Elevated CO2 enhances short-term recovery after extreme drought and heat in a temperate grassland.

To cite this version:

Catherine Picon-Cochard, J. Roy, D. Landais, Marie-Lise Benot, C. Piel, et al.. Elevated CO2 enhances short-term recovery after extreme drought and heat in a temperate grassland.. Climate Change and Food Security Conference, May 2014, Madrid, Spain. 2014. hal-02795730

HAL Id: hal-02795730
https://hal.inrae.fr/hal-02795730
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Under warmer and drier climatic conditions, increase of atmospheric CO$_2$ concentration is expected to limit the negative effects of stress on grassland production. The capacity to recover after drought could also be favored by elevated CO$_2$, as it may improve plant growth through its primary effects on both leaf photosynthesis and stomatal conductance.

The aim of this study was to evaluate a possible mitigation effect of elevated CO$_2$ on canopy C and water fluxes, and its consequences on forage production and quality, during and after an extreme event (soil drought x heat).

RESULTS

Gross primary production (GPP, gCO$_2$ m$^{-2}$ d$^{-1}$)

![GPP Graph]

Water-use efficiency (WUE, mgCO$_2$ g$^{-1}$H$_2$O)

![WUE Graph]

Green biomass (g DM m$^{-2}$)

![Green Biomass Graph]

Root biomass (g DM m$^{-2}$)

![Root Biomass Graph]

CONCLUSIONS

Under future climatic conditions (warmer and drier) forecasted for 2040-2060

- **Elevated CO$_2$ mitigated the negative effect of drought x heat** by increasing GPP and WUE, and **promoted recovery** of this permanent grassland
- These changes led to **higher root biomass** with no effect on above-ground production
- **Forage quality** was affected: more digestible forage but containing less N
- This study confirmed the **short-term recovery capacity of permanent grassland** after severe drought and heat

We would like to thank the group members of UREP-INRA (C. Dardineville, L. Thiery) for their helpful contribution to the realization of this project.

Angelina Augusti and Benoît Marie-Lise’s post docs were financed by INRA through scientific picture.