Active packaging: controlled release of microbial agents from packaging materials
Mia Kurek, Nathalie Gontard, Valérie Guillard

To cite this version:
Mia Kurek, Nathalie Gontard, Valérie Guillard. Active packaging: controlled release of microbial agents from packaging materials. EcobioCap Final Meeting, Feb 2015, Montpellier, France. hal-02795370

HAL Id: hal-02795370
https://hal.inrae.fr/hal-02795370
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ACTIVE PACKAGING: CONTROLLED RELEASE OF MICROBIAL AGENTS FROM PACKAGING MATERIALS

Mia Kurek, Valerie Guillard, Nathalie Gontard
NextGenPack
Next generation of advanced active and intelligent bio-based packaging for food

ACTIVE ANTIMICROBIAL PACKAGING

How to create an optimised AP?

Controlled release technology

AC mass transfer rate ← MO growth rate

\[C_{AC} < C_{\text{critical}} \]

MO will grow instantly, before AC is released

AC mass transfer rate → MO growth rate

\[C_{AC} > C_{\text{critical}} \]

→ activity
Active NGP film design

BioPE or PLA film + Active volatile compound

Why AITC?
strong AM activity in vapour state

Why β cyclodextrine?
- Protection against thermal degradation
- To avoid premature release
- AC release $\rightarrow f$ (headspace RH)

Active BioPE or PLA film

Environment T, RH

τ_0, shelflife

MIC $< C_{\text{AITC}} <$ sensory treshold

HS T, RH
STEPS

- To model H₂O transfer into active film
- To model the release of AITC from β-CD as function of RH
- To model AITC transfer through active film
- To couple mass transfers & AITC release kinetic to predict AITC release into HS
OUTPUTS:

→ allows calculation of active complex needed for the optimisation of packaging design

✓ evolution of AITC in the HS allows to determine the activity profile \(C_{aitc} > MIC \)

Example:

BioPE

By changing:

Film composition

\[5\% \beta CD - AITC \]
OUTPUTS:

→ allows calculation of active complex needed for the optimisation of packaging design

✓ evolution of AITC in the HS allows to determine the activity profile → C_{aitc} > MIC

Example: BioPE

By changing:

Film composition

\[C_{aitc} > \text{MIC} \]
OUTPUTS:

→ allows calculation of active complex needed for the optimisation of packaging design

✓ evolution of AITC in the HS allows to determine the activity profile → $C_{\text{aitc}} > \text{MIC}$

Example: BioPE

By changing:

- Film composition
- Headspace volume

\[\text{AITC in headspace (mg dm}^{-3}\text{)} \]

\[\text{Time (days)} \]
OUTPUTS:

→ allows calculation of active complex needed for the optimisation of packaging design

✓ evolution of AITC in the HS allows to determine the activity profile → $C_{aitc} > MIC$

Example: BioPE

By changing:
- Film composition
- Headspace volume

\[
\begin{align*}
\text{Time (days)} & \quad 0 & 5 & 10 & 15 & 20 \\
\text{AITC in headspace (mg dm}^{-3}\text{)} & \quad 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{align*}
\]
OUTPUTS:

→ allows calculation of active complex needed for the optimisation of packaging design

✔ evolution of AITC in the HS allows to determine the activity profile → \(C_{\text{aitc}} > \text{MIC} \)

Example:

BioPE

By changing:

- Film composition
- Headspace volume
- \(a_w \) of the HS
CONCLUSIONS

1) Developed mathematical model succesfully describes controlled release of AC in the HS in order to reach MIC
2) The rate of release depends on the moisture content of the system
3) H₂O and AC distribution profiles can help in understanding the release kinetics
4) The model can be used to optimise design of active packaging
Thank you for your attention