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15.1 INTRODUCTION

In 1996, Souer et al. reported the phenotypic character-
ization of a petunia mutant that fails to develop a shoot
apical meristem (SAM) called “nam” (no apical meristem).
The NAM gene is expressed in the boundaries of meristems
and primordia, and the NAM protein shares a conserved
N-terminal domain with other proteins, suggesting that it
is part of a novel class of proteins. Indeed, the following
year, Aida et al. (1997) identified an Arabidopsis mutant with
no apical meristem but with cotyledons fused along their
edge resulting in a cup-like structure, hence named “cuc”
(cup-shaped cotyledon). This phenotype results from the
combination of two mutations, one of which affects CUC2,
a gene showing strong homology with the petunia NAM
gene. These two papers began the story of the NAM /CUC3
genes and founded the basis for the NAM, ATAF1, ATAF2,
and CUC (NAC) family of plant-specific transcription fac-
tors. Here, we retrace the phylogenetic and evolutionary
context of NAM/CUC3 genes and review the important
roles they play as boundary-defining actors during plant
development. In particular, we discuss the mechanisms
that regulate their expression patterns and how they affect
plant development via their effects on cellular behavior.

15.2 EVOLUTION AND STRUCTURE
OF NAM/CUC3 PROTEINS

15.2.1 The NAM/CUCS3 Proteins are Part
of the Large Plant-Specific Family of NAC

Transcription Factors

15.2.1.1 New Insights into the Origin of the NAC
Family

Together with ATAF1 and ATAF2, the petunia NAM and
Arabidopsis CUC proteins are the founding members of the
NAC family of plant-specific transcription factors (Aida
etal., 1997). In an effort to trace the evolutionary origin of
NAC proteins, Zhu et al. (2012) searched the full genome
or expressed sequence tag (EST) data of 16 different spe-
cies including eudicots, monocots, a lycophyte and a moss,
chlorophytes, a red algae, and glaucophytes. Whereas
a large number of NAC proteins have been identified in
flowering plants (66—44, depending on the species) only
30 and 20 have been identified in Physcomitrella patens and
Selaginella moellendorffii, respectively. This suggests that
NAC proteins expanded as land plants evolved. Interest-
ingly, no NAC proteins could be identified in the aquatic
species analyzed, which suggests that NAC proteins may
be specific to land plants. However, the analysis of Zhu
and coworkers did not include any representatives of
the charophytes which are thought to contain the sister
group to land plants (Finet et al., 2010). Using Basic Local
Alignment Search Tool (BLAST) searches we identified
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transcriptome shotgun assembly (TSA) sequences from the
charophytes Coleochaete sp. (loci JO249122 and JO249294),
Penium margaritaceum (locus JO233410), Chaetosphaerid-
ium globosum (locus JO158096), and Nitella mirabilis (lo-
cus JV748667) whose putative translation yields proteins
showing a conserved NAC domain (Figure 15.1). This
observation strongly suggests that NAC proteins appeared
before the transition from water to land, about 450 million
years ago.

15.2.1.2 Origin and Early Evolution of the NAM/
CUC3 Family

The phylogeny of NAC proteins has been analyzed
by several groups who often determined the position of
NAC s from a particular species in relation to Arabidopsis
and rice NACs (e.g., Fang et al., 2008; Hu et al., 2010;
Ooka et al., 2003; Pinheiro et al., 2009; Shen et al., 2009;
Zhu et al., 2012). Results from these phylogenetic analy-
ses show some variability: for instance, the number of
subfamilies varies from 5 (Fang et al., 2008) to 21 (Zhu
et al., 2012). Despite these variations, NAM/CUC3 pro-
teins are often associated with the same group of proteins,
although with a variable topology, forming an entire or
part of a subfamily (Figure 15.2A).

Proteins that belong to the NAM /CUC3 family can be
clearly divided into two clades: the NAM clade that in-
cludes the petunia NAM and Arabidopsis CUC1 and CUC2
proteins, and the CUC3 clade (Blein et al., 2008, Zimmer-
mann and Werr, 2005). These two clades are based on the
sequence of the NAC domain (Section 15.2.2.1), but also
overlap with the presence/absence of a microRNA-bind-
ing site. Indeed, all NAM genes possess a binding site for
the microRNA164 (miR164), whereas CUC3 genes do not.
Members of these two clades can be found in eudicots,
monocots, and early-diverging angiosperms such as Am-
borella trichopoda (Adam et al., 2011; Blein et al., 2008; Zim-
mermann and Werr, 2005; Vialette-Guiraud et al., 2011).
On the other hand, gymnosperm genes possessing a
miR164-binding site are not grouped within angiosperm
NAM or CUCS3 clades, rather they occupy a sister posi-
tion to the combined NAM + CUCS3 clade. This suggests
that a unique NAM + CUCS3 lineage regulated by miR164
was present in the last common ancestor of extant seed
plants, and that a duplication event generated the NAM
and CUCS3 clades in the angiosperm lineage after its diver-
gence from gymnosperms. In this scenario, loss of miR164
regulation would have occurred later in the CUC3 lineage
(Vialette-Guiraud et al., 2011; Figure 15.2B).

15.2.1.3 Recent Evolution Within the NAM/CUC3
Family

Additional duplication events further complicated
the phylogeny of NAM/CUCS3 proteins in angiosperms.
Such duplication events can either be recent, resulting
in two closely related paralogs (such as the pea proteins

C. FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION
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FIGURE 15.1 Alignment of the NAC domain of representatives of different plant groups showing five conserved subdomains named “A
to E.” At, Arabidopsis thaliana; Zm, Zea mays; Ac, Aquilegia coerulea; Atr, Amborella trichopoda; Pa, Picea abies; Sm, Selaginella moellendorffii; Pp, Phy-
scomitrella patens; Cg, Chaetosphaeridium globosum. The alignment was produced using MultAlin (Corpet, 1988).

PsNAM1 and PsNAM?2 that share 95% identity) or more
ancient leading to more divergent genes like the CUC1
and CUC2 proteins found in the Brassicaceae lineage
(the Arabidopsis CUC1 and CUC2 proteins share only
50% identity mostly concentrated in the NAC domain).
Indeed, phylogenetic analysis and reconstruction of ge-
nome duplication events suggest that two rounds of gene
duplication followed by gene loss led to the distinct CUC1
and CUC2 lineages in Brassicaceae, which have partially
divergent functions (Hasson et al., 2011, Vialette-Guiraud
et al., 2011). Because the CUC1 and CUC2 lineages are
specific to Brassicaceae and possibly other closely related
Brassicales, the names “CUC1” and “CUC2” should be
exclusively used for genes identified in these groups,
while for other species “NAM” should be used. Here, we
use “NAM/CUC3” when referring to genes belonging
to either of the two clades, and “CUC” when referring
specifically to Arabidopsis genes.

15.2.2 NAM/CUC3 Protein Organization and

Specific Domains

NAM/CUCS3 proteins, like other NAC transcription fac-
tors, can be subdivided into two main functional domains: an
amino-terminal domain including the conserved NAC do-
main, and a more divergent carboxy-terminal domain (CTD;
Duval et al., 2002; Taoka et al., 2004). Domain-swapping

experiments between the NAC or CTD domains of CUC1,
CUC2 and the more distantly related ATAF1 protein showed
that the ability of the CUC1/2 proteins to promote in vitro
adventitious shoot formation lies in their NAC domain,
suggesting that this part of the CUC1 and CUC2 proteins
determines their specific functions (Taoka et al., 2004).

15.2.2.1 The Amino-Terminal NAC Domain

This domain can be subdivided into five highly con-
served regions (Figure 15.1) and has been implicated in
the DNA-binding properties of several NAC proteins
(e.g., Duval et al., 2002; Jensen et al., 2010). Most muta-
tions disrupting CUC1 function fall into its NAC domain,
thus highlighting its importance (Figure 15.3).

The DNA-binding mechanisms of NAC proteins have
begun to be elucidated. ANAC019 and ANAC092 bind
to a CGT[A/G] consensus site (Olsen et al., 2005; Tran
et al., 2004; Xu et al., 2013). Binding affinity to this motif
varies between NAC proteins (Jensen et al., 2010). Linde-
mose et al. (2014) showed that 12 NACs can be divided
into three groups with different binding specificities. Two
groups recognize variants of the previously identified
CGT[A/G] target sequence while the third recognizes an
unrelated motif. These groups largely match the phylo-
genetic differences between NAC proteins.

NAC proteins can form both homo- and heterodimers
via interaction of their NAC domains, for which both the

C. FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION
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FIGURE 15.2 (A) Schematic phylogeny of the subgroup

of Arabidopsis thaliana NAC proteins containing the CUC1, (A)
CUC2 and CUCS3 proteins (adapted from Zhu et al., 2012).

The genes targeted by the miR164 are indicated in red. (B)
Schematic evolution of the NAM/CUC3 genes in seed plants.
Members of the NAM + CUC3 clade are indicated in violet,
members of the NAM clade are in blue, and members of the

CUC3 clade are in red. Solid lines indicate lineages targeted by

miR164 while dotted lines are lineages not targeted by miR164.
(Vialette-Guiraud et al., 2011).
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interacting surface and two essential salt-bridge-forming
residues have been identified (Ernst et al., 2004; Olsen
et al., 2005). NACs stably bind DNA as dimers by recog-
nizing two palindromic binding sites, but a single binding
site is also sufficient for NAC binding, both in vitro (Olsen
et al., 2005) and in vivo (Tran et al., 2004; Xu et al., 2013).
ANACO019 dimers can exist either in an open or a closed
conformation (Welner et al., 2012). While the open confor-
mation is predominant in solution, dimers mostly adopt
a closed conformation when bound to DNA. Variation in
dimer conformation may account for the recognition of
DNA stretches with either single binding sites or a vari-
able number of base pairs separating two binding sites.
The NAC domain of ANACO019 contains a central twist-
ed antiparallel -sheet, which is packed between two a-
helices on both extremities (Ernst et al., 2004; Chapter 4).
Part of this 3-sheet formed by conserved WKATGTD
amino acids protrudes into the major groove of DNA and
interacts with the sugar/base region of DNA providing
specificity to the recognition, while other parts interact
with the DNA backbone potentially increasing affinity
(Welner et al., 2012; Chapter 13). This mode of interaction
shows similarities with those of plant WRKY and mam-
malian glial cells missing (GCM) transcription factors.
To date, no structure data on any of the NAM/CUC3
proteins nor their DNA binding sites have been deter-
mined. A recent study suggests that, like ANAC019 and
other phylogenetically related proteins, NAM/CUC3

ANAC 082 At5g09330 VNI

}Gymnosperms

NAM/CUC3

\
CUC1] Brassicaceae
cucz e.q., Arabidopsis
- cucs3
e :
- > Angiosperms
. ‘ : NAM1
NN ~ NAM2 » e.g., Pea
™~ cuca ]

may recognize a TT[A/G]CGT[A/G] motif (Lindemose
et al., 2014). However, because the WKATGTD residues
that contribute to ANACO019 specificity are replaced by
WKATGKD in NAM/CUCS3 proteins, it is not clear how
conserved the core binding site can be. It is therefore es-
sential to determine the binding specificity of NAM/
CUCS3 proteins experimentally.

15.2.2.2 The Carboxy-Terminal Domain

The CTD of NAM/CUCS proteins is more variable
than the NAC domain, but several small domains can be
recognized. However, these domains are not all found in
all NAM/CUCS3 proteins and neither are they specific to
these proteins, as they can be found in other NACs. Initial-
ly, Taoka et al. (2004) identified three domains called the V
(TEHVSCES), L (SLPPL), and W motifs (WNY) as well as
a serine-rich domain, but further analyses identified ad-
ditional domains (Adam et al., 2011; Larsson et al., 2012;
Zimmermann and Werr, 2005; Figure 15.3). When fused to
the GAL4 DNA-binding domain, the CTD of CUC1 and
CUC2 proteins, like that of other NAC proteins, shows
transcription activation in yeast cells and tobacco BY-2
cells (Taoka et al., 2004). Its serine-rich and W domains
are necessary for transcriptional activity in yeast, while
the V and L motifs are dispensable. The W motif is also
important in planta as the strong cuc1-3 and weak cucl—6
alleles affect this domain (Hibara et al., 2006; Takada
etal., 2001; Figure 15.3). In contrast to the serine-rich and

C. FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION
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FIGURE 15.3 Alignment of the NAM proteins (adapted from Adam et al., 2011). The NAC domain is on a black background. In the CTD, conserved motifs, as defined in Adam et al.
(2011; from I to IV), are on a gray background while those defined by Taoka et al. (2004) and Larsson et al. (2012); (domains K, L, V, and W) are in boldface. Mutations affecting either
AtCUCT1 or SINAM (also known as GOB) are indicated in red and blue, respectively. Eg, Elaeis guineensis; Os, Oriza sativa; Zm, Zea mays; At, Arabidopsis thaliana; S1, Solanum lycopersicum;
Vv, Vitis vinifera.
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W domains that positively contribute to the transcription-
al activity of CUC1/2 proteins, a hydrophobic region that
contains the K domain (described by Larsson et al., 2012)
represses CUC2 activity: deletion of this domain leads to a
14-fold increase in transcriptional activity in yeast (Taoka
etal., 2004). Interestingly, the K domain is not only absent
from monocot NAM proteins but also from CUC1, which
correlates with a higher activity of CUC1 compared to
CUC2 (Hasson et al., 2011).

15.3 NAM/CUC3 GENES DEFINE
BOUNDARIES IN MERISTEMS
AND BEYOND

As mentioned in the introduction, NAM/CUC3 genes
were identified in genetic screens in petunia and Arabidop-
sis as arrested-development mutants showing seedlings
with fused cotyledons. Here we present the mutant phe-
notypes, genetic studies, and expression pattern analysis
that led to the characterization of the NAM/CUC3 func-
tions during plant development.

15.3.1 Identification of the NAM/CUC3 Genes:

Role in Boundary and Meristem Formation

15.3.1.1 Identification of NAM/CUCS3 in Petunia
and Arabidopsis

Petunia nam and Arabidopsis cucl—cuc2 seedlings share
similar phenotypes characterized by fused cotyledons and
no SAM (Souer et al., 1996, Aida et al., 1997). This phenotype
appears early on during embryonic development with an
ectopic bulging at the central apical part of heart-shaped
embryos. Simultaneous bulging within this region and at
cotyledon primordia effectively leads to fusion of the two
cotyledons (Figure 15.4A, B). Therefore, the role of CUC1/2
and NAM genes in cotyledon separation has been ascribed to
inhibition of growth in the boundary region. Cotyledon fu-
sion in these mutants is accompanied by a lack of embryonic
SAM development. Indeed, presumptive SAM cells in cucI-
cuc2 double-mutants do not express the meristem marker
SHOOT MERISTEMLESS (STM; Aida et al., 1999). Together,
these observations suggest that, in addition to their role in
cotyledon separation, CUCI, CUC2, and NAM genes are also
implicated in SAM initiation. Accordingly, these genes are
expressed during embryogenesis in a region encompassing
the presumptive SAM (Aida et al., 1999; Takada et al., 2001).
In later stages, this expression disappears from the initiating
SAM and becomes restricted to the boundaries between the
developing cotyledons and the SAM (Figure 15.4G). This
observation suggests that CUC1, CUC2, and NAM have
an early role in separating cotyledons and specifying SAM
initiation, and a later one separating the undifferentiated
SAM from the differentiating cotyledons.

15. CUC TRANSCRIPTION FACTORS: TO THE MERISTEM AND BEYOND
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FIGURE 15.4 Mutant phenotypes and expression patterns of NAM/
CUC3 genes in Arabidopsis and tomato. (A) Wild-type Arabidopsis seed-
lings and (B) transgenic seedlings showing various degrees of cotyledon
fusion phenotypes resulting from reduced expression of CUC1/2 due to
overexpression of its regulator miR164. Weak phenotypes show partial
cotyledon fusion and reduced meristematic activity (arrowhead points
to young leaves) and strongly silenced lines show complete cotyledon
fusion and no meristematic activity. (C) Tomato wild-type seedlings
and (D) gob mutant seedlings showing partial cotyledon fusion. (E, F)
The cotyledon fusion phenotype of gob mutants is accompanied by an
absence of meristem that can be identified in the wild type as a bulge
between cotyledon primordia. (G) The expression domain of CUC genes
at the central apical region of heart-stage embryos (left) overlaps that of
shoot apical meristem marker STM. At later stages (right) CUC expres-
sion is restricted to the boundary between cotyledon primordia and
the meristematic zone. (H) CUC genes are expressed during gynecium
development at the adaxial side (lighter gray at the left) of the medial
region in the presumptive septum in a region encompassing the future
placenta (in orange at the left). This expression is sustained at the medial
ridge tips during septum development and eventual fusion. CUC genes
are also expressed in the boundaries and at the base of ovule primordia
and in a ring at the boundary between the nucellus and chalaza.

Much like in the embryo, CUC genes are expressed at a
variety of frontier regions in the mature plant, such as the
boundary between the apical meristem and leaf primordia,
between the inflorescence and floral meristems, or even
between different floral organs. Accordingly, regenerated
shoots of cuc double-mutants show organ fusions at all
these levels (Aida et al., 1997). Therefore, these genes have
been classified as general regulators of organ separation,
or, simply put, boundary genes.

While cucl—cuc2 double-mutants show strong fusion
phenotypes with no SAM initiation, single cucl or cuc2
mutants are phenotypically normal for the most part, with
few showing incomplete cotyledon fusions that produce
heart-shaped seedlings. The incomplete penetrance of

C. FUNCTIONAL ASPECTS OF PLANT TRANSCRIPTION FACTOR ACTION
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single mutations and the overlap of CUCI and CUC2
expression domains suggest that a certain degree of func-
tional redundancy exists between these genes (Takada
et al., 2001). The characterization of the CUC3 gene in-
creased the degree of functional redundancy between
CUC genes. Indeed, this paralog has overall similar ex-
pression patterns to CUCI and CUC?2 as well as additive
phenotypic effects (Vroemen et al., 2003).

15.3.1.2 Role in Other Dicots and Monocots

Since the characterization of nam and cuc mutants in
petunia and Arabidopsis, similar roles in boundary spec-
ification and organ separation have been revealed for
NAM/CUC3 genes in other species. For example, nam
mutants in Medicago truncatula have fused cotyledons
and lack primary apical meristems (Cheng et al., 2012).
In Antirrhinum majus, the CUPULIFORMIS (CUP) gene
has been identified through its mutant phenotype, which
presents strong organ fusion both at the embryonic and
vegetative level (Weir et al., 2004). Despite strong de-
fects in meristem initiation, cup mutants can produce
secondary meristems at the hypocotyl. These develop
severe fusions of leaves and floral organs as well as phyl-
lotaxis perturbations. Overall, organ fusion defects in cup
mutants are more severe than observed in Arabidopsis
cucl—cuc2, suggesting that the redundancy level between
NAM/CUCS3 paralogs can vary. Tomato (Solanum lycop-
ersicum) goblet (gob) mutants show similar phenotypes
of cotyledon fusion and SAM absence (Figure 15.4C-F;
Berger et al., 2009; Blein et al., 2008; Brand et al., 2007).
The role of NAM/CUC3 genes in monocots has not yet
been functionally tested, but characterization of the maize
ZmNAM1, ZmNAM?2, and ZmCUC3 genes as well as the
oil palm EgNAM1 and EgCUC3 genes showed that they
have similar expression patterns to Arabidopsis homologs,
with transcripts being found in meristematic tissues and
in cells separating adjacent organs. Interestingly, small
differences may exist between monocots and dicots: for
instance, ZmCUCS3 is expressed later than ZmNAM1/2
during maize embryo development whereas CUC3 is
activated earlier than CUC1/2 in Arabidopsis (Zimmer-
mann and Werr, 2005). Nevertheless, these proteins ap-
pear to have a conserved function, as oil palm homologs
are capable of increasing leaf serration when ectopically
expressed in Arabidopsis (for the role NAM/CUC3 plays
in leaf development see Section 15.3.3) and restore organ
fusion defects in cuc mutants (Adam et al., 2011).

15.3.2 Role of CUC Genes in Other

Meristematic Territories

As full cup-shaped mutants usually lack a SAM, the
study of their effect at the postembryonic level is depen-
dent on the formation of escape or regenerated shoots.
Studies of such regenerated shoots have allowed for
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additional roles of NAM/CUC3 genes during later veg-
etative and flowering stages to be characterized.

15.3.2.1 Axillary Meristems

Axillary meristems form near the shoot apex during
vegetative and reproductive development at the axils of
developing rosette and cauline leaves (Grbic and Bleeck-
er, 2000). CUC1/2/3 transcripts have been detected in axil-
lary meristems at the boundary between leaf primordia
and the shoot apex, and cuc3 mutants fail to initiate ax-
illary meristems in rosette leaf axils (Aida et al., 1999;
Hibara et al., 2006; Ishida et al., 2000; Raman et al., 2008;
Takada et al., 2001). This phenotype is greatly enhanced
by the cuc2 mutation but is not observed in other single-
mutants or combination of mutants, suggesting that, al-
though both CUC2 and CUCS3 are required for axillary
meristem specification, CUC3 contribution is greater (Hi-
bara et al., 2006; Raman et al., 2008). Alternatively, plants
expressing miR164-resistant variants of CUC1/2 genes
form accessory axillary meristems (Raman et al., 2008).
Collectively, these results show that CUC genes redun-
dantly promote shoot meristem formation both during
embryonic and postembryonic development.

15.3.2.2 Floral Organ Boundaries

Flowers of Arabidopsis cucl-cuc2 double-mutants
show strong organ fusions between sepals and sta-
mens and also have fewer petals and stamens (Aida
et al., 1997). Floral phenotypes in single-mutants are
much less severe, suggesting once again a certain degree
of functional redundancy between CUC genes (Hibara
et al., 2006). Accordingly, CUC1/2/3 have mostly over-
lapping expression patterns in the boundaries between
floral organs, both between organs of the same whorl
and between different whorls (Hibara et al., 2006; Ishida
et al., 2000; Takada et al., 2001; Vroemen et al., 2003).
Similar to the way they function in the SAM, CUCs
act at the boundaries of organ primordia suppressing
cell proliferation and bulging, which allows for clean
organ separation. The roles CUC1/2 play in floral organ
number and separation are also dependent upon their
regulation by miR164. Indeed, eepl, a mutant allele of
MIR164C, leads to the production of supernumerary
petals in regions adjacent to normal organs, which is
associated with an increase in CUCI and CUC2 expres-
sion (Baker et al., 2005).

The role of NAM/CUCS3 genes in floral organ pattern-
ing and separation also appears to be conserved across an-
giosperms. Floral organ fusions are observed in Medicago
truncatula nam, tomato gob, and Antirrhinum cup mutants,
with the corresponding genes being expressed at floral
organ boundaries (Berger et al., 2009; Cheng et al., 2012;
Weir et al., 2004). Interestingly, the expression of a miR164-
resistant variant of SIGOB leads to the production of ac-
cessory organs mostly in the petal and carpel whorls,
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suggesting conservation of the miR164/CUC module
during tomato flower development (Berger et al., 2009).

15.3.2.3 Gynecium

Arabidopsis CUCs are also expressed within carpel
tissues and around developing ovules, suggesting they
play a role in gynecium and ovule development (Galbiati
etal., 2013; Ishida et al., 2000; Kamiuchi et al., 2014; Nahar
et al., 2012; Takada et al., 2001; Vroemen et al., 2003). In
Arabidopsis, gynecia are composed of two carpels that
fuse along two opposing longitudinal medial ridges. The
two medial ridge meristems form the placenta, a tissue
with meristematic properties, which develops ovules and
central outgrowths that fuse to form the septum. Gynecia
that lack CUC activity fail to initiate medial ridge meri-
stems resulting in severe septum fusion defects and fewer
ovules (Ishida et al., 2000; Kamiuchi et al., 2014; Nahar
etal., 2012). The early expression of CUC1/2 at presump-
tive medial ridges, the absence of meristem marker STM
expression in the double mutant, and the enlargement
of carpel margins in plants expressing miR164-resistant
forms of CUCI or CUC2 indicate that these genes act
both to initiate medial ridge meristems and to main-
tain their meristematic state (Figure 15.4H; Kamiuchi
et al., 2014). In some mutants, incipient medial ridge
meristems are formed in an asymmetric fashion suggest-
ing that CUC1/2 are also required for proper positioning
of meristems. In a more extreme case, miR164-dependent
CUC2 misregulation leads to incomplete carpel fusion, as
medial ridges are incompletely formed (Larue et al., 2009;
Nikovics et al., 2006; Sieber et al., 2007). Several lines of
evidence suggest CUC genes play a role in ovule devel-
opment, notably the reduced number of ovules in cuc
double-mutants and the expression of CUC1/3 between
ovule primordia and CUC1/2/3 between nucellus and
chalaza (Aida et al., 1999; Ishida et al., 2000; Vroemen
et al., 2003). Although, the exact mechanisms through
which CUC genes regulate ovule development are still
unknown, a recent model involving the integration of
auxin signaling has been proposed (Section 15.4.1.1;
Galbiati et al., 2013).

Other results are also suggestive of conservation of
NAM/CUCS3 roles in gynecium and ovule development
across angiosperms. In Medicago truncatula, nam mutant
carpel margins are incompletely fused and fewer ovules
with altered embryo sac development are formed, lead-
ing to female sterility (Cheng et al., 2012). Antirrhinum
cup mutants not only produce fewer ovules and/or fused
ovules, they are also female sterile (Weir et al., 2004).

15.3.2.4 Organ Abscission

Abscission — the detachment of aged, mature, or dis-
eased organs such as leaves and seeds — occurs in specific
regions that display a set of characteristics reminiscent
of meristematic tissues such as small cells with dense
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cytoplasms (Nakano et al., 2013). These abscission zones
situated at key hinge regions share characteristics with
boundaries. Indeed, in tomato, the GOB gene and other
genes known to promote meristematic identity in axillary
meristems are expressed in the abscission zone.

15.3.3 Role of CUC Genes in Leaf Development

Arabidopsis leaves are simple with small serrations
on their margins. While cuc2 mutants produce leaves
with smooth margins, plants with increased CUC2 ex-
pression as a result of defective miR164 regulation show
deeper and larger serrations than the wild type (Nikovics
et al., 2006). cuc3 mutants also show reduced serrations,
while CUC1, which is not expressed in leaves, plays no
role in Arabidopsis leaf development. Whereas CUC2 acts
early on with the onset of teeth, CUC3 is thought to act
only at later stages to sustain teeth outgrowth (Hasson
et al., 2011). Interestingly, chimeric constructs, where the
CUC2 promoter drives the expression of CUC1 rescue
normal leaf serration in cuc2 mutants, also induce leaflet
formation in genetic backgrounds lacking miR164. These
results show that, even though CUCT is not expressed in
developing leaves, the CUC1 protein is partially function-
ally interchangeable with CUC2.

In species with compound leaves the role of
NAM/CUCS3 genes is extended to specify the boundar-
ies between leaflets. Indeed, these genes are expressed at
the boundaries of leaflet primordia, and their inactivation
results in fused and fewer leaflets (Berger et al., 2009;
Blein et al., 2008; Cheng et al., 2012; Wang et al., 2013).
Alternatively, tomato plants expressing the gain-of-func-
tion miR164-resistant allele Gob4-d produce deeply lobed
leaflets (Berger et al., 2009). Altogether, these observa-
tions are suggestive of a conservation of the mechanisms
controlling boundary specification between the apex and
leaf primordia with different architectures.

15.4 MULTIPLE REGULATORY
PATHWAYS CONTRIBUTE TO THE FINE
REGULATION OF NAM/CUC3 GENES

Section 15.3 focused on nam/cuc3 mutant phenotypes
and highlighted the precise expression patterns of these
genes during development. NAM/CUC3 genes are ex-
pressed in narrow and discontinuous domains, often re-
stricted to a few cells at the boundary between two out-
growing structures. Regulation of this expression pattern is
essential for proper organ development as CUC overexpres-
sion leads to severe phenotypes (Hibara et al., 2006; Laufs
etal., 2004). When CUC2 is uniformly expressed across the
leaf margin instead of its discrete expression pattern at the
teeth sinuses, a smooth leaf margin is formed in place of the
typical serrated form (Bilsborough et al., 2011).
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FIGURE 15.5 CUC regulatory network. CUC transcription factors are regulated by chromatin regulators such as BRM, SYD, and DPA4. CUC1
and CUC2 are negatively regulated by miR164. LOF1 and RAX1 induce CUCs during axillary meristem formation. BRs and auxin, which promote
lateral organ proliferation, participate in the CUC discrete boundary expression pattern. BR modify BZR1 activity, which in turn negatively regulates
CUCs. Auxin maxima, formed via a PIN1-dependent mechanism in growing primordia, restrict CUC expression to boundaries. In turn, CUCs act
via a nonidentified mechanism dependent on PIN1 to modify auxin levels. KNOX genes, which are essential for meristem maintenance, induce CUC
expression and activate KNOX expression in a feedforward regulatory loop as well. KNOX, LOF, RAX1, and LAS all contribute to maintaining the
high division rate in meristematic zones. CUCs directly activate LSH3 and LSH4 in boundary cells. This complex regulatory network allows both
the definition of the boundary by locally repressing growth and organ outgrowth, and meristem initiation and maintenance by promoting growth
in a non-cell-autonomous manner. Solid arrows represent direct interaction; dashed arrows represent nonlocal genetic interactions.

This section discusses the factors that contribute to es-
tablishing the precise expression patterns of NAM/CUC3
genes throughout plant development (Figure 15.5). First,
we discuss how hormonal regulation shapes NAM /CUC3
expression. Then, we consider the role of miR164 in the
posttranscriptional regulation of NAM genes. Finally, we
describe NAM/CUC3 transcriptional regulation.

15.4.1 Hormonal Regulation of NAM/CUC3

Gene Expression

15.4.1.1 The Interplay between NAM/CUC3 Genes
and Auxin

Numerous works suggest that CUC2 expression is
repressed by PIN1-generated auxin maxima. The PIN-
FORMED1 (PIN1) gene encodes an auxin efflux carrier
that has a polar distribution within the cell thus contrib-
uting to differential auxin accumulation in Arabidopsis.
In developing embryos, PIN1-dependent auxin maxima
induce cotyledon formation (Friml et al., 2003). In pinl
mutants, the CUCI expression domain is extended to
the entire apical region whereas CUC2 is expressed in

patches restricted to the center and sides of the embryo
(Aida et al., 2002). The PINOID (PID) gene encodes a
serine/threonine kinase that acts as a positive regulator
of PIN1-mediated polar auxin transport. pinl—pid double-
mutant embryos completely lack cotyledons and show
broad expression of CUC1 and slight enlargement of the
CUC2 expression domain. Additionally, pinl-pid—cucl
triple-mutants form small cotyledons which suggests that
ectopic expression of CUC1 in pinl—pid embryos is respon-
sible for the absence of cotyledons (Furutani et al., 2004).
pasticcinol (pasl) mutants show defective cotyledon de-
velopment and associate altered membrane localization
of PIN1 with an enlargement of the domain expressing
CUC2 (Roudier et al., 2010). Overall, these results indicate
that PIN1-mediated auxin transport is necessary to regu-
late CUC1/2 expression in the embryo.

During postembryonic development, pinl mutants
produce a naked inflorescence (Okada et al., 1991). In
similarly to what as happens in the embryo, primordia
positioning in the SAM is determined by PIN1-driven
auxin maxima (Reinhardt et al., 2003). In pinl mutants,
CUC?2 expression is enlarged forming a circle around
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the inflorescence SAM (Vernoux et al., 2000). Moreover,
live imaging experiments suggest that CUC2 expression is
downregulated in tissues where convergent PIN1 polari-
ties are expected to accumulate high auxin levels (Heisler
et al., 2005). Together, these results suggest that CUC2
expression in the SAM is inhibited by PIN1-generated
auxin activity maxima. As explained in Section 15.3.2.1,
CUC2 genes redundantly promote axillary meristem for-
mation (Raman et al., 2008). Two articles suggest that an
auxin minimum is required for axillary meristem forma-
tion in Arabidopsis and tomato (Wang et al., 2014a; Wang
etal., 2014b). Although this has not been tested, this auxin
minimum could allow CUC expression thus inducing
axillary meristem formation.

pinl Arabidopsis mutants form leaves that lack serra-
tions. PIN1-mediated auxin response foci at the leaf mar-
gin are interspaced with regions showing high CUC2 and
CUCS3 expression (Hasson et al., 2011; Hay et al., 2006;
Nikovics et al., 2006). Auxin treatments are able to abol-
ish expression of a CUC2 reporter in leaf primordia,
suggesting that auxin negatively regulates CUC2 ex-
pression during simple leaf development (Bilsborough
et al., 2011).

As mentioned in Section 15.3.2.3, CUC1 and CUC?2 are
involved in carpel margin meristem initiation required
for ovule initiation. In this context, MONOPTEROS (MP)
is expressed in a similar pattern to CUCI and CUC2.
Moreover, in mp mutants, CUCI and CUC2 expression
is reduced in inflorescences and leaves. Chromatin im-
munoprecipitation (ChIP) experiments have established
that MP directly binds CUC1 and CUC2 genomic regions
(Galbiati et al., 2013). These results strongly suggest that
MP positively regulates CUCI and CUC2, providing a
molecular link between auxin signaling and CUC genes.
However, these results are difficult to reconcile with data
obtained in the embryo where CUCI expression domain
is enlarged in mp mutant embryos (Aida et al., 2002), in-
dicating that MP negatively regulates CUC1 expression
in the embryo. Moreover, it is surprising that an auxin
response factor would positively regulate CUC expression
when in most organs auxin maxima negatively regulate
CUC expression.

To date, it is not clear to what extent the relationship
between auxin and CUC genes identified in Arabidopsis
is conserved. In Cardamine hirsuta, a close relative of Ara-
bidopsis with compound leaves, it is not known whether
ChCUC expression is controlled by polar auxin transport
as in Arabidopsis. Interestingly, the expression of GOB
in tomato is not modified upon auxin treatment. More-
over, ENTIRE, an auxin-response repressor, acts on leaf
dissection in a parallel pathway independent of GOB
(Ben-Gera et al., 2012; Berger et al., 2009). Alternatively,
auxin-induced downregulation of NAM genes seems to
be a general feature during embryonic and postembryonic
development, and some evidence points to conservation
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of this role. Indeed, in the gymnosperm Picea abies a
NAM/CUCS3 ortholog is also regulated by polar auxin
transport (Larsson et al., 2012).

A recent work reported a link between cytokinins and
CUCs (Li et al., 2010). A line overproducing cytokinins
produces more flowers, a phenotype that is dependent on
CUC2 and CUC3 overexpression. Moreover, in the cytoki-
nin receptor ahk2-ahk3 double-mutant, CUCI and CUC2
expression is strongly reduced, suggesting that cytokinin
signaling promotes CUC expression. Interestingly, there is
increasing evidence that cytokinin signaling controls polar
auxin transport (Marhavy et al., 2014). Therefore, further
investigations are required to determine whether regula-
tion of CUC genes by cytokinins is mediated by auxin.

15.4.1.2 Brassinosteroids, New Regulators of CUC
Expression

Brassinosteroids (BRs) are plant steroid hormones that
regulate cell proliferation and other developmental pro-
cesses (Kim and Wang, 2010). They act through a complex
signaling pathway that leads to activation of two tran-
scription factors, BZR1 and BES1, which in turn modify
the expression of over 1000 genes.

Recent findings suggest a link between BRs and CUC
genes. Plants with increased BR content or signaling
show axillary shoot, stamen, and cotyledon fusions,
reflecting abnormal boundary establishment (Gendron
et al., 2012). Alternatively, mutants with reduced bio-
synthesis or sensitivity to BRs have deeper axillary
separations and form ectopic boundaries. This sug-
gests that low BR signaling is sufficient and necessary
for proper boundary formation. Genetic and pharma-
cological experiments show that low BR signaling in-
duces CUC expression in the SAM, whereas high BR
signaling inhibits it. Additionally, ChIP experiments
indicate that BZR1 strongly binds the CUC3 promoter
suggesting direct regulation. Overall, these results in-
dicate that BR signaling negatively regulates CUC gene
expression.

15.4.2 miR164 FineTunes NAM Gene

Expression

miR164 was among the first identified plant miRNAs.
In Arabidopsis, it is encoded by three loci, MIR164A, B, and
C. It regulates the expression of six transcription factors of
the NAC family: CUCI and CUC2, NACI which is known
to regulate lateral root induction, ORESARA1 (ORE1)
which controls leaf senescence, and two uncharacterized
NACs (At5g61430 and At5g07680; Schwab et al., 2005).

15.4.2.1 miR164 Regulation is Essential for Shoot
Development

miR164 controls inflorescence and floral development.
Plants expressing CUC1 or CUC2 miR164-resistant variants
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show extra petals and enlarged sepal boundaries (Laufs
et al., 2004; Mallory et al., 2004). Another CUC2 miR164-
resistant allele has shorter and wider siliques with tissue
projections along the valve margins (Larue et al., 2009).
Accordingly, early extra petals1 (eepl), a mirl64c mutant,
also presents extra petals and defects in carpel fusion
(Baker et al., 2005). This indicates MIR164C plays a role
in regulating CUC1I and CUC2 during flower develop-
ment. A similar role has been proposed for SImiR164 in
tomato, in which expression of a SImiR164-resistant GOB
variant results in extra petals and ectopic carpels (Berger
et al., 2009). Expression of miR164-resistant CUC2 leads
to modified phyllotaxy compared to wild type (Peaucelle
et al., 2007), as also observed in the mirl64abc triple-
mutant (Sieber et al., 2007). Strikingly, in both genotypes,
the formation of primordia in the meristem appears to
be normal. Taken together, this reveals that phyllotaxy is
postmeristematically maintained via miR164-dependent
negative regulation of CUC2.

miR164 also regulates leaf development. Both mirl64a
Arabidopsis mutants and CUC2 miR164-resistant lines
present leaves with deeper serrations than the wild type.
Moreover, MIR164A is expressed in leaf margin sinus-
es in a pattern overlapping CUC2 expression (Nikov-
ics et al., 2006). Thus, in Arabidopsis, MIR164A regulates
the level of CUC2 expression, which in turn governs the
level of leaf serration. Interestingly, quantitative trait
locus (QTL) mapping has revealed a single nucleotide
polymorphism in MIR164A miRNA* which modifies MI-
R164A biogenesis and drastically reduces its accumulation
(Todesco et al., 2012). This indicates that natural variation
in MIR164A maturation can contribute to leaf serration
polymorphism. In the compound leaves of tomato, the
GOB miRNA -resistant allele, Gob-4d, harbors leaflets with
deeper and wider lobes than the wild type, whereas gob
mutants show smooth fused leaflets (Berger et al., 2009).

Floral organ gggé |_
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Stem growth +——— CUC2 |—

Cucl
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cuc3

|_
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In contrast to Arabidopsis, GOB and SIMIR164 show com-
plementary expression profiles and the GOB expression
pattern becomes wider in the Gob-4d allele. This suggests,
that SImiR164 defines the sharp domain of the GOB ex-
pression pattern rather than controling its expression level
as in Arabidopsis.

miR164 controls axillary meristem development. Ex-
pression of CUC1 or CUC2 miR164-resistant variants leads
to the formation of accessory buds in leaf axils, a pheno-
type also observed in mirl64abc mutants. Concurrently,
MIR164A and MIR164C are expressed in the boundary
between the leaf primordium and the SAM, from where
the axillary meristem subsequently emerges (Raman
et al., 2008). Overall, CUCI and CUC2 mRNA cleavage
by miR164 is required to negatively regulate the formation
of accessory buds in leaf axils.

These results establish CUC1/2-miR164 as a conserved
genetic module that is recruited multiple times during the
evolution of aerial organs (Figure 15.6). Moreover, miR164
plays a crucial role in regulating NACI during lateral root
induction (Guo et al., 2005) and inhibiting ORE1 expres-
sion during leaf senescence (Kim et al., 2009). miR164 is
therefore an important regulator of plant development
(Pulido and Laufs, 2010). Interestingly, miR164 does not
seem to regulate its targets always in the same manner:
while it regulates the timing of ORE1 expression, it regu-
lates the GOB expression pattern spatially during tomato
leaf development and controls the level of CUCI and
CUC2 expression during flower and leaf development
in Arabidopsis.

15.4.2.2 Evolution and Specialization of the
MIR164 Genes

miR164 is found in dicots, monocots, and gymno-
sperms, indicating that, much like its target NAC genes,
it was likely present in the last common ancestor of

FIGURE 15.6 CUC/miR164, a genetic module essential
for plant shoot development. The roles played by each CUC
(and the related NAC gene, ORE1) and MIR164 genes during
Arabidopsis development are indicated.
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gymnosperms and angiosperms (Section 15.2.1.2; Axtell
and Bartel, 2005). Multiple genes code for miR164: 3 in
Arabidopsis but up to 12 in soybean. Mature miR164 genes
encoded by different members can be identical, such as in
soybean, or show small sequence variations as in Arabi-
dopsis in which mature miR164c differs by one nucleotide
from mature mirl164a or mirl64b. An evo-devo study of the
MIR164 family suggests that two lineages were present in
the last common ancestor of extant angiosperms: a B clade
containing the Arabidopsis MIR164B gene whose members
tend to be highly expressed in roots; and another clade
whose members, such as the Arabidopsis MIR164A and
C genes, tend to be less expressed in roots than in other
tissues (Jasinski et al., 2010).

In some developmental processes, the three Arabidopsis
MIR164 genes seem to be functionally redundant. For in-
stance, miR164a, miR164b , and miR164c act redundantly
to downregulate CUC2 expression during the postmeri-
stematic maintenance of phyllotaxy (Sieber et al., 2007). In
contrast, MIR164C plays a more important role during flo-
ral development than the two others (Sieber et al., 2007),
while MIR164A is the negative regulator of CUC2 that
controls leaf shape (Nikovics et al., 2006). The extent to
which each MIR164 gene regulates different developmen-
tal processes varies and is likely to result from differences
in their expression patterns.

15.4.2.3 Transcriptional Control of miR164
Expression

Transcription factors of the plant-specific TCP family
(TEOSINTE BRANCHED/CYCLOIDEA /PROLIFERAT-
ING CELL FACTOR) are well known for the role they
play in regulating developmental processes. They are
divided into two classes (Martin-Trillo and Cubas, 2009;
Chapter 16). In particular, class Il CINCINNATA-like (CIN-
like) genes redundantly regulate cell proliferation and
promote differentiation during leaf development. Plants
expressing TCP3-EAR, a fusion with the EAR repres-
sion domain, have rosette leaves with exaggerated ser-
rations and lobed cotyledons with ectopic shoot meri-
stems (Koyama et al., 2007). CUC genes are overexpressed
in these plants and miR164 accumulation is decreased.
Moreover, cucl and cuc2 mutations suppress the TCP3—
EAR phenotype, indicating that it mainly results from in-
creased CUC expression. TCP3 has been found to directly
activate MIR164A transcription (Koyama et al., 2010).
Interestingly, some class I TCP members also regulate
CUC expression (Uberti-Manassero et al., 2012). Thus,
TCPs appear to be positive regulators of miR164 and in-
direct inhibitors of CUC expression.

Auxin regulates CUC expression both directly (Sec-
tion 15.4.1.1) and indirectly via modification of miR164
levels. Indeed, auxin treatments can induce miR164 ex-
pression in roots (Guo et al., 2005), and some mutants
with disrupted auxin signaling show enhanced leaf

15. CUC TRANSCRIPTION FACTORS: TO THE MERISTEM AND BEYOND

serration due to reduced MIR164A expression (Bilsbor-
ough et al., 2011). Thus, auxin regulates miR164 levels
during root and leaf development.

miR164 expression is regulated by ethylene during
leaf aging (Kim et al., 2009). In the ethylene insensitive 2
(ein2) mutant, no reduction of miR164 levels is observed,
which suggests that EIN2 is required for MIR164 down-
regulation. EIN3 acts downstream of EIN2 and binds to
MIR164A, MIR164B, and MIR164C promoters to repress
their activity (Li et al., 2013). Overall, ethylene negatively
regulates miR164 levels by activating EIN2 which in turn
promotes EIN3 transcriptional repression activity.

Interestingly, all three MIR164 genes are marked with
H3K27me3 repressive histone modification during leaf
development (Lafos et al., 2011), suggesting that modi-
fication of chromatin dynamics also contributes to their
regulation.

During floral development, a C;H, zinc finger tran-
scriptional repressor named RABBIT EARS (RBE) is
specifically required for proper formation of second-
whorl boundaries (Krizek et al., 2006). rbe mutants show
fused sepals and aberrant petals, which recapitulate
the floral phenotype of cucl—cuc2 double-mutants. RBE
directly binds to the MIR164C promoter, negatively
regulating its activity in floral boundaries. Moreover,
genetic analyses reveal that RBE negatively regulates
MIR164B expression while activating MIR164A expres-
sion in floral buds (Huang et al., 2012). Thus, RBE would
differentially regulate the expression of MIR164 genes
during floral development, promoting their functional
differentiation.

15.4.3 Transcriptional Regulation of
NAM/CUC3 Expression

15.4.3.1 Transcription Factors Regulating CUC
Expression During Embryogenesis

Class I KNOTTED-like homeobox genes (KNOXI) that
code for homeodomain transcription factors are essen-
tial for SAM initiation and maintenance (for reviews see
Hamant and Pautot, 2010; Hay and Tsiantis, 2009; Chap-
ter 14). Plants mutated in the KNOXI gene STM lack a
SAM and show reduced CUCI and CUC3 expression,
which is restricted to a stripe in the center of the bound-
ary between two cotyledons (Takada et al., 2001; Vroemen
etal., 2003). CUC2 expression is even more modified in stm
embryos, being limited to small spots at variable positions
between developing cotyledons (Aida et al., 1999). Thus,
STM regulates CUC expression contributing to its local-
ization at the center of the embryo. Alternatively, the ab-
sence of CUC downregulation in the center of the embryo
could also be attributed to the lack of meristematic cells
in the stm mutant. Spinelli et al. (2011) demonstrated that
inducing STM expression activates CUCI transcription
in a direct manner since induction is maintained in the
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presence of a translational inhibitor. A binding site for
STM in the CUCI promoter has been identified and vali-
dated in vitro, in yeast, and in planta. Overall, this indicates
that STM directly induces CUCI expression.

Besides STM, there are other KNOXI genes that con-
tribute to the establishment and maintenance of the SAM.
Notably, their inactivation aggravates the phenotype of a
weak stm allele, stm-2. For example, knat6-1-stm-2 double-
mutants show no SAM and strong cotyledon fusion com-
pared with stm-2. Although CUC3 expression is not altered
in knat6 mutants, it is completely lost in knat6-1-stm-2 dou-
ble-mutants indicating that KNAT6 and STM redundantly
contribute to CUC3 activation (Belles-Boix et al., 2006).

In addition to KNOXI proteins the homeobox tran-
scription factor WUSCHEL (WUS) also contributes to
stem cell maintenance (Chapter 14). Although there is no
evidence to suggest that WUS regulates CUC genes, other
members of the same WUSCHEL-RELATED HOMEOBOX
(WOX) clade control CUC expression in the cotyledon
boundary. wox2 stimpy-like (stpl /wox8) double-mutants
show partial cotyledon fusion, which correlates with
asymmetrical CUC2 and CUC3 expression at one side of
the embryo (Lie et al., 2012). Conversely, CUCI expres-
sion in some embryos is expanded in the protodermal
layer. Overall, WOX2 and STPL differentially regulate
CUC genes, restricting CUC1 expression and allowing
symmetrical expression of CUC2 and CUC3.

15.4.3.2 Transcription Factors Regulating CUC
Expression During Axillary Meristem Formation

Two independent groups identified three genes cod-
ing for MYB domain transcription factors -REGULATOR
OF AXILLARY MERISTEM 1 (RAX1), RAX2, and RAX3
— which are redundantly required for early induction
of axillary meristems in Arabidopsis (Keller et al., 2006;
Muller et al., 2006). Like the CUC genes, RAX1 and RAX3
are expressed in the axils of leaf primordia. Interesting-
ly, in situ hybridizations show that CUC2 expression in
rax1 is missing at the exact position of a future axillary
meristem, indicating that RAX1 induces local CUC2
expression to promote axillary meristem formation
(Keller et al., 2006).

Like RAX1-3 genes, LATERAL ORGAN FUSION1
(LOF1) also encodes a MYB domain transcription factor
involved in axillary meristem formation and expressed in
leaf axils. lofl mutants show reduced expression levels of
CUC1/2/3 and RAX1 that could be indirectly mediated
by changes in RAXT activity (Lee et al., 2009). Overall,
LOF1 and RAX1 are transcription factors that act up-
stream of CUC genes during axillary meristem formation.

15.4.3.3 Transcription Factors Regulating
NAM/CUC3 Expression During Leaf Development

Besides their central role in meristem formation, KNOXI
genes are also involved in the development of most
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compound leaves (Blein et al., 2010; Chapter 14). KNOXI
expression is initially downregulated both in simple and
compound incipient leaf primordia. Such downregulation
is permanent in species with simple leaves, whereas it is
transient in primordia of compound leaves, being reac-
tivated later during primordia development (Bharathan
etal., 2002). In Cardamine hirsuta, the expression of KNOXI
genes is required for leaflet formation and their overex-
pression leads to more leaflets and deeper serrations (Hay
and Tsiantis, 2006). KNOXI overexpression increases CUC
expression, while silencing CUC genes in plants overex-
pressing KNOXI suppresses their phenotype, indicating
that KNOXI genes promote leaflet formation by activating
CUC expression (Blein et al., 2008).

Although observed in many species, the reactivation
of KNOXI genes during compound leaf development is
not a general mechanism. Instead, some Fabacea show
activation of UNIFOLIATA, an ortholog of the Arabidop-
sis LEAFY (LFY) gene, which controls leaflet formation
in these species (Hofer et al., 1997). In Pisum sativum,
the uni mutant forms simple smooth leaves where nei-
ther NAM nor CUC3 expression could be detected (Blein
et al., 2008). Interestingly, CUC2 has been shown to be
a possible target of LFY in the Arabidopsis inflorescence
(Winter et al., 2011). All in all, UNI/LFY could be a posi-
tive regulator of NAM/CUC3 expression.

15.4.3.4 Transcription Factors Regulating GOB
Expression During Abscission

Two MADS box domain transcription factors, JOINT-
LESS and MACROCALYX (MC), promote abscission zone
formation during tomato fruit development (Nakano
et al., 2012). Transcriptional studies on plants misex-
pressing JOINTLESS or MC show that GOB expression
is probably positively regulated by the JOINTLESS /MC
heterodimer (Nakano et al., 2012). Another gene induced
by the JOINTLESS/MC heterodimer is the AP2/ERF
transcription factor ETHYLENE RESPONSE FACTOR 52
(SIERF52). Plants with reduced SIERF52 levels are im-
paired when pedicel abscission is activated and pres-
ent reduced GOB expression, indicating that SIERF52
is also a positive regulator of GOB expression (Nakano
et al., 2014). Overall, this designates JOINTLESS/MC as
early activators of GOB expression and SIERF52 as a late
GOB activator during fruit abscission.

15.4.3.5 Regulation of CUC Expression by
Chromatin Modifications

Gene expression regulation depends not only on the
presence of transcription factors that bind to specific
promoter domains but also on chromatin availability to
transcription factors. The chromatin dynamic is regu-
lated by nucleosome-modifying enzymes that catalyze
histone and DNA-covalent modifications as well as
chromatin-remodeling complexes that remodel histone
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octamers/DNA interactions. Switch/sucrose nonferment-
able (SWI/SNF) complexes are chromatin-remodeling
factors conserved between yeast, mammals, and plants.
Remodeling SWI/SNF complexes are recruited to pro-
moters and regulate the accessibility of binding sites to
transcription factors (Jerzmanowski, 2007).

In an enhancer screen of the cuc2 cotyledon fusion phe-
notype, three mutations in the BRAHMA (BRM) gene were
identified. BRM is an adenosine triphosphatase (ATPase) of
the SWI2/SNEF2 family (Kwon et al., 2006). A mutation in
another SWI2/SNF2 member, splayed (syd), also enhances
the cotyledon fusion phenotype of cucl and cuc3 mutants.
Real time polymerase chain reaction (RT-PCR) and
B-glucuronidase gene (GUS) reporter analyses established
that BRM positively regulates the expression of the three
CUC genes, and that SYD induces CUC2 expression. This
result indicates that general regulators of gene expression
are also required for proper CUC expression.

Among factors regulating the chromatin dynamic are
the modifying enzymes of histone octamers. These en-
zymes catalyze posttranslational modifications of histones,
thus changing their interaction with DNA. One of the best-
characterized histone modifications is the trimethylation of
histone 3 on lysine 27 (H3K27me3), which leads to chroma-
tin compaction and transcriptional repression. This mark is
deposited by Polycomb group (PcG) proteins assembled in
the Polycomb repressive complex 2 (PRC2). H3K27me3 is
subsequently recognized by PRC1, which medjiates locus
repression (Schatlowski et al., 2008). Interestingly, CUC2
and CUC3 carry the H3K27me3 repressive mark. CUC2
shows this mark in the meristem and leaves, whereas CUC3
specifically carries the H3K27me3 mark in the leaves (Lafos
etal., 2011). Thus, developmentally regulated deposition of
repressive histone marks is likely to contribute to proper
CUC2 and CUC3 expression.

Engelhorn et al. (2012) screened for genes expressed in
the plant apex which were regulated by PRC1. They char-
acterized the DEVELOPMENT-RELATED PCG TARGET IN
THE APEX 4 (DPA4) gene, which encodes a transcriptional
repressor containing a B3 DNA-binding domain. DPA4, like
CUC genes, is expressed in the boundary domains of the
meristem and leaf primordia. DPA4 negatively regulates
CUC2 expression and, accordingly, dpa4 mutants show
increased leaf serration, whereas a DPA4 overexpressor
presents smooth leaves. Thus, DPA4 appears to be an up-
stream negative regulator of CUC2 expression.

15.5 NAM/CUC3 CONTROL PLANT
DEVELOPMENT VIA MODIFICATIONS OF
THE CELLULAR BEHAVIOR

Organ boundaries act both as frontiers and growth or-
ganizer centers (Aida and Tasaka, 2006). Boundaries cells
display typically reduced growth activity, delimiting the
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frontier between different cell types. Besides this role in
organ/tissue separation, boundaries participate in organ
initiation and meristematic activity maintenance. There-
fore, CUCs are likely to play different roles in controlling
multiple aspects of plant growth and morphogenesis. Here,
we focus on the effects downstream of CUCs, exploring the
cellular effects dependent on CUCs, how they are achieved,
and what molecular actors are involved (Figure 15.5).

15.5.1 CUC-Dependent Cellular Effects

Genetic analysis of cuc mutant combinations, coupled
with morphologic analysis, suggest that CUC1/2/3 repress
growth in boundaries thus allowing organ separation (Aida
et al., 1997; Aida et al., 1999; Takada et al., 2001; Vroemen
etal., 2003). Growth integrates cell division and cell expan-
sion parameters; therefore, reduced growth activity from
cells localized at boundaries can be due to decreased cell di-
vision rate, reduced cell expansion, or both. Several pieces of
work investigating various species report that cells located
at boundaries display reduced cell division (Breuil-Broyer
et al., 2004; Gaudin et al., 2000). However, experimental
work linking cell proliferation and CUC transcription fac-
tors is scarce. In the wild-type Arabidopsis inflorescence
meristem, floral primordia are formed 5-6 cells apart from
each other (Heisler et al., 2005; Reddy et al., 2004). In the
mirl64abe triple-mutant, mature flowers are separated by
roughly the same number of cells indicating that plant cell
division in mirl64abc is repressed between flowers during
stem development. This correlates with local increase of
CUCT1 expression suggesting a function for CUC1 in control-
ling cell division (Sieber et al., 2007). To test this hypothesis,
Sieber and coworkers ectopically expressed CUC1 and ex-
amined sepal cells. Sepal length was dramatically reduced
in plants overexpressing CUC1, but the cell number per area
unit was not different from the wild type suggesting that
CUC1 plays a role in cell division regulation. Taken together
these results indicate that CUCs act as growth antagonists
through local repression of cell division.

Leaf development constitutes an excellent model to
study cellular parameters controlled by CUC genes. By
analogy with cellular mechanisms occurring at lateral
organ primordia boundaries, CUC2 has been suggested
to restrict growth of sinuses at the leaf margin (Nikovics
etal., 2006). In contrast, CUC2 promotes tooth outgrowth
via a non-cell-autonomous pathway involving auxin (Bils-
borough et al., 2011; Kawamura et al., 2010). These oppos-
ing results highlight the fact that CUCs control cell pro-
liferation in different ways to allow differential growth.

15.5.2 How Does CUC Impact Cell

Proliferation?

In plants, cell proliferation depends on the action of
phytohormones. BRs, for example, constitute a major class
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of polyhydroxysteroid hormones, structurally similar to
steroid hormones in animals, promoting growth in vari-
ous developmental processes (Mussig, 2005). BRs promote
growth by controlling both cell elongation and cell divi-
sion. BR-insensitive mutants display dwarf phenotypes,
partially as a result of impaired mitotic activity (Gonzalez-
Garcia et al., 2011; Zhiponova et al., 2013). The LATERAL
ORGAN BOUNDARIES (LOB) gene negatively controls
BR accumulation in boundaries, while BRs repress other
boundary identity genes, such as CUC genes, in a feed-
back loop to control boundary formation (Section 15.3;
Bell et al., 2012; Gendron et al., 2012). These studies reveal
the fundamental role BRs play in boundary delimitation
and link BR signaling to boundary identity genes.

Another hormone playing a key role in boundary for-
mation is auxin. Spatiotemporal auxin accumulation relies
on controlled expression and subcellular localization of
auxin efflux transporters PIN1 (Friml et al., 2004; Okada
etal.,, 1991). JAGGED LATERAL ORGAN (JLO), a bound-
ary identity gene and member of the LATERAL ORGAN
BOUNDARY DOMAIN (LBD) transcription factor family
— to which LOB belongs — controls PIN expression (Bu-
reau et al., 2010; Rast and Simon, 2012). CUC2 promotes
auxin accumulation via an unknown PIN1-dependent
mechanism in leaves and, in turn, auxin represses CUC2
expression forming a regulatory feedback loop. In silico
models accounting for such a regulatory loop recapitulate
wild-type leaf margin development and teeth formation
patterns (Bilsborough et al., 2011).

Interestingly, BRs and auxins act synergistically to
regulate photomorphogenesis by modulating AUXIN
RESPONSE FACTOR?2 (ARF2) activity of BR signaling
components (Vert et al., 2008). Therefore, it is probable
that the integrated action of these two hormones regulates
boundary domain formation as well.

Although it is clear from the work described above that
the CUC genes, auxins, and BRs play important roles in
boundary delimitation, the underlying molecular mecha-
nisms still need to be elucidated.

15.5.3 CUC Direct Targets

cuc mutant boundary phenotypes can be enhanced
by mutations in several other genes, including transcrip-
tion factors (Gomez-Mena and Sablowski, 2008; Lee
etal., 2009; Lie et al., 2012), chromatin-remodeling factors
(Kwon et al., 2006), and auxin flux regulators (Furutani
et al., 2004). Taken together these studies show that CUC
transcription factors cooperate with various biological
processes to regulate boundary formation. Despite efforts
to identify the molecular factors responsible for boundary
delimitation, little is known about the regulatory network
involved in this developmental process.

So far, only two CUC direct targets have been identi-
fied. Using rat glucocorticoid-receptor-inducible cell lines
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overexpressing CUC1, Takeda et al. (2011) showed that
LIGHT-DEPENDENT SHORT HYPOCOTYL 4 (LSH4) and its
homolog LSH3 are directly activated by CUC1 in boundary
cells. These genes encode proteins belonging to the ALOG
family (Arabidopsis LSH1 and Oryza G1) which are predicted
to bind DNA and modulate transcriptional activity (Iyer and
Aravind, 2012). LSH3 (also known as OBO1; Cho and Zam-
bryski, 2011) and LSH4 are located in the nuclei of boundary
cells and, therefore, may play a role in boundary formation
(Takeda et al., 2011). Constitutive LSH4 expression results
in developmental defects such as inhibition of leaf growth
and formation of ectopic meristems highlighting its potential
role during plant development. Conversely, constitutive
LSH4 expression cannot rescue the developmental defects
of cucl—cuc2 mutants, suggesting that other regulators act
downstream of CUC1 to delimit boundaries.

15.5.4 Other Regulators: KNOX, LFY, LAS

Other regulators are known to act downstream of CUC
transcription factors, but their molecular links are still
missing. This is the case for KNOXI genes. Hibara et al.
(2003) have shown that KNOXI genes such as STM and
BREVIPEDICELLUS (BP) are ectopically expressed in
Arabidopsis plants overexpressing CUCI. More gener-
ally, the accumulation of KNOXI/LFY-like transcripts is
reduced in leaves when NAM/CUC3 genes are silenced
(Blein et al., 2008). These results, together with the data
presented in Section 15.4.3.1, reveal the existence of a feed-
forward regulatory loop between KNOXI/LFY-like genes
and NAM/CUC3 genes during leaf development, which
is likely to be conserved widely across eudicots. The LAT-
ERAL SUPPRESSOR (LAS) gene encodes a member of the
GAI RGA, SCR (GRAS) family of putative transcription
factors, which is expressed at the SAM boundary (Greb
etal., 2003). LAS expression decreases when CUC activity
is reduced suggesting that LAS acts downstream of CUC
(Raman et al., 2008). Accordingly, the higher level of CUC
mRNA accumulation in mir164abc mutants correlates with
an increase in LAS expression.

15.6 CONCLUSION

Since their first identification almost 20 years ago, a
wealth of data have been accumulated on NAM/CUC3
genes, establishing their central role in plant boundary for-
mation. Fine analyses have shown a strong conservation
of their function from species to species and in different
organs of aerial parts, but have also underlined variations
within this general trend. However, these conclusions are
mostly based on genetic analyses. The challenge for the
next years will be to reveal the molecular links, in particu-
lar, the genetic regulatory network between NAM/CUC3
transcription factors and boundary biology.
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