Modelling floral induction for different apple tree cultivars: an innovative approach to disentangle the intertwined effects of hormonal signals, carbohydrate status and plant architecture

Benoit Pallas

To cite this version:
Benoit Pallas. Modelling floral induction for different apple tree cultivars: an innovative approach to disentangle the intertwined effects of hormonal signals, carbohydrate status and plant architecture. AgreenSkills Annual Meeting, Oct 2014, Toulouse, France. 2014. hal-02794925

HAL Id: hal-02794925
https://hal.inrae.fr/hal-02794925
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Context and state of art

- Alternate bearing is of key importance for apple tree production and is characterised by a low production in OFF years and a high production of too many fruits of poor quality in ON years.
- The use of chemical products reducing fruit set during ON years is going to be gradually forbidden.
- Growers are looking for alternative solutions to reduce alternate bearing.
- Preliminary analyses on a bi-parental population showed a large genetic variability in tree production pattern (irregular, biennial, regular bearing) (Durand et al., 2012)
- QTLs related to these production and flowering patterns were indentified (Guitton et al., 2012)

Main hypothesis and scientific questions

- The variability in production patterns is mainly related to the variability in floral induction occurring one year before flowering in apical and lateral meristems.
- Physiological determinants of floral induction variability are still largely unknown.
- 2 Hypotheses are proposed based on experimental results:
 - trophic competition for carbohydrate between growing fruits and meristems could decrease floral induction during ‘ON’ years (Nielsen and Denis, 2000)
 - gibberelins produced by fruit seeds could also lead to a decrease in floral induction (Bangerth, 2009) … but production patterns are also strongly correlated with plant architecture (Lauri and Trotter, 2004) (e.g. genotypes with long shoots display more regular bearing patterns)
- The respective effects of hormones, carbohydrate balance and architecture are difficult to disentangle using experimental approaches.

Using a modelling approach to better analyze the interactions between these different aspects of plant development and functioning.

Objectives and description of the project

- The main objective is to include in the Functional Structural Plant Model MAFlipet (Costes et al. 2008) simulating plant architecture over years a sub model to simulate hormonal and carbohydrate fluxes between leaves, fruits and meristems.
- This sub model will be developed in University of Queensland.
- A first model based on models developed at UQ (C-TRAM for carbohydrate fluxes (Cieslak et al., 2011); models for translocation of hormones (Renton et al., 2013)) will be implemented for the sub-unit composed of a bourse and a bourse shoot in which floral induction occurs.
- The model will be built in L-Systems with the plant modelling environment L-Studio (Karwowski and Prunuskiniewicz, 2004) and will then be integrated in MAFlipet to capture the variability in floral induction within plant structure and analyze the impact of plant architecture.
- The model will be calibrated and validated with experiments carried out in Montpellier.

First activities and results

- A first experiment was carried out in summer 2014 in Montpellier on a segregating population (X3263 x Belrène) with four B x B families.
- The objectives of the experiment were to:
 - define a sub-population displaying large variability in production patterns (biennial, irregular, regular) based on floral sequence analysis (Fig.7)
 - quantify hormonal contents in organs and plant trophic status (photosynthesis activity) for the genotypes with contrasting production patterns
- A first dataset useful for modelling activities is available. This dataset will be complemented in 2015.

References