " a 1 pc 1 psqq 2 ´b2 c 2 psq ‰ `ż t 0 ż `8 0 ϕ 1 pxqpapxqc 1 psq ´bpxqqµ s pdxq ds .
xµ t , idy `c1 ptq " m :" xµ 0 , idy `c1 p0q

And pc i ptqq iě2 is a stationary solution in l 1 of the following deterministic constant-monomer Becker-Döring system ( for 'freezed' c 1 " c 1 ptq)

9 c 2 " 0 " ´´a 2 c 1 c 2 ´b3 c 3 ¯, 9 c i " 0 " ´ai´1 c 1 c i´1 ´bi c i ¯´´a i c 1 c i ´bi`1 c i`1 ¯.
where a i , b i depends on the behavior of a, b at 0

For apxq " ax r `opxq, bpxq " bx r `opxq, r ă 1, the above equation reduces to, for c 1 ptq ą b a ,

xµ t , ϕy " xµ in , ϕy `ż t 0 ϕp0qa 1 pc 1 psqq 2 `ż t 0 ż `8 0 ϕ 1 pxqpapxqc 1 psq ´bpxqqµ s pdxq ds .
xµ t , idy `c1 ptq " m :" xµ 0 , idy `c1 p0q

Remark

The boundary condition is : flux at 0 = dimerization rate , arXiv :1412, arXiv : .5025 (2014) ) Consider a sequence of pã ε i q, p bε i q, p C ε i p0qq, p Mε q. Let p C ε i ptqq be the corresponding solution and define (suppose a ε 1 , b ε 2 , a ε , b ε and C ε 1 p0q, µ ε p0, dxq converges in an appropriate sense)

a ε i :" ε A ãε i , @i ě 2 , b ε i :" ε B bε i , @i ě 3 , a ε 1 :" ε A1 ãε 1 , b ε 2 :" ε B1 bε 2 .
χ ε i :" 1 rpi´1{2qε β ,pi`1{2qεq , a ε pxq :"

ÿ iě2 a ε i χ ε i pxq , b ε pxq :" ÿ iě3 b ε i χ ε i pxq .
We then define the variables

C ε i " ε α C ε i , @i ě 2 , C ε 1 " ε θ C ε 1 . µ ε pt, dxq " ÿ iě2 C ε i ptqδ iε β pdxq , M ε " ε α`β Mε .
The above results hold with the following choices θ " α `β , A " ´α , B " β , A 1 " ´α ´2β , B 1 " 0 , a ε i " a i ε raβ , @i ě 2 b ε i " b i ε r b β , @i ě 2 , 0 ď minpr a , r b q ă 1 .

  NWa want to prove behavior like

  Numerical illustration : SBD to LS § apxq " 1, bpxq " x, § Incoming charcateristics. Numerical illustration and further work § apxq x, bpxq " 1, § outgoing charcateristics. First passage times in homogeneous nucleation and self-assembly, R.Y., Maria D'Orsogna and Tom Chou (Journal of Chemical Physics (2012) 137 :244107) § From a stochastic Becker-Döring model to the Lifschitz-Slyozov equation with boundary value, Julien Deschamps, Erwan Hingant and R.Y.

Concrete Example

Consider a sequence of pã ε i q, p bε i q, p C ε i p0qq, p Mε q. Let p C ε i ptqq be the corresponding solution and define (suppose

We then define the variables