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Sharing a groundwater resource in a context of regime shifts

Abstract

We consider the exploitation of a common groundwater resource for irrigation as
a di�erential game. In particular, we use the Rubio and Casino adaptation of the
Gisser and Sánchez model where we introduce a sudden change in the dynamics of
the resource, namely a decrease in the recharge rate of the aquifer. We then compare
the socially optimal solution with Open-loop and feedback equilibrium. First, we
show analytically that di�erent solutions (at the steady state) do not depend on the
intensity of the shock, but on the value of the recharge rate upon occurrence of the
shock. Moreover, we show that solutions get closer at the steady state for lower values
of recharge rates. We �nally apply the game to the particular case of the Western La
Mancha aquifer. The aim of this application is to estimate (in terms of welfare) the
ine�ciency of open loop and feedback strategies with regards to the characteristics of
the shock. We show that the loss of welfare due to private exploitation is maximal for
low-intense or later shocks and can reach important values of 40 million of euros.

1 Introduction

In this paper, we study the exploitation of a common groundwater resource as a di�eren-
tial game in order to take into account the strategic and dynamic interactions between the
users of the resource. Indeed, we consider a groundwater resource used for irrigation by
several farmers. This type of natural resource is often exploited under a common property
regime, that is the access is restricted to land owners situated over the aquifer. Numerous
papers have studied this issue (for example Gisser and Sánchez (1980) [4], Negri (1989)
[5], Provencher and Burt (1993) [7], Rubio and Casino (2001) [8]) and have concluded
that private exploitation is ine�cient (in terms of stock and welfare) in comparison to the
socially optimal exploitation (or e�cient solution).

This ine�ciency is due to the various externalities which appear because of the sharing
of this type of resource, namely the "pumping cost" externality which characterizes the fact
that withdrawals made by one farmer lower the water-table level, resulting in an increase in
pumping costs for the other users. On the other hand, the "stock" externality (also called
strategic externality) represents the competition which appears between farmers because
of the limited availability of water (the stock) (see [7]).
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Gisser and Sánchez (1980) [4] showed the ine�ciency of the private solution of resource
exploitation for the Pecos River Basin, New Mexico. They also characterized the ana-
lytical di�erence between the optimal and private exploitations, and they concluded that
the di�erence is negligible if the capacity of the aquifer is large. Nieswiadomy (1988) [6]
called this consideration the Gisser-Sánchez Rule (or Gisser and Sánchez e�ect (GSE)). The
most important policy implication derived from this study is that regulation of a common
groundwater resource is not justi�ed if the di�erence of welfare from private and optimal
exploitations is insu�ciently important. However, authors assume that farmers behave
myopically in the calculation of the private solution, that is, farmers take decisions over
a short period of time, without considering the impact of the other users on the available
stock (the stock externality).

Other studies have used game theory to take into account the strategic and dynamic
interactions between the resource users when computing the private solution (for exam-
ple Negri (1989) [5], Provencher and Burt [7], Rubio and Casino [8]). Negri characterizes
analytical solutions of the water-table level at the steady-state for two types of Nash equilib-
rium (Open-loop and feedback solutions) and for the socially optimal case. He shows that
the di�erence between the socially optimal solution and the open-loop solution is positive
and captures the pumping cost externality. Moreover, he show that the di�erence between
the open-loop solution and the feedback solution is also positive and captures the strategic
externality. The di�erence between the socially optimal and the feedback solutions is then
positive and represents the total ine�ciency of private exploitation. Provencher and Burt
[7] take up Negri's ideas to prove, in a general way, that if the objective function of the
problem is concave, the feedback solution is ine�cient, in comparison with the socially
optimal. In [8], Rubio and Casino adapt the Gisser and Sánchez model as a di�erential
game and derive analytical solutions of socially optimal, open loop and feedback solutions
over an in�nite planning horizon. They also con�rm Negri's result: strategic behaviour
exacerbates the ine�ciency of private exploitation. Moreover, they con�rm the Gisser-
Sánchez rule taking into account the strategic externality: the di�erence between optimal
and private exploitations is negligible if the aquifer is relatively large.

In this context, we take Rubio and Casino�s game in [8] and we introduce a sudden
change in the dynamics of the resource. Such a shock (also called regime shift) may oc-
cur due to a decrease in mean precipitation that leads to a decrease in the recharge of
the aquifer, or it may correspond to the abstraction of a certain amount of water that is
dedicated to other uses in the case of a drought, such as �lling drinking water reservoirs.
In both cases, the problem is to model an abrupt decrease of the water availability for
the users of the resource. In [1], de Frutos Cachorro et al. (2014) study the e�ect of
information about this type of shock on the optimal management of the water resource.
For the deterministic case, when the date of the shock is known, they show that a regula-
tor (the water agency) would prepare for the event by applying an incautious extraction
strategy. Such a result can already be found in the literature dealing with the impact of
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irreversible events (see Tsur and Zemel (2014) [10]), where the phenomenon is known as the
"impatience e�ect". Moreover, using a numerical application to the Western la Mancha
aquifer, Spain, de Frutos Cachorro et al. show that a non-monotonic extraction behaviour
is possible in the short term, when value of the shock is important and when the shock
occurs in the medium or long run. In this paper, we combine Rubio and Casino�s game
theory approach and de Frutos Cachorro et al. study on the e�ect of regime shifts, in order
to access the di�erence between the socially optimal solutions and solutions with strategic
interactions in presence of a shock.

Indeed, the contribution of this paper consists in the study of the ine�ciency of the
private solution of a dynamic game by considering a recharge rate which is not constant
over time. In particular, we compare the socially optimal solution with Open-loop and
feedback equilibrium considering linear strategies as Rubio and Casino in [8]. Further-
more, we propose an alternative information structure to the open-loop solution which we
call "the piecewise open-loop"1.

At �rst, we show that the combined e�ect of strategic interactions and this type of
shock leads to an overexploitation of the resource in the short, medium and long run.
Secondly, we study the ine�ciency of private exploitation with regard to the intensity
and date of occurrence of the shock. We show that cost and strategic e�ects are partic-
ularly important for low-intense shocks or shocks that take place in the medium term.
Finally, we estimate the ine�ciency of the private exploitation in terms of welfare for a
particular case, the Western la Mancha aquifer. This aquifer is situated in the South of
Spain, under a semi-arid climate where dry periods are frequent. Moreover, in the last
decades, the aquifer has su�ered from various ine�cient regimes of exploitation. We prove
that a regulation of the aquifer through a centralized management is even more justi�ed
in a context of regime shifts, providing e�ciency gains which can reach 40 millions of euros.

This paper is organized in the following way. In section 2, we present Rubio and
Casino�s game and we introduce an exogenous and deterministic shock in the game. In
section 3, we describe analytical resolutions of the problem for di�erent information struc-
tures. In section 4, we compute the socially optimal solution corresponding to the problem.
In section 5, we compare the di�erent analytical solutions at the steady-state and then, we
make a numerical application of the model to the Western La Mancha aquifer. Finally, in
section 6, we conclude and give some perspectives for future research.

1Care should be taken not to confuse this type of deterministic game with a piecewise open-loop game
in the theory of stochastic games.
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2 The model

First, we present the adaptation of the Gisser and Sanchez model (1980) [4] as a di�erential
game developed by Rubio and Casino (2001, 2003) ([8], [9]).

In [4], the demand for irrigation water is a linear function,

g = a− bp, a, b > 0, (1)

where g represents water pumping and p, the price of water.
In [8], Rubio and Casino assume that the number of farmers is �xed and �nite over

time (M farmers).
The individual demand for irrigation water can be described as a linear function,

gi = θi(a− bp), i = 1..M, (2)

where 0 < θi < 1 and
∑M

i=1 θi = 1. Thus,

M∑
i=1

gi =
M∑
i=1

θi(a− bp) = a− bp = g. (3)

gi represents the rate of extraction of farmer i.
Moreover, the revenues of the farmer i is equal to∫

gi

p(x)dx =

∫
gi

a− gi
θi

b
dx =

a

b
gi −

1

2bθi
g2i .

We assume that the marginal cost of extraction is a linear function that depends on G,
the stock of the aquifer. Total costs of extraction are then

C̄ = (z − cG)g, z, c > 0, (4)

where z is the sum of �xed costs and the maximum marginal cost of extraction and c the
slope of the marginal pumping cost function. As z and c does not depend on the rate of
extraction, the individual pumping cost of the ith farmer is

C̄i = (z − cG)gi, z, c > 0. (5)

The dynamic of the aquifer can be described as

Ġ = −(1− α)g + r = −(1− α)

M∑
i=1

gi + r, (6)

where r is the recharge rate and α the return coe�cient, (α ∈ [0, 1)) (see [1] for details).

Assuming that interactions between farmers are rational and non-cooperative, the problem
of the ith farmer is to maximise welfare, de�ned as the present value of his future pro�ts,
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where ρ is the discount rate, taking into account the dynamic of the aquifer (equation 6)
and given initial conditions and positivity constraints:

max
gi(.)

∫ ∞
0

Fi(G, gi) e−ρt dt, (7)

where,

Fi(G, gi) =
a

b
gi −

1

2bθi
g2i − (z − cG)gi, (8)

Ġ = −(1− α)
M∑
i=1

gi + r, (9)

G(0) = G0 given, (10)

gi ≥ 0 G ≥ 0. (11)

In what follows, we will introduce an exogenous shock in the system and solve dif-
ferent non-cooperative cases. Then, we �rstly remind how Rubio and Casino solve the
game de�ned previously when players have di�erent information structures: open-loop
and feedback2.

In the case of an open-loop structure, every farmer i chooses at the beginning of the
planning period the path of extractions that maximises the present value of the sum of
their pro�ts over the planning horizon (in this case t ∈ [0,∞)), assuming that strategies
choosen by the other farmers depend on time and knowing the initial state of the resource.
The problem to be solved is then (7) constrained by equations (9), (10) and (11).

In the case of a feedback structure, the problem of the ith farmer is the same as in
the open-loop case but assuming that strategies played by the other users depend not only
on time but also on the state of the resource. In particular, we consider that pumping
strategies are linear with respect to the state variable. The problem to be solved is then
(7), constrained by the equation of motion:

Ġ = −(1− α)(gi +
∑
j 6=i

ajG+ bj) + r, (12)

and conditions (10) and (11).
We are now going to disturb the system of the resource. This disturbance is an ex-

ogenous shock on the dynamic of the aquifer. It represents a sudden reduction on the
recharge rate, r, at time ta (known to the users). Thus, from ta on, the recharge rate
switches from r = r1 to r = r2, with r1 > r2. The problem of the ith farmer becomes then
(7), constrained by the dynamic:

2As the problem is already solved in Rubio and Casino (2001, 2003) ([8], [9]), we are not going to detail
the resolution of the various problems.
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Ġ =

{
−(1− α)

∑M
i=1 gi + r1 si t ≤ ta

−(1− α)
∑M

i=1 gi + r2 si t > ta,
(13)

with r1 > r2 and conditions (10) and (11).
In what follows, we describe analytical resolutions of the disturbed problem according

to the various structures of information de�ned previously. In every case, we solve problems
in two steps: �rstly between ta and∞ and then, between 0 and ta. We anticipate that equi-
librium of the various problems will be di�erent according to the structure of information
used by players: OL (open-loop) , POL (piecewise open-loop) and FB (feedback).

3 Non-cooperative cases

3.1 Resolution of the open-loop case

We assume that farmers made a commitment about their path of extractions over time.
This is an open-loop information structure. The Hamiltonian corresponding to the problem
of the ith farmer is:

Hi =

{
Fi(G, gi) + πi(t)(r1 − (1− α)

∑M
i=1 gi) if t ≤ ta

Fi(G, gi) + πi(t)(r2 − (1− α)
∑M

i=1 gi) if t > ta,
(14)

with Fi(G, gi) from equation (8), and πi(t), the adjoint variable. G(t) and πi(t) are contin-
uous functions on the interval [0,∞). We can see the analytical resolution of the open-loop
game in appendix A.

3.2 Resolution of the piecewise open-loop case

We propose an alternative structure of information of the open-loop case, the piecewise
open-loop case. This game is more realistic than the open-loop case for our problem
because farmers can revise their strategies when the shock takes place. In other words, we
suppose that farmers make a new commitment at the date ta to follow open-loop strategies
by knowing the state of the resource at the occurrence of the shock (in t=ta). The full
resolution of this type of game is given in the Appendix B.

3.3 Resolution of the feedback case

Now, a more realistic case with regards to previous propositions is the feedback information
structure. Indeed, farmers observe the level of the resource during the planning period,
i.e. they have information about the state (or the table-water level) of the resource over
time. Thus, it is more credible for the farmers to maximize their pro�t assuming that
actions or strategies made by the other farmers depend not only on time but on the state
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of the groundwater resource. We are going to solve this case on the basis of the princi-
ple of dynamic programming. The full resolution of the problem is detailed in Appendix C.

One of the objective of this paper being to estimate the ine�ciency of various equilibria
de�ned previously, we need to de�ne the e�cient solution of the problem: the social
optimum.

4 The social optimum

We suppose that a social planner decides how to manage the resource. The problem for
the regulator is to maximize the social welfare, de�ned as the present value of the sum of
future revenues of the M users of the resource.

The problem for the regulator is:

max
{gi}Mi=1

∫ ∞
0

M∑
i=1

Fi(G, gi)e
−ρt dt (15)

with Fi(G, gi) described in equation (8), constrained by equation of motion (9), initial (10)
and positivity conditions (11).

Now, if a shock occurs at the known date ta, the problem for the social planner becomes
(15), constrained by the equation of motion (13), where r1 (respectively r2) are values of the
recharge rate before (respectively from) ta, with initial and positivity conditions described
in equations (10) and (11). The full resolution of this problem is detailed in Appendix D.

In what follows, we analyse and compare the socially optimal solution with the di�erent
equilibria (open-loop, piecewise open-loop and feedback) obtained when such a shock takes
place.

5 Results

5.1 Theoretical Results

In this section, we compare the e�ciency of the di�erent solutions at the steady state.
From equations (76), (32), (62), we obtain solutions of the stock for the social optimum,
the open-loop, the piecewise open-loop and respectively the feedback case, with M, the
number of symmetric farmers (M > 1). Thus,

GSO∞ =
r2

cb(1− α)
+
r2
ρ
− a

cb
+
z

c
, (16)

GOL∞ = GPOL∞ =
r2

cb(1− α)
+

r2
Mρ
− a

cb
+
z

c
, (17)

and
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GFB∞ =
r2

2(1− α)a∗1
− b∗1
a∗1

(18)

with expressions b∗1 < 0 and a∗1 > 0 de�ned in equations (58) and (59) in Appendix C.
Moreover, at the steady state, solutions of the pumping rate are 3:

gFB∞ = gOL∞ = gPOL∞ = gSO∞ =
r2

(1− α)M
. (19)

Proposition 1 When the value of the recharge rate upon occurrence of the shock, r2, de-
creases (resp. increases), the level of the stock at the steady state decreases (resp. increases)

for the di�erent cases (SO, OL, POL and FB). Moreover, solutions of pumping rates at

the steady state are the same for the di�erent information structures and decrease (resp.

increase), the lesser (resp. the greater) the value of r2.

Demonstration This is immediate from equations (17), (18) and (19). It is enough to
prove that the derivatives of expressions described in these equations with regard to r2 are
bigger than 0.�

Proposition 1 shows that the more the �nal value of the recharge rate is reduced (resp.
increased), the smaller (resp. higher) the optimal level of the stock of the di�erent solutions
in the long term. Furthermore, the resource is exploited less (resp. more) intensively at
the steady state when the recharge rate after the date of occurrence of the shock takes
a smaller (resp. greater) value. Finally, the rate of exploitation does not depend on the
decision makers information structure at the steady state.

Now, we study the di�erence between the various solutions to estimate the ine�ciency
of private solutions (open-loop and feedback) in terms of stocks. Di�erences are calculated
and described below:

GSO∞ −GOL∞ =
r2
ρ

(1− 1

M
) (20)

and

GOL∞ −GFB∞ =
r2
2

(
1

Mρ
+

1

(1− α)cb
− 1

2(1− α)a∗1
)− a

cb
+
z

c
+
b∗1
a∗1
, (21)

with expressions b∗1, a
∗
1 described in equations (58) and (59).

Proposition 2 When a deterministic shock on the recharge rate takes place, the cost and

strategic e�ects remains positives.

3We remind that we assume parameters such as solutions of the stock and the rate of extraction are
positive
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Demonstration This is immediate from equation (20) for the cost e�ect. With respect
to the strategic e�ect, we can see the detailed proof in appendix E.�

Proposition 2 con�rms that the cost and strategic e�ects remains positives when there
is a shift on the recharge rate that at a certain date. Finally, we may estimate the value
of the di�erent e�ects according to r2, the value of the recharge rate from t = ta.

Proposition 3 When r2 decreases (resp. increases), the cost and strategic e�ects decrease

(resp. increase).

Demonstration This is also immediate from equations (20) and (21). It is necessary to
prove that the derivatives of expressions described in these equations with regard to r2 are
greater than 0.�

Proposition 3 shows that at the steady state the value of the di�erent e�ects decrease (or
increase), the less (more) important the value of the recharge rate after ta. In other words,
pumping strategies (at the steady state) derived from private and optimal exploitation get
closer if the aquifer recharge decreases. We remind that Rubio and Casino found the same
expressions (20) and (20) in [8] and show �rst that di�erence between solutions declines as
the discount rate and/or the number of farmers increases. They also con�rm that the same
result is obtained when the storage capacity of the aquifer increases (GSE e�ect). In this
paper, we add to Rubio and Casino�s result the importance of a recharge rate variation.

Moreover, we highlight the fact that di�erent solutions at the steady state do not
depend on the intensity of the shock r1 − r2, but on the value of the recharge rate upon
occurrence of the shock, r2. Thus, to estimate the magnitude of the ine�ciency of private
solutions according to the value of the shock, we have to measure externalities in terms of
welfare, and not in terms of stock. To this aim, in what follows, we apply our game for
the real case of the Western la Mancha aquifer.

5.2 Numerical application

In this section, we use parameter values from de Frutos Cachorro et al. (2014) [1] that are
based on real parameter values from several sources (e.g. Esteban and Albiac (2011) [2],
Esteban and Dinar (2012) [3]). The parameter values used are listed in table 1.

5.2.1 Comparison of the di�erent information structures with the social op-
timum

In this section, we estimate the ine�ciency of the various solutions open-loop and feedback
by comparing with the social optimum (the e�cient solution), at the steady state and at
the date of occurrence of the shock. Moreover, we complete this analysis by studying the
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Parameters Description Units Value

b Water demand slope (Million Cubic Meters/Year)2 Euros−1 0.097
a Water demand intercept Million Cubic Meters/Year 4403.3
z Pumping costs intercept Euros/Million Cubic Meters 266 000
c Pumping costs slope Euros/(Million Cubic Meters)2 3.162
r Natural recharge Million Cubic Meters/Year 360
G0 Stock level (in volume) Million Cubic Meters 80960
H0 Current water table Meters 640
SL Surface elevation Meters 665
A Aquifer area Square Kilometers 5500
S Storativity coe�cient unitless 0.023
ρ Social discount rate Year−1 0.05
α Return �ow coe�cient unitless 0.2
M Number of players unitless 2

Table 1: Values of parameters of the Western la Mancha aquifer.

G(t) g(t)

GSO

GOL

gSO

gOL

GFB

gFB

t t

Figure 1: Solutions ofG∗(t) (left-land side) in millions of cubic meters and g∗(t) (right-hand
side) in millions of cubic meters per year : the social optimum (in green), the open-loop
(in blue) and the feedback (in red) cases, when r1 − r2 = 70 and ta = 20 years.

problem when the intensity and the date of occurrence of the shock vary.

In Figure 1, we observe optimal solutions of stock G∗(t) (on the left) and pumping
rate g∗(t) (on the right), in particular the socially optimal (SO) (in green), the open loop
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(in blue) and the feedback solutions (in red), for a shock of mid-intensity of 70 millions
of cubic meters per year (Mm3/year) (i.e. r1 = 360 and r2 = 290) at the 20th year of
exploitation of the aquifer (i.e. ta = 20 years).

Focusing on the left-hand side of the �gure, we note that the most e�cient solution at
the steady state is the social optimum. Indeed, the stock reaches a level of 76 711 Mm3,
which is higher than levels obtained by the OL and FB solutions (of around 73 811 and
71 962 Mm3 respectively). Thus, the di�erence between the social optimal and the open-
loop solutions is 2 899 Mm3 whereas the di�erence between the socially optimal and the
feedback solutions is 4 749 Mm3. We �rst con�rm theoretical results proved in proposition
2: the cost and strategic e�ects remain positives in the long term when a shock takes place.
Moreover, we observe on the right-hand side that the pumping rate at the steady state
is constant for the di�erent solutions, with a value of approximatively 181 Mm3/year, as
demonstrated in proposition 1.

We now analyse the problem for a medium-term planning horizon, between t=0 and
t = ta = 20 years. On the right hand, we note that the di�erent solutions intersect before
the arrival of the shock. In particular, total extractions until the arrival of the shock are
higher in the feedback case (9 672 Mm3) than in the OL (8 383 Mm3) and SO (6 044
Mm3) solutions. This means that the feedback strategy is also the less conservative for the
resource in the medium-term. In other words, the "impatience e�ect", that is the increase
of extractions before the occurrence of the shock is more important in the feedback case,
and less important in the socially optimal solution.

Let us now calculate the well-being (described in equation (7)) associated to the dif-
ferent strategies, (for the numerical example of the Figure 1) at the medium and long
terms. In the long term (cf. Table 5), the ine�ciency of the feedback solution with regard
to the socially optimal solution is estimated at approximately 37 478 thousands of euros
and at 23 085 thousands of euros with regard to the open-loop solution. At the medium
term (cf. Table 5), the di�erence of welfare between the SO and FB solutions is positive,
but between the SO and OL solutions is negative, that is the open loop strategy is more
pro�table than the socially optimal solution until the occurrence of the shock. Additional
simulations are then necessary to better understand this result.

Variation of the intensity of the shock

In this section, we compare the e�ciency (in terms of stock and welfare) of the various
solutions for shocks of di�erent intensities. For example, in Figure 2 we simulate a shock
of 210 Mm3/year, which is about 140 Mm3/year more intense than the shock described in
the previous section (and illustrated in Figure 1), but takes place at the same date.

First, we analyse the problem in the long term. We note that the cost and the strate-
gic e�ects, evaluated as the di�erence between the SO and OL solutions and respectively
between the OL and FB solutions, remain positive and are twice as high as that of the
mid-intense shock of 70 Mm3/year, which is three times less intense. This means that
cost and strategic e�ects do not vary proportionally with a change on the intensity of the
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G(t) g(t)

GSO

GOL

GFB

gSO

gOL

gFB

t t

Figure 2: Solutions ofG∗(t) (left-land side) in millions of cubic meters and g∗(t) (right-hand
side) in millions of cubic meters per year : the social optimum (in green), the open-loop
(in blue) and the feedback cases (in red), when r1− r2 = 210 and ta = 20 years.

shock. Moreover, we made other simulations for shocks of di�erent intensities which are
illustrated in Table 2. We con�rm that the cost and strategic e�ects decrease when r2 de-
creases, as proved theoretically in proposition 3. Second, in Table 4 and 5, we can observe
that the di�erences of welfare decrease the more intense the shock. This means that the
ine�ciency (in terms of stock and welfare) derived from private exploitation, evaluated as
the di�erence between the SO and the FB solutions, is maximal for low-intense shocks.
For example, the loss of welfare derived from private exploitation under competition (feed-
back solution) is about 6 millions euros smaller when the intensity of the shock increases
by around 140 Mm3 (see the di�erence between columns 5 and 7 of the last line in Table 5).

We now make the same type of analysis in the �nite planning horizon [0,ta] (with
ta = 20), that is at medium term. We �rst analyse extraction behavior before the occur-
rence of the shock (before ta) for the various solutions (see the right-hand side of Figure
2). In the medium term, total extractions in the feedback case (9 757 Mm3) remain higher
than in the OL (8 810 Mm3) and SO 6 474 Mm3) cases. Moreover, in the three cases, we
observe a more intense extraction behavior in comparison with the shock of mid-intensity of
70 Mm3/year. Indeed, total extractions increase by 85, 427 and 430 Mm3 for the cases FB,
OL ans SO respectively when the intensity of the shock increases by around 140 Mm3/year.
In addition, the impatience e�ect, increases the higher the shock and this increase is more
important in the SO and OL cases than in the FB case. This means that the magnitude
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of the "impatience e�ect" is reduced when considering the "strategic" externality. On the
other hand, the study of the di�erences in welfare obtained because of di�erent extraction
behaviour in the medium term (Table 5) shows that welfare obtained from SO-OL and
OL-FB strategies vary in a non-monotonic way with respect to the value of the shock,
reaching sometimes negative values. Hence, the social optimum is not always the e�cient
solution, if we analyse the problem in the short or medium terms.

r1 − r2 30 70 210

SO-OL 3 300 2 899 1 500
OL-FB 2 104 1 850 956
SO-FB 5 404 4 749 2 456

Table 2: Di�erences between solutions of stock in millions of m3 at the steady state.

r1 − r2 30 70 210

SO-OL 3 744 3 743 3 738
OL-FB 2 220 2 063 1 515
SO-FB 5 964 5 806 5 253

Table 3: Di�erences between solutions of stock in millions of m3 at the date of occurrence
of the shock, ta = 20.

r1 − r2 30 70 210

[0, ta] TOTAL [0, ta] TOTAL [0, ta] TOTAL

SO 110 446 150 451 111 462 146 658 114 666 136 234
OL 114 908 135 750 114 886 132 265 114 445 122 475
FB 101 074 110 879 101 039 109 180 100 900 104 637

Table 4: Welfare from SO, OL and FB strategies (in thousands of euros) for di�erent values
the shock r1 − r2 and for the date of occurrence ta = 20.

r1 − r2 30 70 210

[0, ta] TOTAL [0, ta] TOTAL [0, ta] TOTAL

SO-OL -4 462 14 701 -3 424 14 393 221 13 759
OL-FB 13 834 24 871 13 847 23 085 13 545 17 838
SO-FB 9 372 39 572 10 423 37 478 13 766 31 597

Table 5: Di�erences of welfare (in thousands of euros) for di�erent values the shock r1− r2
and for the date of occurrence ta = 20.

Variation of the date of the shock
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Figure 3: Solutions ofG∗(t) (left-land side) in millions of cubic meters and g∗(t) (right-hand
side) in millions of cubic meters per year : the social optimum (in green), the open-loop
(in blue) and the feedback cases (in red), when r1 − r2 = 70 and ta = 5 years.

After the analysis and estimation of extraction behaviour in the di�erent cases accord-
ing to the intensity of the shock, we study the di�erent solutions with respect to the date
of occurrence of the shock. In Figure 3, we observe optimal solutions of stock G∗(t) (on
the left) and pumping rate g∗(t) (on the right), in particular the socially optimal (SO) (in
green), the open loop (in blue) and the feedback solutions (in red), for a shock of mid-
intensity of 70 millions of cubic meters per year (Mm3/year) (i.e. r1 − r2= 70 Mm3/year)
at the 5th year of exploitation (ta = 5 years). In what follows, we compare this shock with
the previous shock illustrated in Figure 1, which has the same intensity but takes place 15
years later.

ta = 5 ta = 20 ta = 50

SO-OL 2 373 3 743 3 625
OL-FB 1 472 2 063 2 019
SO-FB 3 845 5 806 5 645

Table 6: Di�erences between solutions of stock evaluated at t = ta (Gta) in millions of m3

for a shock of 70 Mm3/an, at di�erent dates of occurrence ta.

In the long-run analysis, simulation results do not depend on the date of occurrence
of the shock as we note in analytical solutions (equations (16), (17) and (18)). This is
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not true in terms of welfare (see Table 7). We note that total welfare increases the later
the shock occurs. Logically, farmers better adapt to a shock which occurs later in time,
procuring a gain of welfare. The same results is obtained when we compute di�erences
between solutions (see Table 8). For example, the loss in total welfare derived from private
explotation under competition (feedback solution) with respect to optimal exploitation, is
greater of around 3 800 thousands of euros when the shock occurs in ta = 20, instead of
occurring earlier at ta = 5.

However, results change if we realize a short-term analysis of e�ciency in terms of stock
and welfare. Once again, we con�rm that until the arrival of the shock, total extractions
are higher in the FB case (4 254 Mm3) than in the OL (3 328 Mm3) and SO (1 845 Mm3)
cases. Moreover, they are less important than in the later shock that occurs at ta = 20.
However, we made other simulations of shocks of di�erent dates in Table 6 and con�rm that
the previous result is not monotonic in time. For example, we observe that the di�erences
between solutions increase between ta = 5 and 20, but decrease between ta = 20 and 50.
In terms of welfare, we can see in Table 7 that welfare obtained in [0,ta] increases the later
the shock occurs. This is logical because extractions are also more important when the
shock takes place later. This can be explained by the fact that for later occurring shocks,
farmers take the time to better adapt to the shock before its occurrence. However, when
the shock occurs at an earlier date (ta = 5), di�erences between solutions are negative in
the short term (see Table 8). The ine�ciency of private exploitation (in terms of stock)
is translated by a gain of welfare in the short term, in contrast with results obtained in
the long-term. For example, feedback strategies entail a gain of 21,3 millions of euros with
regards to the social optimum, for a shock of mid-intensity (70 Mm3) which takes place
at ta = 5 years. This result means that in case of occurrence of this shock the planning
horizon [0,5] is not su�ciently long to adapt to this shock.

r1 − r2 ta = 5 ta = 20 ta = 50
[0, ta] TOTAL [0, ta] TOTAL [0, ta] TOTAL

SO 48 912 138 348 111 462 146 658 144 321 152 021
OL 68 017 125 350 114 886 132 265 133 402 137 086
FB 70 268 104 725 101 039 109 180 109 876 111 594

Table 7: Welfare obtained from the di�erent solutions (in thousand of euros) for a shock
of r1 − r2=70 Mm3 and for di�erent dates of occurrence.

We conclude �rst, that the feedback solution is the least e�cient solution (in terms of
stock and welfare) over the in�nite planning horizon. Moreover, the ine�ciency derived
from private exploitation (that is open-loop and feedback strategies) is maximal for low-
intense or later occurring shocks. However, this result is not true in a shorter planning
horizon. The ine�ciency of private exploitation (in terms of stock) can result in a gain of
welfare if the planning horizon is not su�ciently long to adapt to the shock.
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r1 − r2 ta = 5 ta = 20 ta = 50
[0, ta] TOTAL [0, ta] TOTAL [0, ta] TOTAL

SO-OL - 19 105 12 998 -3424 14 393 11 219 14 935
OL-FB - 2 251 20 625 13 847 23 085 23 526 25 492
SO-FB -21 356 33 623 10 423 37 478 34 745 40 427

Table 8: Di�erences of welfare (in thousand of euros) from di�erent strategies for a shock
of value r1 − r2=70 Mm3 and di�erent fates of occurrence.

5.2.2 An alternative information structure: piecewise open-loop

G(t) g(t)

t t

GOL

GFB

gOLM

gOL

gFB

Figure 4: Solutions of G∗(t) (on the left hand-side) in millions of m3 and g∗(t) (on the
right hand-side) in millions of m3/year: open-loop (in blue), piecewise open-loop (in dotted
black) and feedback (in red), for a shock of r1− r2 = 70Mm3 that occurs at ta = 20 years.

Finally, a more realistic case than the information structure open-loop (OL) is the
open-loop structure by parts (POL), also called the piecewise open-loop. This solution
o�ers the possibility of rede�ning open-loop strategies at the time of arrival of the shock.
Intuitively, this type of information would be situated between the OL and FB cases. We
want to con�rm our initial intuition by realizing numerical simulations.

Figure 4 depicts solutions of stock (on the left) and pumping rate (on the right) for the
shock of mid-intensity (r1 − r2=70 Mm3 ) that takes place at the medium term (ta = 20)
obtained from the di�erent information structures: open-loop (in blue), piecewise open-
loop (in dotted black) and feedback (in red).

As usual, we analyse �rst results at the steady state. In terms of stock, solutions are the
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[0, ta] TOTAL

OL 114 886 132 265
POL 113 865 128 116
FB 101 039 109 180

Table 9: Welfare obtained from the di�erent solutions (in thousand of euros) for a shock
of r1 − r2=70 Mm3 occurring at ta = 20.

same as in the open-loop case as we prove analytically in equation (17), but total welfare
is greater in the open-loop case by around 4 millions of euros. This is because of di�erent
extraction behaviour at short and medium term. It�s then more interesting to analyse
the di�erent pumping strategies until the arrival of the shock. In the POL case, total
extractions are around 9 084 Mm3 and provides a level of welfare of 113 865 thousands of
euros at the medium-term. As we expected, pumping rates of this alternative information
structure are placed between OL and FB solutions, with 8 368 Mm3 and respectively 9 762
Mm3 of total water pumped before ta. Moreover, the di�erence of welfare with regard to
the OL case is around one million of euros at the medium term (cf. Table 9).

We conclude that the piecewise open-loop structure is a less e�cient solution (in terms
of stock and welfare) than the open-loop structure at medium term. At the steady state,
the two types of information structures OL and POL provide the same levels of stock.
However, the OL strategy is preferable in terms of welfare. This means that it is not
interesting for farmers to make a new commitment and rede�ne open-loop strategies at the
time of arrival of the shock.

6 Conclusions and discussion

We have extended the analysis of a deterministic shock made in de Frutos Cachorro et al.
(2014) [1] by taking into account the di�erent externalities which arise in the exploitation of
a common groundwater resource, i.e. the dynamic and strategic interactions between users
of the resource. We present di�erent solutions: the social optimum and two Nash equilibria
corresponding to classic information structures: open-loop and feedback. Moreover, we
propose an alternative information structure, more realistic than the open-loop situation,
the piecewise open-loop structure.

Firstly, we analyse the impact of the deterministic shock on stock levels at the steady
state according to the various structures of information used by farmers. We �nd the same
tendencies proved in [1] when they only study the socially optimal case. We show �rst
that di�erent solutions (at the steady state) do not depend on the intensity of the shock,
but on the value of the recharge rate upon occurrence of the shock. Thus, the lesser the
value of the recharge rate, the more the level of the stock of the resource decreases. Never-
theless, even if adaptation behaviour in the face of such shocks is similar for the di�erent
information structures, the magnitude of the impact of di�erent pumping strategies on the
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stock is signi�cantly di�erent. We then analyse di�erences between the socially optimal,
the open-loop and the feedback strategies. We remind that Negri (1989) [5] shows (at the
steady state) that the di�erence between the solutions SO and OL is positive and captures
the pumping cost externality. Furthermore, he shows that the di�erence between the solu-
tions OL and FB is positive and captures the strategic externality. Finally, the di�erence
between the solutions SO and FB is then positive, and captures both externalities and
shows the ine�ciency of private exploitation. In this paper, we add to Negri�s analysis the
consideration of regime shifts as a variation on the recharge rate of the aquifer. We show
analytically that the pumping cost and strategic e�ect decrease the lesser the value of the
recharge rate upon occurrence. In order words, solutions get closer when the value of the
recharge rate is small. However, to estimate the magnitude of the ine�ciency of private
solutions according to the value of the shock and not to the value of the recharge rate at
the steady state, we have to measure externalities in terms of welfare. To this goal, we
apply our game for the particular case of the Western la Mancha (WLM) aquifer.

In the long term (steady-state), we con�rm theoretical results. When such shocks
occur, private exploitation (open-loop and feedback strategies) is ine�cient (in terms of
stock and welfare) compared to optimal exploitation. Moreover, the consideration of the
strategic externality (feedback solution) exacerbates the overexploitation of the resource
with respect to open loop strategies. These results are in agreement with the existing
literature (Negri (1989) [5], Rubio and Casino (2001) [8]). For example, for a shock of
mid-intensity which occurs at medium term, the total loss of welfare due to the private
exploitation under competition (feedback solution) is estimated to 37,4 millions of euros.
However, in the short and medium term, before the occurrence of the shock, result change.
We show that private exploitation remains the least e�cient solution in terms of stock but
this ine�ciency can be translated by a gain of welfare (instead of a loss) in many situations.
We therefore study the adaptation behaviour according to the characteristics (intensity or
the date of occurrence).

We �rst study the ine�ciency (in terms of stock) of di�erent solutions with respect to
the severity of the shock. We show that the "impatience e�ect", that is the increase in
extractions before the occurrence of the shock, is more important in the FB case than in
the SO and OL cases, but the magnitude of this increase with regards to the value of the
shock, is more important in the SO and OL cases, that in the FB case. In other words,
even if the FB strategy always entails lower levels of stock with regard to the OL and
SO strategies, the FB solution is less in�uenced by an increase of the value of the shock
because of supplementary information held by farmers. Moreover, we show that the cost
and strategic e�ects, that is di�erences between solutions, decrease the more important
the shock for shorter planning horizon. Next, we make the same analysis when the date of
occurrence of the shock varies. At the steady state, adaptation strategies do not depend on
the date of the shock. However, if we estimate the ine�ciency of the private exploitation
(in terms of stock) before the arrival of the shock, this one is more important for events
which take place in the medium term. In the short or respectively in the long term, the
cost and strategic e�ects are less important because the time of adaptation is insu�cient
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or respectively too long. In conclusion, in the existing literature ([4], [5], [8]), authors show
that di�erent e�ects (at the steady state) decrease the more important the capacity of the
aquifer and/or when the discount rate and/or the number of farmers increases. The main
contribution of the paper is to show that the di�erent solutions get closer also for lower
values of recharge rates in the long term and when the shock becomes more intense or
takes place in the medium term for shorter planning horizon.

Results change if we analyse the problem in terms of welfare. First, we conclude that
the ine�ciency of private exploitation is explained by a loss of total welfare calculated in the
in�nite planning horizon. Furthermore, this loss is maximal for low-intense or later shocks.
For example, this ine�ciency may reach about 40 millions of Euros for a low intense shock
that occurs in the medium-term. The most important policy implication of this analysis is
that a regulation through a centralized management of the Western la Mancha aquifer is
justi�ed. Moreover, this regulation becomes more necessary for low-intense or later shocks.
However, the ine�ciency from private exploitation can entail a gain of welfare in the short
or medium term. For example, open-loop and feedback strategies entails a total gain of 19
and respectively 2 millions of Euros with regard to the social optimum situation when the
shock arrives at a earlier date (for example at the �fth year of exploitation). This result
may explain why farmers in the �eld adopt intensive pumping rates if they do not consider
the long run.

Subsequently, we propose an alternative information structure situated between the
open-loop and feedback cases, namely the piecewise open-loop (POL) case. This structure
is more realistic than the OL, because it o�ers the possibility to restore open-loop strategies
at the time of occurrence of the shock. The study of the POL information structure of
information is especially interesting in the medium and short terms, because it entails more
conservative strategies than in the FB case, but less preservative than in the OL case. On
the other hand, at the steady state, solutions are the same for the OL and POL cases.
Furthermore, the POL strategy entails a loss of welfare with regard to OL solution in the
short, medium and long terms. This means that it is not interesting for the users to restore
new open-loop strategies at the time of the shock.

Finally, we want to propose some possible extensions of the chapter. Firstly, we can
introduce the uncertainty on the model, for example through the date of the shock, as
realized in [1], or on the intensity of the shock. Secondly, it would be interesting to introduce
asymmetries (or heterogeneities) between groups of farmers, or to take into account a higher
number of farmers. Thirdly, solutions to the ine�ciency of private exploitation could be
proposed for the particular case of the WLM aquifer.

A Resolution for the open-loop case

We are going to solve the open-loop case proceeding �rstly between ta and∞. The Hamil-
tonian of this problem is:
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Hi = Fi(G, gi)+πi(r2− (1−α)
M∑
i=1

gi) =
a

b
gi−

1

2bθi
g2i − (z− cG)gi+πi(r2− (1−α)

M∑
i=1

gi).

(22)
Applying the maximum principle and assuming interior solutions, we have the usual

�rst order conditions:

∂Hi

∂gi
= 0 ⇒ a

b
− z + cG− 1

bθi
gi − πi(1− α) = 0, (23)

π̇i = −∂Hi

∂G
+ ρπi ⇒ π̇i = −cgi + ρπi. (24)

The equilibrium of the open-loop game is obtained by solving M strategies which verify
the conditions (23) and (24) (i=1..M), i.e. a linear system of 2M equations. To simplify
the analytical resolution of the problem, we assume that players are symmetric, θi = 1

M ,
g = gi and π = πi. From (23), we �nd the optimal rate of extraction as a function of the
resource stock and the shadow price:

g =
1

M
(a− zb+ cbG− πb(1− α)). (25)

Substituting (25) in the equations of motion of the state (9) and adjoint variable (24),
we have the following dynamic system:

Ġ = r2 − (1− α)(a− zb)− cb(1− α)G+ πb(1− α)2, (26)

π̇ =
1

M
(−c(a− zb)− c2bG+ cb(1− α) + ρM)π, (27)

which allows us to �nd the roots of the characteristic polynom:

β1,2 =
ρM + c(1− α)b(1−M)

2M
(28)

±
√
ρ2M2 + cb(1− α)(−2M(1− α)cb+ c(1− α)b(1 +M2) + 2ρM(1 +M))

2M
. (29)

From equations (25), (26) and (27), with Ġ = 0 and π̇ = 0, we �nd the steady state of
the problem:

gOL∞ =
r2

(1− α)M
, (30)

πOL∞ =
cr2

Mρ(1− α)
, (31)

20



GOL∞ =
r2

cb(1− α)
+

r2
Mρ
− a

cb
+
z

c
. (32)

Assuming parameters are positives, g∞ and π∞ (equations (30) and (31)) have always
positives values. Moreover, in what follows, we assume parameters such as the value of
G∞ (equation (32)) is also positive.

Finally, we �nd optimal extraction path with β2, the negative root:

GOL+(t) = eβ2(t−ta)(Gta −GOL∞ ) +GOL∞ , (33)

gOL+(t) =
r2

(1− α)M
− β2

(1− α)M
eβ2(t−ta)(Gta −GOL∞ ), (34)

πOL+(t) = eβ2(t−ta)(πta − πOL∞ ) + πOL∞ , (35)

and,

πta =
a

b(1− α)
− z − cGta

(1− α)
− 1

b(1− α)2
(r2 − β2(Gta −GOL∞ )), (36)

which is obtained from equations (9) and (23) with r = r2.

In a second step, we will solve the problem between 0 and ta. In this period, the
Hamiltonian of the problem is described by:

Hi = Fi(G, gi)+πi(r1− (1−α)
M∑
i=1

gi) =
a

b
gi−

1

2bθi
g2i − (z− cG)gi+πi(r1− (1−α)

M∑
i=1

gi).

(37)
We use the same principle of resolution than previously. We have �rst order conditions

(equations (22), (23), (24) with r2 = r1) by applying the maximum principle. Moreover,
we assume that players are symmetric.

In a �nite horizon problem, we write solutions as described below:

GOL−(t) = C1e
β1t + C2e

β2t + C3, (38)

πOL−(t) = D1e
β1t +D2e

β2t +D3. (39)

Substituting GOL−(t) and πOL−(t) (equations (38) and (39)) in �rst order conditions
(23), (24), and taking into account boundary conditions G(0) = G0 and π(ta) = πOL+(ta),
we obtain a system of 6 equations with 6 unknowns (Ci, Di with i=1,2,3). We �nd the
follow solutions to the system:4:

4Solutions of Di for i=1,2,3, are not detailed here, but they are available from authors request.
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C1 =
−(1− α)b(−ρMcr1 + ρMc(1− α)2bπta − (1− α)c2br1)− c2eβ2taρM(1− α)bG0

D1

+ceβ2taρM(r1 + (1− α)zb− (1− α)a) + cr1Mβ2 − (1− α)ρM2πta(β2 − ρ) + c2eβ2tab(1− α)r1
D1

+ceβ2taρM(r1 + (1− α)zb− (1− α)a) + cr1Mβ2 − (1− α)ρM2πta(β2 − ρ))

D1
, (40)

with

D1 = ρM(−eβ1taβ1(ρM+cb(1−α)−Mβ2)+(1−α)cb(−(1−α)cb(eβ2ta−eβ1ta)+Meβ1ta(β2−ρ))),

C2 =
−(−ρM − cb(1− α) + β2M)(−c2b2(1− α)2r1 − ρMeβ1tacb(1− α)G0(β1 + cb(1− α))

D2

+cb2(1− α)3ρMπta + eβ1ta(β1 + cb(1− α))(ρM(r1 − (a− zb)(1− α)) + cb(1− α)r1)

D2
, (41)

with

D2 = cb(1− α)ρM((β2 − ρM − cb(1− α) +Mβ2)),

+cb(1− α)(eβ2tacb(1− α) + eβ1ta(−cb(1− α)(β2 − ρ)M)),

C3 =
ρM(r1 − (a− zb)(1− α)) + cb(1− α)r1

cb(1− α)ρM
. (42)

with πta described in equation (36). Finally, taking into account that G(t) is a continuous
function (GOL−(ta) = GOL+(ta)), we �nd optimal solutions for the open loop game, that
is GOL(t), gOL(t) and πOL(t).
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B Resolution of the piecewise open loop case

As in the previous case, we are going to solve the problem �rst between ta and ∞,

max
gi(.)

∫ ∞
ta

Fi(G, gi) e−ρ(t−ta) dt, (43)

with Fi(G, gi) (equation (8)), constrained by the dynamics (equation (9)) with r = r2 and
conditions (11) and G(ta) = Gta.

Assuming that players are symmetric and applying the maximum principle, we have to
solve the same problem than in the previous section between ta and ∞. Thus, we obtain
solutions described in equations (33), (25) and (35).

In a second step, we solve the problem between 0 and ta, that is,

max
gi(.)

∫ ta

0
Fi(G, gi) e−ρt dt+ e−ρtaφ(ta, Gta). (44)

Ġ = −(1− α)
M∑
i=1

gi + r1. (45)

G(0) = G0 given, (46)

with the transversality condition

π(ta) =
∂φ(ta,Gta)

∂Gta
, (47)

where π(t) is the adjoint variable. φ(ta,Gta) represents the post event value (or "scrap
value function") and is described by the following equation:

φ(Gta) = σ + τGta + υG2
ta,

5 (48)

with,

τ =
β2(1− α)2c2b2ρr2 + 2β2M(1− α)2cb2ρ2z + β22M(1− α)bρ2z − 2β22M(1− α)cbρr2

M2(1− α)3cb2ρ(ρ2 − 3ρβ2 + 2β22)

+M(1− α)2c2b2ρ2r2 + 2β2M(1− α)cbρ2r2 + 2β22M(1− α)2cbρa− β22M(1− α)ρ2a

M2(1− α)3cb2ρ(ρ2 − 3ρβ2 + 2β22)

−2β2M(1− α)2cbρ2a+ β32M(1− α)ρa+ β22Mρ2r2 − 2β22M(1− α)2cb2ρz

M2(1− α)3cb2ρ(ρ2 − 3ρβ2 + 2β22)

5We do not detail the expression σ because it is not necessary for resolution, but it is available from
authors on request.
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+β22(1− α)cbρr2 − 2r2M(1− α)2c2b2ρβ2 − β32(Mρr2 +M(1− α)bρz + (1− α)cbr2)

M2(1− α)3cb2ρ(ρ2 − 3ρβ2 + 2β22)
,

(49)

υ = − β2(β2 + 2c(1− α)b)

2M(1− α)2b(ρ− 2β2)
(50)

and β2 < 0, the negative root described in equation (29). In the period t=[0, ta], solutions of
the piecewise open loop case are solutions of the problem open loop described in equations
(38) and (39)), with π(ta) which veri�es condition (47). Finally and assuming that G(t)
is a continuous function, we obtain optimal solutions of the piecewise open loop problem:
GPOL(t), gPOL(t) and πPOL(t).

C Resolution of the feedback case

Now, for the feedback case, we solve as previously �rst the problem between ta and ∞.
The problem of player i is:

max
gi(.)

∫ ∞
ta

Fi(G, gi) e−ρ(t−ta) dt, (51)

with Fi(G, gi) (equation (8)), constrained by the dynamics (12) with r = r2 and conditions
(11) and G(ta) = Gta.

For each player i (i = 1..M) the optimal value of the resource, V i(G), have to verify
the Hamilton-Jacobi-Bellman equation:

ρV i(G) = max
gi

(Fi(G, gi)− V i
G(G)(r2 − (1− α)

M∑
j=1

gj)), i = 1..M, (52)

with V i(G) and gj (j 6= i):

V i(G) = AG2 +BG+ C, (53)

gj = ajG+ bj . (54)

To simplify the analytical resolution of the problem, we assume now M = 2 players (or
group of farmers). First, we solve the problem for the player 1 (i.e. i = 1). Solving the
problem on the right hand-side of (52), we �nd the optimal pumping rate of player 1, g∗1:

g∗1 = a1G+ b1. (55)

with,
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a1 =
b(c− 2(1− α)A)

2
, (56)

b1 =
a− zb− b(1− α)B

2
. (57)

Substituting now g∗1 on the right hand-side of equation (52) and equalizing the left and
hand sides of the equation, we obtain optimal values of coe�cients A, B and C of V i with
regards to variables a2 and b2 (see equation (54)), which are coe�cients of pumping rate
of player 2.

Moreover, assuming that players are symmetric as in the previous cases, g1(t)=g2(t)
for any t = ta..∞. Thus, a1=a2 and b1=b2. Substituting A

∗ and B∗ in equations (56) and
(57), and taking into account the propriety of symmetry between players, we �nd optimal
values of coe�cients of the pumping rate function of player 1, b∗1 and a

∗
1:

b∗1 =
(1− α)ρ(−a+ zb) + (1− α)2a∗1(−a+ zb) + r2(ρ+ (1− α)(cb+ 2a∗1))

(1− α)((1− α)(cb+ 2a∗1) + 2
√

(ρ+ 2(1− α)a∗1)(ρ+ 2(1− α)(cb+ a∗1)))

+
r2
√

(ρ+ 2(1− α)a∗1)(ρ+ 2(1− α)(cb+ a∗1))

(1− α)((1− α)(cb+ 2a∗1) + 2
√

(ρ+ 2(1− α)a∗1)(ρ+ 2(1− α)(cb+ a∗1)))
. (58)

a∗1 =
−ρ+ (1− α)cb+

√
ρ2 + 4ρ(1− α)cb+ (1− α)2c2b2

6(1− α)
. (59)

Finally, substituting b∗1 and a∗1 in the dynamics of the aquifer (12) with r = r2, we
may solve the di�erential equation (12), constrained by condition G(ta) = Gta. Then, we
obtain optimal solutions of the feedback problem, GFB+(t), gFB+

1 (t) and the optimal value
fonction V ∗(G) in [ta,∞):

GFB(t) = e−2(1−α)a
∗
1(t−ta)(Gta −G∞) +G∞, (60)

gFB1 (t) =
r

2
+ 2(1− α)a∗1e

−2(1−α)a∗1(t−ta)(Gta −G∞),

and

V +(G) = A∗G2 +B∗G+ C∗, (61)

with,

G∞ =
r2

2(1− α)a∗1
− b∗1
a∗1

(62)
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and b∗1, a
∗
1 described in equations (58) and (59).

Next, we solve the problem between 0 and ta. The value function of the problem of
player i, V i(t, G) 6 veri�es the Hamilton-Jacobi-Bellman equation:

ρV i(t, G)− V i
t (t, G) = max

gi
(Fi(G, gi)− V i

G(G)(r1 − (1− α)
M∑
j=1

gj)), i = 1..M, (63)

with V i(G, t) and gj (j 6= i):

V i(t, G) = A(t)G2 +B(t)G+ C(t), (64)

gj(t) = aj(t)G+ bj(t), (65)

and the transversality condition,

V i(ta, Gta) = V +(Gta). (66)

The value of V +(Gta) is obtained from the �rst step of resolution of the problem, and
is described in equation (61). To solve the second step of the problem, we are going to use
a similar process than we use previously. The challenge here lies in the fact that strategies
of players depend on the stock of the resource G and on functions a1(t) and b1(t) in a
independent way. So, the resolution of the problem is largely numerical.

First, assuming M = 2 players and solving the right part of equation (63) for i = 1, we
�nd the expression (55) that is the optimal pumping rate of player 1, g∗1(t), with a1 = a1(t)
and b1 = b1(t), described in equations (56), (57) and A = A(t), B = B(t), which are now
functions that depend on t.

Moreover, as players are symmetric, g1(t)=g2(t) for any t = 0..ta, then a1(t)=a2(t) and
b1(t)=b2(t). Now, substituting g

∗
1(t) in the right part of equation (63), and equalizing the

right and left parts of the equation, we have to solve a system of 3 di�erential equations
in A(t), B(t) and C(t), which are coe�cients of the value function V (t, G), between t = 0
and t = ta, (see equation (64)), taking into account boundaries conditions:

A(ta) = A∗, B(ta) = B∗, C(ta) = C∗,

derived from the transversatity condition (66):

V −(Gta, ta) = A(ta)G
2
ta +B(ta)Gta + C(ta) = V +(Gta).

At this stage, we obtain A∗(t) and B∗(t) by a numerical approximation method. Sub-
stituting A∗(t) and B∗(t) in expression g∗1(t), we �nd the optimal values of coe�cients

6We remind that in this type of problem with a �nite horizon planning, the value function have to be
described as a function that depends on G and t independently.
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b∗(t) and a∗(t) of the pumping rate. Next, we substitute these values in the equation of
motion (12) with r = r1. Finally we obtain the numerical solution of the feedback problem
between 0 and ta, that is G

FB−(t) and gFB−(t), where the initial condition G(0) = G0, is
given.

D Resolution of the social optimum

To solve this problem, we separate it into two parts and proceed by backward induction.
First, we solve the maximization between ta and ∞. The problem of the social planner is
to �nd φSO(Gta),

φ(Gta) = max
gi(.)

∫ ∞
ta

M∑
i=1

Fi(G, gi) e−ρ(t−ta) dt, (67)

with Fi(G, gi) (equation (8)), constrained by equation (9) with r = r2 and conditions (11)
and G(ta) = Gta.

The Hamiltonian of this problem is given by:

H =

M∑
i=1

(
a

b
gi −

1

2bθi
g2i − (z − cG)gi) + λ(−(1− α)

M∑
i=1

gi + r2),

where λ is the adjoint variable. Applying the maximum principle and assuming interior
solutions, we have the usual �rst order conditions:

∂H

∂gi
= 0 ⇒ a

b
− 1

bθi
gi − (z − cG)− λ(1− α) = 0, i = 1..M, (68)

λ̇ = −∂H
∂G

+ ρλ ⇒ λ̇ = −c
M∑
i=1

gi + ρλ, i = 1..M. (69)

We assume that players are symmetric in order to simplify the analytical resolution of
the problem. Thus, θi = 1

M and g = gi.
From (68), we �nd the optimal extraction volume as a function of the resource stock

and the shadow price:

g =
1

M
(a− zb+ cbG− λb(1− α)). (70)

Substituting (70) in the equations of motion of the state (9) and adjoint variable (69),
we have the following dynamic system:

Ġ = r2 − (1− α)(a− zb)− cb(1− α)G+ λb(1− α)2, (71)

λ̇ = −c(a− zb)− c2bG+ (cb(1− α) + ρ)λ, (72)
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which allows us to �nd the roots of the characteristic polynom:

ρ1,2 =
ρ±

√
ρ2 + 4cb(1− α)ρ

2
. (73)

From equations (70), (71) and (72), with Ġ = 0 and λ̇ = 0, we �nd the steady state of
the social optimum problem:

gSO∞ =
r2

(1− α)M
, (74)

λSO∞ =
cr2

ρ(1− α)
, (75)

GSO∞ =
r2

cb(1− α)
+
r2
ρ
− a

cb
+
z

c
. (76)

Since we assume that all parameters are positive, g∞ and λ∞ (equations (74) and (75))
are always positive. Moreover, in what follows, we consider parameters such that G∞
(equation (76)) is positive.

Finally, we have the optimal extraction paths from t = ta, with ρ2, the negative root:

GSO+(t) = eρ2(t−ta)(Gta −G∞) +G∞, (77)

λSO+(t) = eρ2(t−ta)(λta − λ∞) + λ∞, (78)

gSO+(t) =
r2

(1− α)M
− ρ2

(1− α)M
(Gta −G∞)eρ2(t−ta), (79)

with,

λta =
a

b(1− α)
+
−z + cGta

(1− α)
− r2
b(1− α)2

+
1

b(1− α)2
ρ2(Gta −G∞), Gta unknown.

Substituting (77) and (79) in problem (67), we can compute the scrap value, φSO(Gta)
7:

φ(Gta) = ε+ κGta + ιG2
ta, with8 (80)

κ =
−r2ρ(4cb(1− α) + ρ) + ρ2(1− α)(a− zb) + 4cb(1− α)2ρ(a− zb)

ρ(1− α)2b(η + ρ+ 4cb(1− α))

7We �nd that the expression φ(ta,Gta) does not have the independent term ta. In what follows, we
write the scrap value function, φ(Gta).

8We do not detail expression of σ because it is not necessary for the resolution of the problem, but it
is available from the authors upon request
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+
(2cb(1− α) + ρ)r2η − ρ(1− α)η(a− zb))

ρ(1− α)2b(η + ρ+ 4cb(1− α))
, (81)

ι = − c(−4cb(1− α)− ρ+ η)

(1− α)(η + ρ+ 4cb(1− α))
, and (82)

η =
√
ρ
√
ρ+ 4bc(1− α). (83)

We now turn to the second part of the problem, between 0 and ta, considering the opti-
mal solution for the �rst part. The problem for the social planner is now (44) constrained
by equations (45), (46) and the transversality condition:

λ(ta) =
∂φ(ta,Gta)

∂Gta
= 2ιGta + κ, .

with φ(ta,Gta) described by equation (80). The Hamiltonian can be written as:

H =
M∑
i=1

(
a

b
gi −

1

2bθi
g2i − (z − cG)gi) + λ(−(1− α)

M∑
i=1

gi + r),

where λ is the adjoint variable. Applying the maximum principle and assuming interior
solutions, we have the usual �rst order conditions (68) and (69). From this and equation
of the motion of the state (45), with r = r1, we have the system of di�erential equations:

Ġ = r1 − (1− α)(a− zb)− cb(1− α)G+ λb(1− α)2, (84)

λ̇ = −c(a− zb)− c2bG+ (cb(1− α) + ρ)λ. (85)

We know that the solutions of the �nite problem are now, of the shape:

GSO−(t) = A1e
ρ1t +A2e

ρ2t +A3, (86)

λSO−(t) = B1e
ρ1t +B2e

ρ2t +B3,

with,

GSO−(0) = A1 +A2 +A3 = G0, (87)

λ(ta) = B1e
ρ1ta +B2e

ρ2ta +B3 = 2ιGta + κ, (88)

and ρ1, ρ2 described in equation (73). This constitutes a system of 6 equations and 6
unknowns, which we can solve to �nd optimal solutions for the problem for the �rst period,
between 0 and ta. We �nd optimal values of Ai, Bi (i = 1..3)9:

9We do not provide detailed solutions of Bi (i = 1..3) because the equations are too long and they are
not necessary for the proofs, however, they are available from the authors upon request.
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Ai = Ci1 + Ci2(2υG
∗
r(ta) + τ), i=1,2,

with,

C1
1 =

b(1− α)(ρc(r1 + (1− α)eρ2ta(a− zb)− r1eρ2ta)− ρ2cr1)
D1

+
b(1− α)((1− α)c2(r1b+ eρ2taρbG0 − r1beρ2ta))

D1
,

C1
2 =

b(1− α)2ρ(ρ2 − ρ− cb(1− α))

D1
,

D1 = ρ((ρ2−ρ)eρ1tacb(1−α)+c2b2(1−α)2(eρ2ta−eρ1ta)−cb(1−α), ρ1e
ρ1ta+ρ1e

ρ1ta(ρ2−ρ)),

C2
1 =
−(cb(1− α) + ρ− ρ2)(ρ1eρ1taρ((1− α)(a− zb)− r1)

D2

+
c2b2(1− α)2(G0ρ+ r1 − r1eρ1ta)

D2
,

+cb(1− α)((G0ρ− r1)eρ1taρ1 − ρr1eρ1ta) + cb(1− α)2eρ1taρ(a− zb))
D2

,

C2
2 =

(cb(1− α) + ρ− ρ2)(cb2(1− α)3ρ)

D2
,

D2 = cb(1− α)ρ((ρ2 − ρ)cb(1− α)eρ1ta + c2b2(1− α)2(eρ2ta − eρ1ta))

+cb(1− α)ρ(−cb(1− α)eρ1taρ1 − ρeρ1taρ1 + eρ1taρ1ρ2),

and,

A3 = −r1ρ− ρa+ ρzb+ ραa− ραzb+ cr1b− cr1bα
bρ(α− 1)c

. (89)

Finally, considering the continuity of the function of the variable state, i.e. GSO−(ta) =
GSO+(ta), we obtain optimal solution of the stock GSO(t) and water pumping gSO(t) for
the social optimum problem.
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E Proofs of propositions

Proposition: At the steady state, the strategic e�ect, evaluated as the di�erence
GOL(∞)-GFB(∞), is always positive.

Demonstration We have to prove that GFB∞ −GOL∞ < 0.
From equations (17) and (18), we know that

GFB∞ −GOL∞ =
r2
2

(
1

2(1− α)a∗1
− 1

Mρ
− 1

(1− α)cb
+
a

cb
− z

c
− b∗1
a∗1
,

with b∗1, a
∗
1 described in equations (58) and (59).

Substituting optimal values b∗1 and a
∗
1 (equations (57 and 56) and simplifying, we obtain

GFB∞ −GOL∞ =
F1

F2
, (90)

with F2 described in expression,

F2 = 2cρ(2A∗(1− α) + c),

and

F1 =
E1

E2
, (91)

with,

E1 = c(
a

b
− z) + r2

2

b
2A∗ + 4A∗(

a

b
− z)(α− 1)

and

E2 = −ρ2

b
+ 2c(α− 1) + 6A∗ − 12A∗α+ 6A∗α2.

On one hand, F2 > 0 because A∗ < c
2(1−α) (stability condition of the feedback solu-

tion10).
Substituting now A∗ in E1 and E2, we obtain

E1 = −1

6
(2(α− 1)c+ ρ

2

b
−
√
ω)r2c

2 (92)

and

E2 = −ρ2b− 1

2

√
ω.

10This condition is derived from Rubio and Casino [8] and it is necessary to assure the stability of the
linear system of di�erential equations.
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As ω and b have positive values by assumption, E2 < 0.
Now, two cases are possible. First, if (2(α− 1)c+ ρ2

b ) < 0, then the expression written
in brackets in equation (92)

(2(α− 1)c+ ρ
2

b
)−
√
ω (93)

is negative and then E1 is positive.
Second, if (2(α− 1)c+ ρ2

b ) > 0 in (93), evaluating the square of expression written in
brackets, then we obtain 12ρbc(α − 1) < 0. Thus, from the monotonic propriety of the
square function, the value of expression (93) is less than 0 and in the two possible cases,
E1>0.

Finally, if E1>0 and E2<0, then F1<0 (described in equation (91)). As F1<0 and
F2>0, we �nd from equation (90) that GFB∞ −GOL∞ < 0, as required. �
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