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1 Introduction

We deal here with mathematical models used in biology that involved deter-
ministic continuous dynamical systems (mostly: system of Ordinary Differen-
tial Equations) perturbed by random discrete events in time. Such perturbation
may either take the form of a discontinuous jump, or a change in the rule of
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the continuous motion (or both). This large class of non diffusion stochastic
models has been introduced in the literature and rigorously defined (from the
probabilistic perspective) by [Davis, 1984, Davis, 1993] (see also the more re-
cent work by [Jacobsen, 2006]). Applications to biology date back at least to
[Lasota et al., 1992]. We emphasize that in this latter work a rather determin-
istic approach is taken (semigroup theory and evolution equations on densities).
Note also that in a more applied literature, such models are usually referred as
stochastic hybrid models [Kouretas et al., 2006].

The aim of this note is to present some examples of Piecewise Deterministic
Markov Processes (PDMP) applied to biological modeling, and to give an infor-
mal description of the probabilistic objects and techniques used for the study
of such models for non-probabilist. We will try to convince the reader to the
relative simplicity to define such model. In particular, we will detail the path-
wise definition of PDMP, widely used for stochastic simulation of trajectories
of the process. We will also give informal martingale properties and generator-
definition of PDMP, as those are very useful both for concise definition of PDMP
and for mathematical study (in particular long time behavior). We will finally
highlight the link with semigroup techniques and evolution equations on den-
sities, which should be more familiar for the reader used to partial differential
equations.

The examples taken from the literature include cell-cycle model (or growth-
fragmentation), bacteria movement (or random intermittent search), ion chan-
nels in neuron models (Gating model), integrate and fire models for excitable
cells, gene expression models, microtubules growth and active transport inside
cells. Most of the examples are taken from [Bressloff, 2014, Malrieu, 2014,
Lasota et al., 1992]. An important class of models, that contains almost all
examples, concern biochemical reaction network models. Although tradition-
ally represented as system of ordinary differential equations, stochastic version
have been recently widely used in systems biology, in order to take into account
the observed experimental variability in cellular and molecular biology. We
will explain how PDMP then naturally arise as (computational and theoretical)
simplification of stochastic chemical reaction network.

2 Theoretical foundations: Poisson processes

The basic elements of a PDMP is a time-continuous deterministic system and
a discrete random process. For the latter, we need a mathematical framework
that allows to describe the time repartition of discrete events and to “count”
them.

Let pΩ,F ,Pq be a probability space with the sample space a non-empty set,
F a σ-algebra of subsets of Ω , and P a probability measure on F . Definitions
and properties in this section are taken from standard textbooks, see for instance
[Bremaud, 1981, Jacobsen, 2006, Björk, 2005].

2.1 The Poisson process

We start by the definition of a simple Point process, and its associated counting
process.
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Definition 1 (Point process). A point process is a sequence T “ pTnqně1 of
R

`-valued random variables defined on pΩ,F ,Pq such that

• P
 

0 ă T1 ď T2 ď . . .
(

“ 1 ,

• P
 

Tn ă Tn`1, Tn ă 8
(

“ P
 

Tn ă 8
(

, for all n ě 1 ,

• P
 

limnÑ8 Tn “ 8
(

“ 1 .

Thus, a point process is an almost surely increasing sequence of strictly
positive, possibly infinite random variables, strictly increasing as long as they
are finite and with almost sure limit 8. The interpretation of Tn is that, if
finite, it is the timepoint at which the nth recording of an event takes place with
less than n events occurring altogether (on the time axis R

` ) if Tn “ 8. By
definition, no event can happen at time 0.

Definition 2 (Counting process). A random process N “ tNt; t P R
`u is a

counting process if it satisfies the following conditions.

• The trajectories ofN are, with probability one, right continuous and piece-
wise constant.

• The process starts at zero, N0 “ 0.

• For each t, ∆Nt “ 0 or ∆Nt “ 1 with probability one. Here ∆Nt denotes
the jump size of N at time t, or more formally

∆Nt “ Nt ´ Nt´ .

In more pedestrian terms, the process N starts at 0 and stays at the level
0 until some random time T1 when it jumps to NT1

“ 1. It then stays at level
1 until another random time T2 ą T1 when it jumps to the value NT2

“ 2 etc.
We will refer to the random times T “ pTnqně1 as the jump (or event) times of
N . It should be clear at this point that T is a point process, and that both N
and T carry the same information and are related by

Nt “
ÿ

ně1

1Tnďt .

For instance,
´

Nt ě n
¯

ô
´

Tn ď t
¯

.

Remark 1. A third view point (not considered here) is to define a discrete
random measure. Although less intuitive, this is the right way to generalize it
to counting process (measure) on arbitrary space (useful for individual based
modeling for instance).

We now turn to the definition of a Poisson process. There are three equiva-
lent definitions that we now give. The understanding of all three definitions is
important to get a “feeling” of what is a Poisson process.

xdef:infy Definition 3 (The infinitesimal definition). A counting process N “ tNt; t P
R

`u is a Poisson process (of rate λ ą 0) if:
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• The process has independent increments, i.e., the number of events in
disjoint intervals are independent random variables

@ t0 ă t1 ă . . . ă tn,
´

Ntk ´ Ntk´1

¯

1ďkďn
are independent.

• The process has stationary increments, i.e.

@ t, h ą 0, the law of
´

Nt`h ´ Nt

¯

is independent of t .

• Only one event can occur at a time. More precisely, there is λ ą 0 such
that

P
 

Nh “ 1
(

“ λh ` ophq, P
 

Nh ą 1
(

“ ophq .

xdef:axy Definition 4 (The axiomatic definition). A counting process N “ tNt; t P R
`u

is a Poisson process (of rate λ ą 0) if:

• The process has independent increments, i.e., the number of events in
disjoint intervals are independent random variables

@ t0 ă t1 ă . . . ă tn,
´

Ntk ´ Ntk´1

¯

1ďkďn
are independent.

• The number of events in any time interval of length h is Poisson distributed
with mean λh, i.e., for all t, h ą 0:

P
 

Nt`h ´ Nt “ k
(

“ e´λh pλhqk

k!

xdef:consy Definition 5 (The constructive definition). A counting process N “ tNt; t P
R

`u is a Poisson process (of rate λ ą 0) if:

Nt “
ÿ

ně1

1Tnďt ,

for a sequence pTnq having independent identically distributed increments ∆Tn “
Tn ´ Tn´1, with an exponential distribution of parameter λ, i.e. for all n ě 1

P
 

∆Tn ą t
(

“ e´λt .

Equivalence of Definition. Def 3 ñ Def 4: One way to prove that Nt „ Popλtq
is by the probability generating function:

GNt
pzq “

ÿ

kě0

P
 

Nt “ k
(

zk.

SinceNt`h “ Nt`pNt`h´Ntq, by independent increments,GNt`h
“ GNt

GNt`h´Nt
.

Then

dGNt

dt
“ lim

hÑ0

GNt`h
´ GNt

h
“ lim

hÑ0

GNt

”

GNt`h´Nt
´ 1

ı

h

By the definition 3,

GNt`h´Nt
“ 1 ´ λh ` λhz ` ophq ,

so that
dGNt

dt
“ λpz ´ 1qGNt

.

Hence GNt
pzq “ eλtpz´1q, which is the p.g.f of a Poisson random variable.
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Remark 2. A different proof consider subdividing r0, ts in n (n Ñ 8) disjoints
intervals and use the Poisson limit theorem, e.g.

lim
nÑ8

Binpn, θnqptkuq “ Popλtqptkuq ,

if nθn Ñ λt.

Def 4 ñ Def 5: The distribution of the first jump time follows from

P
 

T1 ą t
(

“ P
 

Nt “ 0
(

“ e´λt .

The rest follows by the independence and stationarity of the increments. Specif-
ically, we show by induction that

P
 

∆Tn ą x | ∆T1 “ x1 ,∆T2 “ x2 , . . .∆Tn´1 “ xn´1

(

“ e´λx .

To prove that, we use that we can rewrite the event t∆T1 “ x1 ,∆T2 “
x2 , . . .∆Tn´1 “ xn´1u “ tT1 “ t1 , T2 “ t2 , . . . Tn´1 “ tn´1u with ti “
ři

k“1
xk, and the latter may be re-written as increments of N .

Def 5 ñ Def 3 : it only remains to show the independence of the incre-
ments. By the lack of memory property of the exponential, we can prove that

Zptq “
´

TNt`1 ´ t, TNt`2, TNt`3, . . .
¯

is independent of
´

Nt, T1, . . . , TNt

¯

and

distributed as Zp0q “
´

Tn

¯

ně1

. Now, since pNt`h ´ Ntqtě0 “ HpZptqq for

some measurable function H , and all t, this implies the independence of Nt and
pNt`h ´ Ntqtě0.

The main crucial property of the Poisson process may be summarized in this
formula

P
 

Nt`h ´ Nt “ 1 | pNsqsďt

(

“ P
 

Nt`h ´ Nt “ 1
(

“ λhe´λh .

As the jumps of N are 0 or 1, this may formally written as

E
“

dNt | pNsqsďt

‰

“ λdt

Hence λ is the expected number of jumps per unit of time. Let Ft the
σ-algebra generated by pNsqsďt, and define

Mt “ Nt ´ λt .

We have the Martingale property

Proposition 1. For all s, t,

E
“

Mt`s | Ft

‰

“ Mt .

Proof. The proof is trivial using the independence of the increments and the
law of the increments, we have

E
“

Nt`s ´ Nt | Ft

‰

“ E
“

Nt`s ´ Nt

‰

“ λs .

We finish by stating some standard properties of Poisson Processes
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Proposition 2. • If N1,N2 are independent Poisson processes of rate resp.
λ1 and λ2, then N defined by

Nptq “ N1ptq ` N2ptq

is a Poisson process of intensity λ “ λ1 ` λ2.

• Let N a Poisson process of intensity λ. Suppose that N1 and N2 are
counting process constructed as follows. For each arrival of N , the first
process N1 is augmented of 1 with probability p, and the second N2 is
augmented of 1 with probability p1´pq, and so independently of the previous
arrival. Then N1 and N2 are independent Poisson processes of rate resp.
pλ and p1 ´ pqλ.

• if N a Poisson process of intensity 1, then Nλ defined by

Nλptq “ Npλtq ,

is a Poisson process of intensity λ.

• Given that Nt “ n, the n jump times T1, . . . , Tn are distributed as the
order statistics corresponding to n independent random variables uniformly
distributed on p0, tq.

2.2 Non homogeneous Poisson process

Again, we state three equivalent definitions

?xdef:inf_inhy?Definition 6 (The infinitesimal definition). A counting process N “ tNt; t P
R

`u is a non-homogeneous Poisson process of rate function λptq if:

• The process has independent increments.

• For all t, h,

P
 

Nt`h ´ Nt “ 1
(

“ λptqh ` ophq, P
 

Nt`h ´ Nt ą 1
(

“ ophq .

?xdef:ax_inhy?Definition 7 (The axiomatic definition). A counting process N “ tNt; t P R
`u

is a non-homogeneous Poisson process of rate function λptq if:

• The process has independent increments.

• The number of events in any time interval pt, t ` hs is Poisson distributed

with mean
şt`h

t
λpsqds, e.g., for all t, h ą 0:

P
 

Nt`h ´ Nt “ k
(

“ e´pmpt`hq´mptqq pmpt ` hq ´ mptqqk

k!
,

where mptq “
şt

0
λpsqds.

?xdef:cons_inhy?Definition 8 (The constructive definition). A counting process N “ tNt; t P
R

`u is a non-homogeneous Poisson process of rate function λptq if there exists
a standard Poisson process Y (rate “ 1) such that:

Nt “ Y
´

ż t

0

λpsqds
¯

.
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The latter definition deserves a particular comment, as it will be important

in the next. A direct calculus shows that Y
´

şt`h

0
λpsqds

¯

´ Y
´

şt

0
λpsqds

¯

is

indeed distributed as a Poisson distribution of mean
şt`h

t
λpsqds. Conversely,

define
m´1ptq “ infts ě 0 : mpsq ě tu , t ě 0 .

Then we define Y by Y ptq :“ Npm´1ptqq. Then

Yt´Ys “ Npm´1ptqq´Npm´1psqq
pdq
“ Po

´

mpm´1ptqq´mpm´1psqq
¯

“ Popt´sq .

Note that the non-homogeneous Poisson process satisfy the survival relation
(used in many deterministic models, such as renewal population dynamics)

P
 

Nt “ 0
(

“ exp
´

´

ż t

0

λpsqds
¯

.

Furthermore, with

Mt “ Nt ´

ż t

0

λpsqds ,

we still have the Martingale property

Proposition 3. For all s, t,

E
“

Mt`s | Ft

‰

“ Mt .

2.3 Stochastic equation driven by a Poisson process

xssec:stocheqy We are already able at this point to define stochastic equations driven by Pois-
son processes, which are widely used to simulate stochastic chemical reactions
networks. Let Y be a standard Poisson process, and let us consider the equation

Nt “ N0 ` Y
´

ż t

0

λpNsqds
¯

, (1) eq:stocheq

where λ is such that
şt

0
λpNpsqqds ă 8. It should be clear that such solution is

still a counting process (modulo the initial condition). Hence to prove existence,
we only need to know the jump times of N . We will give an explicit construction
with the help of the jump times of Y.

Proposition 4. Let pτnqn be the jump times of Y, then the unique solution of
(1) is

Nt “
ÿ

ně1

1Tnďt ,

where, for all n ě 1 (τ0 “ T0 “ 0)

Tn “ Tn´1 `
τn ´ τn´1

λpN0 ` n ´ 1q
.

7



Note that we still have the survival relation, for the law of next jump. At
time t, the next jump time T follows

P
 

T ą t ` s | Ft

(

“ exp
´

´

ż t`s

t

λpNpuqqdu
¯

“ exp
´

´ λpNptqqs
¯

.

And the Martingale property now reads as follows. With

Mt “ Nt ´

ż t

0

λpNsqds ,

we still have the Martingale property

Proposition 5. For all s, t,

E
“

Mt`s | Ft

‰

“ Mt .

We are already able to modify such construction to include a continuous
dynamical system between jumps, hence to have a constructive definition of a
PDMP. We postpone such construction as the generator characterization will
also prove to be useful in the next.

2.4 Generator

For the homogeneous Poisson process, we have seen that Nt´λt is a Martingale.
This is actually a characterization among the counting process (Watanabe theo-
rem). A further even more general characterization among the Markov processes
is provided by the generator.

Definition 9 (Generator). For any compactly supported function f : N´ ą R
`,

we define
Afpnq “ λ

´

fpn ` 1q ´ fpnq
¯

.

We now have

xprop:geney
Proposition 6. Let N be a homogeneous Poisson process of rate λ. Then, for
any compactly supported function f ,

fpNptqq ´ fpNp0qq ´

ż t

0

AfpNpsqqds (2) eq:gene

is a Ft-Martingale. This holds as well for any function f such that E
“

fpNptqq
‰

ă

8, E
“

AfpNptqq
‰

ă 8, for all t ě 0.

The sample path of N (t ÞÑ Ntpwq) are piecewise continuous and have
finite variation. As such, we may define a Lebesgue-Stieljes integral of bounded
function on finite time integral against the measure pdNtpwqqt. Note that such
measure may formally be represented as

ÿ

kě1

δTkpwqpdsq ,

where pTkq is the sequence of jump times associated to the Poisson process. As
an important first step, we state the

8



Proposition 7 (Itô Lemma). Let N be a homogeneous Poisson process of rate
λ. Then, for any measurable function f ,

fpNptqq “ fpNp0qq `

ż t

0

´

fpNps´q ` 1q ´ fpNps´qq
¯

dNpsq .

Proof. A simple calculus yields

fpNptqq “ fpNp0qq `

Nptq
ÿ

k“1

pfpkq ´ fpk ´ 1qq

“ fpNp0qq `

Nptq
ÿ

k“1

pfpNpTkqq ´ fpNpTk´1qqq

“ fpNp0qq `

Nptq
ÿ

k“1

pfpNpT´
k ` 1qq ´ fpNpT´

k qqq

“ fpNp0qq `

ż t

0

´

fpNps´q ` 1q ´ fpNps´qq
¯

dNpsq .

Exercise 1. Let N a counting process and t ÞÑ λt a deterministic process such
that

Mt “ Nt ´

ż t

0

λsds ,

is a Ft-Martingale. Shows that for all t ě s,

E
“

eiupNt´Nsq | Fs

‰

“ exp
!

pmptq ´ mpsqqpeiu ´ 1q
)

.

[Hint: for s “ 0, use Itô with fpNtq “ eiupNtq.]
Deduce the Watanabe characterization: N is a Poisson process of intensity λt.

Proof of proposition 6. We conclude using the fact that Mptq “ Nptq ´ λt is a
Martingale, so that

fpNptqq “ fpNp0qq `

ż t

0

´

fpNps´q ` 1q ´ fpNps´qq
¯

dNpsq

“ fpNp0qq `

ż t

0

AfpNpsqqds `

ż t

0

´

fpNps´q ` 1q ´ fpNps´qq
¯

dMpsq ,

and we admit (long argument) that
şt

0

´

fpNps´q ` 1q ´ fpNps´qq
¯

dMpsq is a

Martingale.

As for the Watanabe characterization, knowing that Nptq satisfies the so-
called martingale problem, e.g. equation (2) for a sufficiently large class of
test functions, will characterize the stochastic process Nptq, among the Markov
processes.

Note that a differential version of equation (2) reads

E
“

dfpNtq | pNsqsďt

‰

“ E
“

AfpNptqq
‰

dt .

9



And noting Es,n

“

fpt, Ntq
‰

“ E
“

fpt, Ntq | Ns “ n
‰

, we can show that

Afpt, nq “ lim
hÓ0

Et,n

“

fpt ` h,Nt`hq ´ fpt, Ntq
‰

.

We conclude this section by giving the generator of the solution of the first
stochastic equation we encountered in subsection 2.3.

Proposition 8. The generator of the solution of equation (1) is, for any com-
pactly supported function f ,

Afpnq “ λpnq
´

fpn ` 1q ´ fpnq
¯

.

2.5 Chapman-Kolmogorov equation

A first consequence of the generator is to give any moment equation. Indeed, if
A is the generator of N , then, for any test functions

E
“

fpNptqq
‰

“ E
“

fpNp0qq
‰

`

ż t

0

E
“

AfpNpsqq
‰

ds .

In particular, using fpkq “ 1k“npkq, we obtain an equation for E
“

fpNptqq
‰

“

P
 

Nptq “ n
(

“: ppn, tq. Then, for the solution of equation (1),

dppn, tq

dt
“ λpn ´ 1qppn ´ 1, tq ´ λpn, tqppn, tq ,

for all n ě 0 (with pp´1, tq ” 0).

Exercise 2. LetN the solution of equation (1). Calculate
dE

“

Nptq
‰

dt
and

dE

“

Nptq2
‰

dt

by three different manners. In which case do you obtain closed equations?

3 PDMP

We now use our knowledge on stochastic equation driven by Poisson processes
to define Piecewise Deterministic Markov processes.

3.1 One ode and one Poisson process

We will prove

Proposition 9. Assume the ODE

#

dXt

dt
“ µpXtq ,

X0 “ x0 ,

has a unique global solution for every choice of x0, and let β : R Ñ R be an
arbitrary chosen function, and N a Poisson process of intensity λ. Then the
SDE

"

dXt “ µpXtqdt ` βpXt´ qdNt ,

X0 “ x0 ,
(3) eq:sde1

has a unique global solution.

10



Proof. We have the following concrete algorithm.

• Denote the jump times of N by T1 , T2, . . .

• For every fixed ω, solve the ODE

#

dXt

dt
“ µpXtq ,

X0 “ x0 ,

on r0, T1q. In particular we have determined the value of XT
´

1

.

• Calculate XT1
by the formula

XT1
“ X

T
´

1

` βpX
T

´

1

q .

• Given XT1
“ x1 solve the ODE

#

dXt

dt
“ µpXtq ,

XT1
“ x1 ,

on rT1, T2q, and so on . . .

We give without proof (similar as proposition 6) the generator of the solution
Xptq of equation (3):

Afpxq “ µpxqf 1pxq ` λ
´

fpx ` βpxqq ´ fpxq
¯

.

We can give a similar construction of solution of SDE when the counting pro-
cess has now a state-dependent intensity. Using the time change representation,
we prove

xprop:sde_statedepy Proposition 10. Assume the ODE

#

dXt

dt
“ µpXtq ,

X0 “ x0 ,

has a unique global solution for every choice of x0, and let β : R Ñ R be an
arbitrary chosen function, Y a standard Poisson process, and λ : R Ñ R

` a
measurable locally integrable function, with λ{µ locally integrable too. Then the
SDE

Xt “ x0 `

ż t

0

µpXsqds ` Y
´

ż t

0

λpXsqds
¯

, (4) eq:sde2

has a unique maximum solution on r0, τ8q for a given τ8.

Proof. The proof is similar, we simply need to adapt the times of the jumps
according to the time change. We have the following concrete algorithm.

• Denote the jump times of Y by T1 , T2, . . .

11



• For every fixed ω, solve the ODE
#

dXt

dt
“ µpXtq ,

X0 “ x0 ,

on r0, τ1q, where τ1 is given by

τ1 “ inftt ą 0 :

ż t

0

λpXsqds ě T1u .

If τ1 “ 8, we are done. Else, we have determined the value of X
τ

´

1

.

• Calculate Xτ1 by the formula

Xτ1 “ X
τ

´

1

` 1 .

• Given Xτ1 “ x1 solve the ODE

#

dXt

dt
“ µpXtq ,

Xτ1 “ x1 ,

on rτ1, τ2q, where τ2 is given by

τ2 “ inftt ą τ1 :

ż τ2

τ1

λpXsqds ě T2 ´ T 1u .

and so on . . . The solution is constructed up to τ8 “ limn τn (which may
or may not be infinite).

The generator of the solution Xptq of equation (4) is given by:

Afpxq “ µpxqf 1pxq ` λpxq
´

fpx ` 1q ´ fpxq
¯

.

Remark 3. Note that the first jump time τ1 in the above proof follows

P
 

τ1 ě t
(

“ exp
´

´

ż t

0

λpXsqds
¯

“ exp
´

´

ż xt

x0

λpxq

µpxq
dx

¯

.

3.2 General PDMP

To define a general PDMP, following [Davis, 1984], we only need to let arbitrary
jumps occurring at the discrete event, and to authorize to change the dynamical
system as well. This is simply done by adding a discrete variable to the state
space, that will keep track of the particular dynamical system we follow, and by
choosing a transition measure that will dictate the jump law. More precisely,
let I be a countable set, d : I Ñ N and for each i P I, Mi an open subset of
R

dpiq. The state-space E is

E “
ď

iPI

Mi “ tz “ px, iq; i P I, x P Miu .

Let pE, Eq the natural Borel space associated to E. The PDMP is determined
by the following objects
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• Vector fields pHi, i P Iq such that for all i P I, all x0 P Mi, there is a
unique global solution in Mi of

#

dXt

dt
“ HipXtq ,

X0 “ x0 ,
(5) eq:ode_pdmp

• A measurable function λ : E Ñ R
`, such that for all z “ pi, x0q P E, the

function t ÞÑ λpXtq is locally integrable along the solution of equation (5)

• A transition measure Q : EˆE Ñ r0, 1s, such that QpA; zq is a measurable
function of z P E for each fixed A P E , and is a probability measure on
pE, Eq for each fixed z P E.

A unique global solution is constructed as in the proof of proposition 10.
The only needed changes concern the calculus of Zτ1 from Zτ

´

1

. The post jump

location Zτ1 is selected independently of τ1, with distribution Qp¨ ;Zτ
´

1

q.

The generator of the general PDMP is given by:

Afpi, xq “ Hipxq∇xfpi, xq ` λpi, xq

ż

E

´

fpj, yq ´ fpi, xq
¯

Qpdj ˆ dy; pi, xqq .

If Q has a density, the Chapman-Kolmogorov equation are given by

Bppi, x, tq

Bt
`

BHipxqppi, x, tq

Bx
“ ´λpi, xqppi, x, tq`

ż

E

λpj, yqppj, y, tqQppi, xq; pj, yqqdjdy .

4 Numerical algorithms

We give below different algorithms that can be useful in various situation, and
that are directly related to properties on Poisson process we just saw.

4.1 How to simulate several Poisson processes

Suppose one wish to simulate the following system of SDE (any Markovian
discrete chemical reaction network)

Xiptq “ Xip0q `
L
ÿ

l“1

νilYl

´

ż t

0

λlpXpsqqds
¯

, (6) eq:next

where pYlq1ďlďL are independent standard Poisson processes. By the splitting
properties of Poisson processes, the law of the solution of equation (6) is the
same as the solution of

$

’

’

’

&

’

’

’

%

Nptq “ Y
´

ż t

0

λpXpsqqds
¯

,

Xiptq “ Xip0q `
L
ÿ

l“1

νil

ż t

0

1ql´1pXps´qq,qlpXps´qqpξNps´qqdNpsq .
(7) eq:gillespi

where λpxq “
řL

l“1
λlpxq, qlpxq “

řl

i“1
λipxq{λpxq, Y is a standard Poisson pro-

cess, and ξ0, ξ1, . . . are independent uniform r0, 1s random variable, independent
of Y .

13



Both equivalent formulations equation (6) and (7) actually suggest two differ-
ent algorithms, known in the literature as the next reaction method [Gibson and Bruck, 2000]
and the Gillespie [Gillespie, 1977] (or stochastic simulation algorithm, ssa) re-
spectively.

The Gillespie algorithm, corresponding to equations (7) can be described as
follows:

• At each step, draw two random uniform r0, 1s independent numbers u, q.

• The next time step is given by ∆Ti “ ´1{λpXpTi´1qq logpuq.

• The reaction is chosen according to l “ minti ě 1 :
ři´1

j“1
λipxq{λpxq ď

ři

j“1
λipxq{λpxqu.

• Update X accordingly, that is Xi “ Xi ` νil.

The next reaction method, corresponding to equations (6) can be described
as follows:

• At time 0, for all l “ 1..L, draw a random uniform r0, 1s independent
number ul, and calculate Tl “ ´1{λlpXp0qq logpulq.

• At each step, let j the index of the smallest Tl. Set t “ Tj.

• Update X accordingly, that is Xi “ Xi ` νij .

• For any reaction k ‰ j whose intensities is modified by reaction j, update
the new intensity λ1

k “ λkpXptqq (and keep the old λk). Set Tk “ t `
pλk{λ1

kqpTk ´ tq. Forget the old intensity, e.g. λk “ λ1
k.

• For reaction j, draw a random uniform r0, 1s independent number u, and
calculate Tj “ ´1{λjpXptqq logpuq.

4.2 How to simulate an ODE and a Poisson process

Suppose one wish to simulate a hybrid process, given by

$

’

’

&

’

’

%

Nptq “ Y
´

ż t

0

λps,Xpsqqds
¯

,

Xptq “ Xp0q `

ż t

0

µpXpsqqds `

ż t

0

ξNps´qpXps´qqdNpsq ,

where ξ0px0q, ξ1px1q, . . . are are independent random variable, independent of
Y , and distributed according to a transition measure Qp¨ ;xq.

There are basically two options to simulate the jump times of such process.
The first one can be convenient if the integral

şt

0
λps,Xpsqqds is known exactly

(for instance if it is independent of X):

• At each step, draw a random uniform r0, 1s independent number u.

• Solve the ODE Xptq “ Xp0q`
şt

0
µpXpsqqds until the next time step, given

by

Ti`1 “ Ti ` inftt ą 0 :

ż Ti`t

Ti

λps,Xsqds ě ´logpuqu

14



• Set t “ Ti`1 and draw an independent random variable according to
Qp¨ ;Xpt´qq

• Update X accordingly.

Note that the drawback of this method is that it requires the evaluation of the
integral

ş

λps,Xsqds at each step. A second option uses an acceptance/reject
method, based on a property of 2d-Poisson process. Assume supt,x λps,Xpsqq ď
λ0.

• At each step, draw a random uniform r0, 1s independent number u.

• Set an hypothetical time T 1
i`1

“ Ti ´ 1{λ0logpuq.

• Solve the ODE Xptq “ Xp0q `
şt

0
µpXpsqqds on rTi, T

1
i`1

q.

• Draw a random uniform r0, 1s independent number q.

• If q ď λpT 1
i`1

, XT 1

i`1
q{λ0, set Ti`1 “ T 1

i`1
, and update X accordingly to

the jump law. Else repeat previous step with a new hypothetical jump
time T 1

i`1
“ T 1

i`1
´ 1{λ0logpuq (with a new random uniform number u).

4.3 General algorithm for a PDMP

General algorithm for a PDMP may be derived from both previous section
(exercise!)

4.4 Approximations

Approximate algorithm can be drawn from limit theorems (law of large number,
central limit theorem), by changing some of the Poisson processes by determin-
istic terms and/or Brownian term. Other methods such the τ -leaping method
choose to fire many reaction in a single step. We refer to [Anderson et al., 2011,
Hepp et al., 2014] for more details.

4.5 Large time

General results of Markov chain andMarkov processes, [Meyn and Tweedie, 1993a,
Meyn and Tweedie, 1993b, Meyn, , Costa and Dufour, 2008] Examples on spe-
cific models with particular emphasize to the convergence rate [Malrieu et al., 2010,
Malrieu, 2014, Malrieu, 2012] Examples on specific models using semigroup tech-
niques [Tyran-Kamińska, 2009, Pichór et al., 2012, Mackey and Tyran-Kamińska, 2008]

5 Examples from biology

5.1 growth-fragmentation

We look at a cell that growth continuously at rate τpxq, and divides at random
times, of intensity λpxq. At division, the size is decreased according to the kernel
βpx, yq. We keep track of a single cell. The generator is

Afpxq “ τpxqf 1pxq ` λpxq

ż x

0

´

fpyq ´ fpxq
¯

βpx, dyq .
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Particular case: TCP, equal mitosis, cell cycle, integrate and fire.

See [Bardet et al., 2011, Cloez, 2012] for probabilistic approach, and [Lasota et al., 1992,
Tyran-Kamińska, 2009, Doumic and Gabriel, 2009] for semigroup and entropy
approaches.

5.2 degrowth-production

xssec:burstiny We look at a quantity (protein concentration, chemical content in a body) that is
degraded continuously at rate γpxq, and produced at random times, of intensity
λpxq. At production event, a random amount is added according to the kernel
κpx, yq. The generator is

Afpxq “ ´γpxqf 1pxq ` λpxq

ż 8

x

´

fpyq ´ fpxq
¯

κpx, dyq .

Particular case: storage model, bursting in gene expression.

For extensive study of the storage model, see [Bardet et al., 2011], while for
more general models applied to gene expression, see [Mackey et al., 2013]. See
also [Cloez, 2012]

5.3 Switched flows

The following generic model is widely used

Afpx, nq “ vnpxqf 1px, nq ` λnpxq
´

ÿ

k‰n

ρk,npxqfpx, kq ´ fpx, nq
¯

.

with for all px, nq,
ř

k‰n ρk,npxq “ 1.
Particular case: gene expression, chemotaxis, active transport,

random intermittent search, gating model, ion channels, microtubules

growth.

We refer to [Bakhtin and Hurth, 2012, Malrieu et al., 2012b, Benäım et al., 2012,
Malrieu et al., 2012a, Malrieu, 2012] for generic study of switched flows, and ex-
amples of quite surprising results (explosion of a PDMP by switching two stable
linear flows).

5.4 Biochemical Reaction Network

We consider a network of r0 chemical reactions involving s0 chemical species
S1, . . . , Ss0 , represented as

s0
ÿ

i“1

νikSi Ñ
s0
ÿ

i“1

ν1
ikSi , k “ 1, . . . , r0 ,

where the νik, ν
1
ik are nonnegative integers (stoichiometric coefficients). Let

Xptq P N
s0 give the numbers of molecules of each species present at time t. Let

νk “ pνikq1ďiďs0 be the vector that give the number of molecules consumed in
the kth reaction, and ν1

k “ pν1
ikq1ďiďs0 the number of molecules produced by the
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kth reaction. We suppose that each reaction is executed according to a counting
process of intensity λkpxq, that is

Xptq “ Xp0q `
ÿ

k

pν1
k ´ νkqYk

´

ż t

0

λkpXpsqqds
¯

, (8) eq:sde_crn

where Yk are independent standard Poisson processes. Accordingly, we empha-
size that the probability that a reaction k fires in a small time interval is given
by

P
 

Reaction k occurs in pt, t ` δts | Ft

(

« λkpXptqqδt .

The function λkpxq are called reaction rate. A typical example of such function
is given by the law of mass-action,

λkpxq “ κk

ź

i

ˆ

νik

xi

˙

,

where κk ą 0 is the reaction rate constant.
The law of large numbers give for the following property for Poisson processes

xprop:lgny Proposition 11. let Y be a standard Poisson process, then for each t0 ą 0,

lim
nÑ8

sup
tďt0

|
1

n
Y pntq ´ t |“ 0 a.s.

The proposition 11 implies the standard scaling of biochemical reaction net-
work: for large number of species, an appropriate re-scaling of Xptq and of the
reaction rate makes the solution of equation (8) to converge to the solution of

dx

dt
“

ÿ

k

κkpν1
k ´ νkq

ź

i

xνik
i .

Recent work [Kang et al., 2014, Kurtz and Kang, 2013, Anderson and Kurtz, 2011,
Crudu et al., 2012] provides general theorems to reduce equation (8) to a PDMP,
when some species are present in large quantity (and/or some reaction occur in
a faster time scale). Rather than presenting the general theorems, we will focus
on a particular model of gene expression, for which reduced forms have been
extensively used.

5.5 Standard gene expression models

One of the most simple and widely used model of gene expression consider two
variables. The first one is a boolean variable (0 or 1), that represent the state
of the gene. The second one is an integer variable, that represents the amount
of gene products, to be either mRNA or protein quantity. In the following
equation, pYiqi“1,...,4 are independent standard Poisson processes.

$

’

’

&

’

’

%

X0ptq “ X0p0q ` Y1

´

ż t

0

1tX0psq“0uλapX1psqqds
¯

´ Y2

´

ż t

0

1tX0psq“1uλipX1psqqds
¯

,

X1ptq “ X1p0q ` Y3

´

ż t

0

1tX0psq“1uλ1pX1psqqds
¯

´ Y4

´

ż t

0

γ1X1psqds
¯

.

(9) eq:SD1
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In such model, the gene state switches between 0 and 1 at rate λapX1q and
λipX1q. The gene product is degraded at a linear rate γ1X1. When the gene
is “ON” (state 1), the gene product may increase at rate λ1pX1q. The three
functions λa, λi, λ1 represent the auto-regulation of the gene production on its
own production. There are constant for constitutive gene (no regulation), and
are bounded strictly positive monotonous function in the general case (typical
examples are Hill functions).

We refer to [Peccoud and Ycart, 1995] for a mathematical study of such
model in the case without regulation (λ1, λa, λi constant). For large amount of
gene products (X1 " 1), this model may be simplified to a switching ODE. The
results is limiting model is given by

$

’

’

&

’

’

%

X0ptq “ X0p0q ` Y1

´

ż t

0

1tX0psq“0uλapx1psqqds
¯

´ Y2

´

ż t

0

1tX0psq“1uλipx1psqqds
¯

,

x1ptq “ x1p0q `

ż t

0

´

1tX0psq“1uλ1px1psqq ´ γ1x1psq
¯

ds.

(10) eq:SC1

The precise result is given by:

Theorem 1. Let XN be the solution of equation (9) with the rescaled rate
functions

λN
1 pxq :“ Nλ1px{Nq , γN

1 :“ γ1 ,

λN
a pxq :“ λapx{Nq , λN

i pxq :“ λipxq .

Assume that λ1 is a C1 function of x P R
`, and that λa, λi, λ1 are such that

equations (10) defines a unique global solution (measurable linearly bounded is
sufficient). Then let the rescaled process xN “ pXN

0
, xN

1
q defined by xN

1
“

XN
1 {N . Assume xN p0q converges in distribution to xp0q, then xN converges in

distribution to the PDMP whose law is uniquely defined by equations (10).

A further result in [Crudu et al., 2012] allows to reduce the PDMP defined
by equations (10), by “averaging” the discrete motion, assuming it evolves in a
fast time scale. The reduced model is know a deterministic ODE, given by

dx

dt
“

λapx1q

λapx1q ` λipx1q
λ1px1q ´ γ1x1 (11) eq:C1

The precise result requires that λa, λi, λ1 are such that the equation (11) defines
a global flow, not necessarily restrict to evolve in a compact. Furthermore, it
requires that the fast motion given by the switch defines an ergodic semigroup,
exponentially mixing, and uniformly with respect to the slow variable x1. Here,
it is easy to see that this semigroup is ergodic, with unique invariant law given

by a Bernoulli law of parameter λapx1q
λapx1q`λipx1q . Its convergent rate is exponential

with rate λapx1q`λipx1q. Hence, it is needed to suppose additionally that these
rates are bounded with respect to x1. As before, we rewrite the limiting theorem
given in [Crudu et al., 2012] with our notation:

Theorem 2. [Crudu et al., 2012, Theorem 5.1 p. 13] Assume λ1 P C1pR`q and
such that the model defined by equation (11) defines a global flow. Assume λa

and λi are C1 on R
` and bounded, positive such that one of them is strictly

positive. Let λn
a “ nλa and λn

i “ nλi with n Ñ 8. Let pXn
Optq, xn

1
ptqqtě0

the stochastic process defined by equations (10), and px1ptqqtě0 the solution of
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equation (11). Assume xn
1

p0q converges in distribution to x1p0q in R
`, then

pxn
1

ptqqtě0 converges in distribution to px1ptqqtě0 in DpR`;R`q.

The restriction of bounded rate λa and λi in [Crudu et al., 2012] is essen-
tially to ensure that the fast dynamics stay in a compact in some sense. Here,
because the fast dynamics is on a compact state space, this assumption can be
released easily. Note that no convergence on the fast variable is stated here.
Convergence do actually occurs, but for a specific topology (in L8p0, T q). See
[Kurtz and Kang, 2013] for general results on averaging methods.

A different limit from the PDMP defined by equations (10) may be taken,
and was also treated explicitly in [Crudu et al., 2012]. Now we let λn

i “ nλi

and λn
1

“ nλ1. Intuitively, the switching variable Xn
0
will then spend most of

its time in state 0. However, transition from Xn
0 “ 0 to Xn

0 “ 1 will still be
possible (and will not vanish as n Ñ 8). Convergence of Xn

0
to 0 will hold in

L1p0, tq for any finite finite time t. When Xn
0

“ 1, production of x1 is suddenly
very high, but for a brief time. Although x1 follows a deterministic trajectory,
the timing of its trajectory is stochastic. At the limit, this drastic production
episode becomes a discontinuous jump, of a random size. All happen as the
two successive jumps of X0 (from 0 to 1 and back to 0) coalesce into a single
one, and create a discontinuity in x1. In such case, convergence cannot hold
in the cad-lag space DpR`;R`q with the Skorohod topology. The authors in
[Crudu et al., 2012] were able to prove tightness in Lppr0, T s,R`q, 1 ď p ă 8.
Their result requires the additional assumption that all rates λ1,λi and λa are
linearly bounded, and either λa or λi is bounded with respect to x1. This is
needed to get a bound on x1 in L8pr0, T s,R`q. The limiting theorem reads

Theorem 3. [Crudu et al., 2012, Theorem 6.1 p. 17] Assume λ1 P C1pR`q and
let λn

i “ nλi and λn
1 “ nλ1 with n Ñ 8. Let pXn

Optq, xn
1 ptqqtě0 the stochastic

process defined by equations (10). Assume xn
1

p0q converges in distribution to
x1p0q in R

`, and Xn
Op0q converges in distribution to 0. The reaction rates λ1,λi

and λa are such that

• there exists α ą 0 such that λipx1q ě α for all x1 ;

• there exists M1 ą 0 such that

λ1px1q ď M1px1 ` 1q,

λapx1q ď M1px1 ` 1q,

λipx1q ď M1px1 ` 1q;

• In addition either λa or λ1 is bounded with respect to x1 .

Then pXn
0

ptqqtě0 converges in distribution to 0 in L1pr0, T s, t0, 1uq and pxn
1

ptqqtě0

converges in distribution to the stochastic process whose generator is given by

Aϕpx1q “ ´γ1x1

Bϕ

Bx1

` λapx1q

ż 8

0

´

ϕpφ1pt, x1qq ´ ϕpx1q
¯

λipφ1pt, x1qqe´
ş

t

0
λipφ1ps,x1qqdsdt, (12) eq:geneswitchCrudu
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for every ϕ P C1

b pR`q and where φ1pt, x1q is the flow associated to

9x “ λ1pxq,

xp0q “ x1.

Remark 4. Note that equation (12) may be rewritten as

Afpxq “ ´γpxqf 1pxq ` λapxq

ż 8

x

´

fpyq ´ fpxq
¯

hpy, xqdy, (13) eq:geneswitchCrudu2

for every f P C1

b pR`q and where hpy, xq is given by

hpy, xq “ ´
ν1pyq

νpxq
, y ąě x ą 0.,

νpxq “ exp
`

´

ż x

0

λipzq

λ1pzq
dz
¯

.

Let us now present in detail three examples.

Example 1. Consider the special case where both regulation rates λ1 and λi

are constant. Then the flow φ1 is easily calculated and we have

φ1pt, x1q “ x1 ` λ1t, t ě 0,
ż t

0

λikipφ1ps, x1qqds “ λit,

and the generator eq. (12) becomes

Aϕpx1q “ ´γ1x1

Bϕ

Bx1

` λapx1q

ż 8

0

´

ϕpx1 ` zq ´ ϕpx1q
¯λi

λ1

e
´

λi

λ1
z
dz,

which is a “Bursting”model (see subsection 5.2), with an exponential jump size
distribution of mean parameter λ1

λi

. Such rate has an easy interpretation, being
the number of molecules created during an ON period of the gene.

Other choice of regulation rate leads to different model, as illustrated in the
next two examples.

Example 2. Let λ1 be a constant and λipx1q “ λix1 ` k0 (linear negative
regulation), so that

φ1pt, x1q “ x1 ` λ1t, t ě 0,
ż t

0

λikipφ1ps, x1qqds “ pλix1 ` k0qt `
λ1λi

2
t2,

and the generator eq. (12) becomes

Aϕpx1q “ ´γ1x1

Bϕ

Bx1

`λakapx1q

ż 8

x1

´

ϕpzq´ϕpx1q
¯λiz ` k0

λ1

e
´

z´x1

λ1

”

λi

z`x1

2
`k0

ı

dz.

The limiting model is then a bursting model where the jump distribution is a
function of the jump position, and has a Gaussian tail.

20



Example 3. Let λ1px1q “ x1 and λi be a constant (positive linear regulation),
so that

φ1pt, x1q “ x1e
λ1t, t ě 0,

ż t

0

λikipφ1ps, x1qqds “ λit,

and the generator eq. (12) becomes

Aϕpx1q “ ´γ1x1

Bϕ

Bx1

` λakapx1q

ż 8

x1

´

ϕpzq ´ ϕpx1q
¯ λi

λ1

x
λi

λ1 z
´1´

λi

λ1 dz.

This time, the limiting model is a bursting model where the jump distribution
is a function of the jump position with a power-law tail.

The model obtained in equation (10) is a switching ODE. The advantage of
reducing the model compared to equation (9) is to be able to calculate explicitly
the stationary density (if it exists), which leads to specific strategy to prove
convergence in large time towards a stationary state. We state the result for a
slightly generalized model:

Theorem 4. Let us look at the equation

$

’

’

&

’

’

%

X0ptq “ X0p0q ` Y1

´

ż t

0

1tX0psq“0uλapx1psqqds
¯

´ Y2

´

ż t

0

1tX0psq“1uλipx1psqqds
¯

,

x1ptq “ x1p0q `

ż t

0

´

1tX0psq“1uλ1px1psqq ` 1tX0psq“0uλ0px1psqq
¯

ds.

(14) eq:SC1_generic

Suppose there exists y˚ ă y˚ such that

"

λ0py˚q “ 0 , λ1py˚q ą 0 ,
λ0py˚q ă 0 , λ1py˚q “ 0 .

Then, if x1p0q takes values on py˚, y
˚q, so is x1ptq for all t ě 0. Moreover, the

stationary density of the continuous variable x1 of the solution of equation (14)
is solution of the first order differential equation

B

Bx
u “ ´

”λa

λ0

`
λi

λ1

`
λ1
0λ1{λ0 ´ λ1

1λ0{λ1

λ1 ´ λ0

ı

u , x P py˚, y
˚q .

We refer to [Mackey et al., 2013] for systematic study to the model obtained
in equation (13)
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