

Introduction aux statistiques non paramétriques

Sandrine Mignon-Grasteau

▶ To cite this version:

Sandrine Mignon-Grasteau. Introduction aux statistiques non paramétriques. Master. MASTER Sciences, Technologies, Santé MENTION Biologie Intégrative et Agrosciences SPECIALITE Qualité et environnement en productions animales FINALITE Professionnelle (Statistiques), 2014. hal-02795855

HAL Id: hal-02795855 https://hal.inrae.fr/hal-02795855

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION AUX STATISTIQUES NON PARAMETRIQUES

Sandrine Mignon-Grasteau 2014

QUAND FAUT IL UTILISER DES TESTS NON PARAMETRIQUES ?

 Non normalité des données => impossible d'utiliser les tests paramétriques

 On ne peut pas supposer que l'échantillon est tiré d'une distribution appartenant à une famille donnée

Les variances sont hétérogènes

LES TESTS SONT QUAND MEME SENSIBLES AUX DONNEES ABERRANTES MIEUX VAUT SE MEFIER EN CAS DE VARIANCES HETEROGENES

QUE FAIRE DANS CE CAS?

 A: Rien, on fait du paramétrique quand même, et on espère que personne ne s'en apercevra

B : on transforme les données pour les rendre normales, en espérant être capable d'interpréter les résultats obtenus sur l'échelle originale

C : on fait du non paramétrique

QUE PEUT ON FAIRE?

1. Comparaison d'un échantillon à une valeur

- A. Test du signe
- B. Test de Wilcoxon (signes + rangs)
- C. Test de Cox et Stuart (tendance)
- D. Test d'ajustement à une loi normale

2. Comparaison de 2 échantillons

- A. Test de la médiane
- B. Test de Wilcoxon-Mann-Whitney
- C. Test du signe ordonné de Wilcoxon (échantillons appariés)
- D. Test d'égalité des variances de Siegel-Tukey

3. Comparaisons de 3 échantillons ou plus

- A. Test de Kruskall-Wallis
- B. Test de Friedman (échantillons appariés)
- C. Homogénéité des variances

4. Corrélation entre données bivariates

- A. Corrélation de rang de Spearman
- B. Corrélations de rang de Kendall

M

RAPPELS

Factorielle :

$$n != 1 \times 2 \times ... \times n$$

 Combinatoire : nombre de façons d'arranger p éléments dans un ensemble de n éléments

$$C_n^p = \frac{n!}{(n-p)! \times p!} = \frac{1 \times 2 \times \dots \times n}{[1 \times 2 \times \dots \times (n-p)] \times [1 \times 2 \times \dots \times p]}$$

Combien de façons possibles ai-je de faire des combinaisons de 3 pièces parmi ces 8 pièces ?

$$C_8^2 = \frac{8!}{6! \ 2!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \times 7 \times 8}{(1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6) \times (1 \times 2)}$$

Je tire 9 pièces, j'en obtiens 5 de 1 euro

Probabilité () = 1/8

Probabilité () = 7/8

 $1/8 \times 1/8 \times 1/8 \times 1/8 \times 1/8 \times 7/8 \times 7/8 \times 7/8 \times 7/8 \times 7/8 = 0.000018 \dots$ pour une combinaison

Et il y a C₉⁵ combinaisons possibles, soit 126

La probabilité de tirer 5 pièces de 1 euro parmi 9 est donc : Probabilité d'une combinaison ×nombre de combinaisons= $0.000018 \times 126=0.00225$ = $C_0^5 \times (1/8)^5 \times (7/8)^{9-5}$

La probabilité de tirer p pièces de 1 euro parmi n est donc :

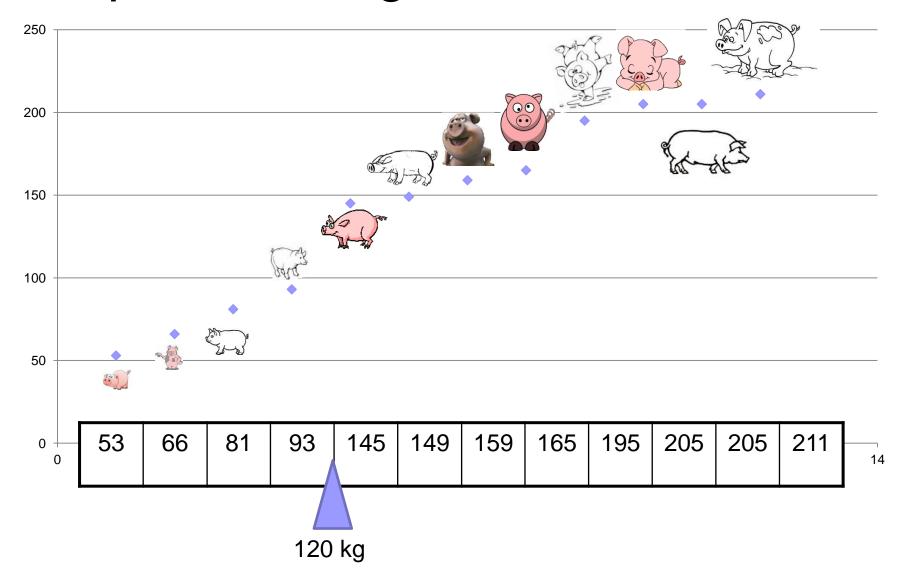
= $C_n^p \times (p(1 \text{ euro}))^p \times (p(pas 1 \text{ euro})^{n-p})$

COMPARAISON D'UN ECHANTILLON A UNE VALEUR

- Test du signe
- Test de Wilcoxon (signes + rangs)
- Test de Cox et Stuart (tendance)
- Test d'ajustement à une loi normale

• Soit le poids de 12 cochons

	53	66	81	93	145	149	159	165	195	205	205	211
ı												


On veut vérifier si la médiane est de 120 kg

• On peut se poser deux questions différentes :

• H0 : Θ = 120 contre H1a : $\Theta \neq$ 120

• H0 : Θ = 120 contre H1b: Θ <120

Etape 1 : on regarde les données...

• Soit le poids de 12 cochons

Ī	53	66	81	93	145	149	159	165	195	205	205	211
ı												

• On veut vérifier si la médiane est de 120 kg

- On peut se po
 H0: Θ =
 H0: Θ =
- Sous H0, chaque cochon a la même probabilité d'être au-dessus ou au-dessous de 120 kg (6 cochons au dessus, 6 au dessous de la médiane)

P(nombre de signes "+" = k) =
$$C_n^k(p)^k (1-p)^{n-k}$$

• On compte le nombre d'observations au dessous de la médiane (-) ou au-dessus de la médiane (+) et on calcule la probabilité associée

53	66	81	93	145	149	159	165	195	205	205	211
-	-	ı	-	+	+	+	+	+	+	+	+

Sous H0, la probabilité d'observer au maximum 4 signes « - » est égale à :

P(0 signe "-") =
$$C_{12}^{0}(0.5)^{0}(0.5)^{12} = \frac{12!}{0!12!}(0.5)^{12} = 0.00024$$

P(1 signe "-") = $C_{12}^{1}(0.5)^{1}(0.5)^{11} = \frac{12!}{1!11!}(0.5)^{12} = 0.0029$

P(2 signes "-") = $C_{12}^{2}(0.5)^{2}(0.5)^{10} = \frac{12!}{2!10!}(0.5)^{12} = 0.0161$

P(3 signes "-") = $C_{12}^{3}(0.5)^{3}(0.5)^{9} = \frac{12!}{3!9!}(0.5)^{12} = 0.0537$

P(4 signes "-") = $C_{12}^{4}(0.5)^{4}(0.5)^{8} = \frac{12!}{4!8!}(0.5)^{12} = 0.1208$

$$P(H_0)$$
 = (0.0024+0.0029+0.0161+0.0537+0.1208) pour H1b = 2*(0.0024+0.0029+0.0161+0.0537+0.1208) 0.388 pour H1a > 0.05

On ne rejette pas l'hypothèse H₀ selon laquelle la médiane des poids est égale à 120 kg

Pour que H0 soit rejetée au profit de H1, il faudrait au plus 2 cochons < la médiane

• Approximation pour de grands échantillons : $Si\begin{cases} np \geq 5 \\ nq \geq 5 \end{cases}$

$$Siegin{cases} np \geq 5 \ nq \geq 5 \end{cases}$$

• On peut utiliser l'approximation suivante de la distribution de la variable :

$$Z = \frac{X - np}{\sqrt{npq}} \sim \aleph(0,1)$$

C'est à vous ...

- Ne pas utiliser ce test si n<5
 - si n=5, le test peut être significatif si k=0 en unilatéral
 - si n=6-7, le test peut être significatif si k=0 en bilatéral
 - si n=8, le test peut être significatif si k=0, en bilatéral, si k=1 en unilatéral
 - si n=9-10, le test peut être significatif si k=0-1 en bilatéral ...

Avec 5 individus : même la probabilité d'avoir 0 signe négatif est > 0.05 en bilatéral

P(0 signe ''-'') =
$$C_5^0(0.5)^0(0.5)^5 = \frac{5!}{0!5!}(0.5)^5 = 0.031$$

Avec 6 individus : seule la probabilité d'avoir 0 signe négatif est < 0.05 en bilatéral

P(0 signe ''-'') =
$$C_6^0(0.5)^0(0.5)^6 = \frac{6!}{0!6!}(0.5)^6 = 0.016$$

P(1 signe ''-'') =
$$C_6^1(0.5)^0(0.5)^6 = \frac{6!}{1!5!}(0.5)^6 = 0.078$$

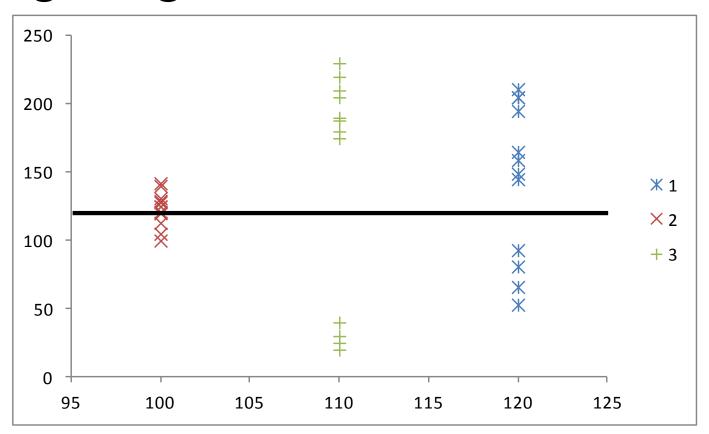
Je veux toujours comparer un échantillon à une valeur théorique...

... mais avec un peu plus d'élégance

Test de WILCOXON

Combine l'information sur les signes et sur les rangs

53 66 81 93 145 149 160 16	165 195 205 207 211
--	-----------------------------


On calcule la différence avec la médiane théorique (Θ=120)

-67	-54	-39	-27	25	29	40	45	75	85	87	91
-----	-----	-----	-----	----	----	----	----	----	----	----	----

On les range par ordre croissant, en conservant les signes

25	27	29	39	40	45	54	67	75	85	87	91
+	-	+	-	+	+	-	-	+	+	+	+
1	2	3	4	5	6	7	8	9	10	11	12

Pourquoi cette combinaison rangs-signes?

Avec le test des signes, ces 3 situations sont considérées comme identiques ...

On les range par ordre croissant, en conservant les signes

25	27	29	39	39	45	54	67	75	85	85	91
+	-	+	-	+	+	-	-	+	+	+	+
1	2	3	4	5	6	7	8	9	10	11	12

On calcule la somme des rangs positifs (S_p) et la somme des rangs négatifs (S_n):

$$\square$$
 S_p = 1+3+5+6+9+10+11+12 = 57

$$\Box$$
 S_n = 2+4+7+8 = 21

 On consulte ensuite la table du test pour n=12, pour savoir si cet écart entre somme des rangs est significatif

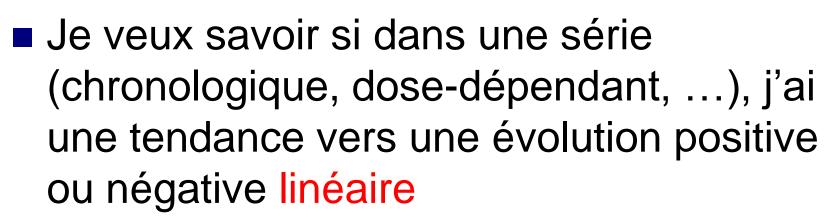
n	α ≤ 5%	α ≤ 1%
n	$\alpha \leq 370$	$\alpha \leq 170$
6	0	-
7	2	-
8	4	0
9	6	2
10	8	3
11	1	5
12	14	7
13	17	10
14	21	13
15	25	16
16	30	20
17	35	23
18	40	28
19	46	32
20	52	38

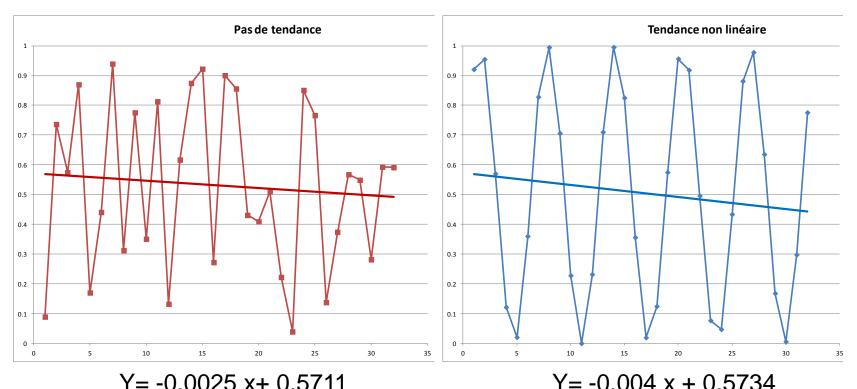
 Dans cette table, pour n=12, le test n'est significatif que si la plus petite des deux sommes (S_n et S_p) est inférieure à 14

Ici, min(S_n, S_p)=21

⋄ H₀ n'est pas rejetée

- S'il y a des ex-aequo : on remplace le rang par un rang moyen
 - \square Ex: -5, 3, 3, 6, 8 \Rightarrow 1, 2.5, 2.5, 4, 5


- S'il y a des valeurs égales à la médiane
 - □ On attribue provisoirement le rang 1 aux valeurs nulles
 - Ex: 0, 3, -7, 11, -13, 16, -18 ⇒ 1, 2, 3, 4, 5, 6, 7
 - On multiplie les rangs par -1 pour les valeurs négatives, +1 pour les valeurs positives, 0 pour les valeurs nulles
 - Ex: 1, 2, 3, 4, 5, 6, $7 \Rightarrow 0$, 2, -3, 4, -5, 6, -7
 - \square Sn = 15
 - □ Sp = 12


■ Si n>20, on utilise une approximation normale

$$Z = \frac{S - \frac{1}{4} \left[n(n+1) - d_0 \left(d_0 + 1 \right) \right] - \frac{1}{2}}{\sqrt{\frac{n(n+1)(2n+1)}{24} - \frac{d_0 \left(d_0 + 1 \right)(2d_0 + 1)}{24} - \frac{\sum_i \left(d_i^3 - d_i \right)}{48}}} \sim \aleph(0,1)$$

- Avec d_0 = nombre de valeurs égales à la moyenne
- d_i = nombre de valeurs de rang i (s'il n'y a pas d'ex-aequo, tous les d_i valent 1)
- Sans ex-aequo ni valeurs égales à la médiane, Z se réduit à :

$$Z = \frac{S - \frac{1}{4}[n(n+1)]}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \sim \%(0,1)$$

 $R^2=0.0112$

 $R^2=0.007$

м

1.C. TEST DE COX-STUART

- C'est une adaptation du test des signes pour chercher une tendance monotone
- Soit n observations ordonnées dans le temps (de x₁ à x_{2m})
 - si n est pair, on calcule les différences :

$$X_{m+1}-X_1 \dots X_{2m}-X_m$$

 Si n est impair, on supprime l'observation du milieu et on fait les mêmes calculs

1.C. TEST DE COX-STUART

H_o: il n'y a pas de tendance (autant de différences positives que négatives, c.à.d. m)

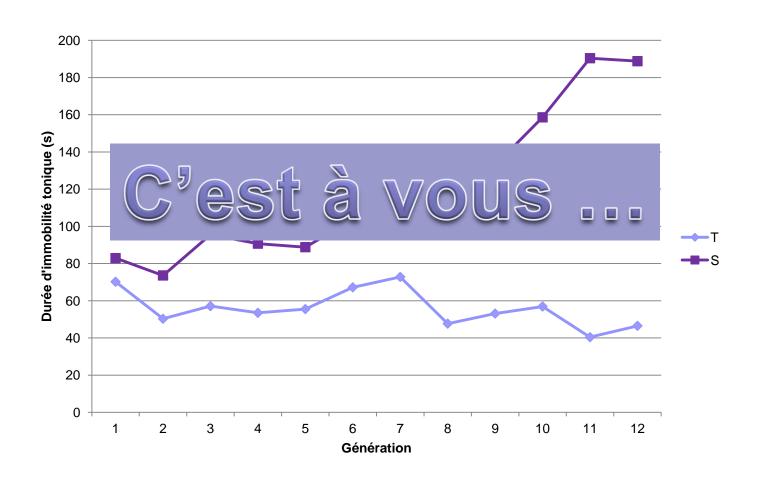
H₁: il y a une tendance (il y a plus de différences d'un signe que de l'autre)

Sous H₀, la probabilité d'avoir au plus X différences positives ou négatives est :

$$P = 2 \times \sum_{k=0,...,X} C_m^k (0.5)^k (0.5)^{m-k}$$

♦ P> 0.05, H₀ est conservée, il n'y a pas de tendance

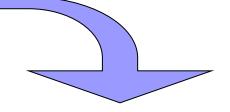
♥ P< 0.05, H₀ est rejetée au profit de H₁, il y a une tendance</p>


1.B. TEST DE COX-STUART

 Ex : Durée d'immobilité tonique chez la caille avec la génération de sélection (G) dans la lignée témoin (T) et la lignée sélectionnée (S)

G	1	2	3	4	5	6	7	8	9	10	11	12
T	70.2	50.3	57.1	53.5	55.5	67.2	72.8	47.7	53.1	56.9	40.4	46.5
S	82.9	73.6	95.5	90.7	88.8	103.5	129.2	115.2	132.8	158.6	190.4	188.8

Etape 1 : regarder les données ...



1.C. TEST DE COX-STUART

G	1	2	3	4	5	6	7	8	9	10	11	12
Т	70.2	50.3	57.1	53.5	55.5	67.2	72.8	47.7	53.1	56.9	40.4	46.5
S	82.9	73.6	95.5	90.7	88.8	103.5	129.2	115.2	132.8	158.6	190.4	188.8

	Т	S
x7-x1	2.6	46.3
x8-x2	-2.6	41.5
x9-x3	-4.0	37.3
x10-x4	3.4	67.8
x11-x5	-15.1	101.6
x12-x6	-20.7	85.8

Nb. Différences	Т	S
Négatives	4	0
Positives	2	6

1.C. TEST DE COX-STUART

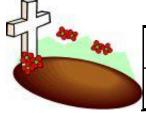
Nb. Différences	T	S
Négatives	4	0
Positives	2	6

HO: il n'y a pas de tendance (autant de différences positives que négatives, càd 3)
 H1: il y a une tendance (il y a plus de différences d'un signe que de l'autre)

Sous H0, la probabilité d'avoir au plus 2 différences positives ou négatives (T):

$$P = \sum_{k=0,1,2,4,5,6} C_6^k (0.5)^k (0.5)^{n-k} = 2 \times (0.016 + 0.094 + 0.234) = 0.69$$

♥ P > 0.05, H0 n'est pas rejetée, il n'y a pas de tendance dans la lignée témoin

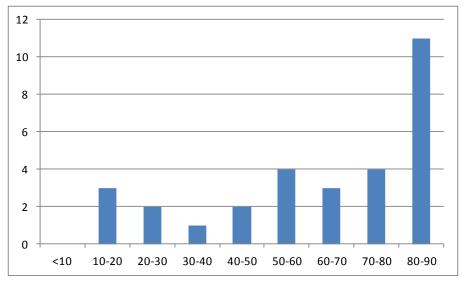

Sous H0, la probabilité d'avoir au plus 0 différence positives ou négatives (S):

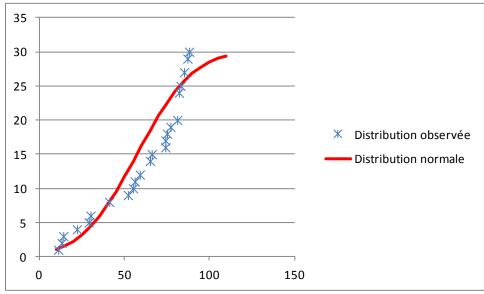
$$P = \sum_{k=0,6} C_6^k (0.5)^k (0.5)^{n-k} = 0.03$$

♥ P < 0.05, H0 est rejetée au profit de H1, il y a une tendance dans la lignée sélectionnée</p>

1.D. TEST DE LILLIEFORS

- Permet de tester si l'échantillon est issu d'une distribution normale
- Compare la répartition de la population et de la courbe de répartition empirique S_x :
 - \square $S_x = (nb \ valeurs \le x \ dans l'échantillon)/n$
- Ex : distribution de l'âge au décès




11	13	14	22	29	30	41	41	52	55	56	59	65	65	66
74	74	75	77	81	82	82	82	82	83	85	85	87	87	88

Etape 1 : on observe les données ...

Nombre de morts observés par catégorie d'âge

Nombre de morts cumulés avec une distribution normale et avec la distribution observée

10

1.D. TEST DE LILLIEFORS

- On transforme les données pour les standardiser :
 - \Box z_i = (x_i-m)/s avec m=moyenne=61.43 et s=écart-type=25.04
- On compare la répartition empirique S à la répartition normale ⊕ sur les données standardisées
 - □ Ex : pour x_1 =11, z_1 =-2.014, et Φ (-2.014)=0.022* * Φ (-1.960)=0.025
- Pour chaque x_i, S est calculée comme 1/n
 - \Box S(z₁) = 1/30
 - \Box S(z₂) = 1/30 + 1/30
 - \Box S(z₇)= 1/30 + 1/30 + 1/30 + 1/30 + 1/30 + 1/30 + 2/30 (ex-aequo)

1.D. TEST DE LILLIEFORS

X _i	Z _i	$\Phi(z_i)$ $S(z_i)$		$\Phi(z_i)$ - $S(z_i$ -1)
			0	
11	-2.01	0.022	0.033	0.022
13	-1.93	0.026	0.067	-0.007
14	-1.89	0.029	0.100	-0.038
22	-1.57	0.058	0.133	-0.042
29	-1.29	0.098	0.167	-0.035
30	-1.25	0.105	0.200	-0.062
41*	-0.82	0.207	0.267	-0.007
52	-0.38	0.353	0.300	0.086
55	-0.26	0.399	0.333	0.099
56	-0.22	0.414	0.367	0.081
59	-0.10	0.461	0.400	0.094

x _i	Z _i	$\Phi(Z_i)$	S(z _i)	$\Phi(z_i)$ - $S(z_i$ -1)
65*	0.14	0.556	0.467	0.156
66	0.18	0.572	0.500	0.105
74*	0.50	0.692	0.567	0.192
75	0.54	0.706	0.600	0.139
77	0.62	0.733	0.633	0.133
81	0.78	0.782	0.667	0.149
82*	0.82	0.794	0.800	0.127
83	0.86	0.805	0.833	-0.005
85*	0.94	0.827	0.900	-0.006
87*	1.02	0.846	0.967	-0.054
88	1.06	0.856	1.000	-0.111

 $Max(\Phi(z_i)-S(z_{i-1})) = 0.192$ pour x=74, à comparer avec la valeur dans la table du test de Lilliefors

1.D. TEST DE LILLIEFORS : TABLE

N	6	7	8	9	10	11	12	13	14
5%	0.319	0.300	0.285	0.271	0.258	0.249	0.242	0.234	0.227
1%	0.364	0.348	0.331	0.311	0.294	0.284	0.275	0.268	0.261

N	15	16	17	18	19	20	25	30	>30
5%	0.220	0.213	0.206	0.200	0.195	0.190	0.173	0.161	0.886/√n
1%	0.257	0.250	0.245	0.239	0.235	0.231	0.203	0.187	1.031 /√n

 $Max(\Phi(z_i)-S(z_{i-1})) = 0.192 \text{ pour } x=74 \text{ ; Valeur critique pour } n=30 \text{ : } 0.161$

♦On rejette l'hypothèse H₀ d'une distribution normale de l'âge du décès

COMPARAISON DE DEUX ECHANTILLONS

- Test de la médiane
- Test de Wilcoxon-Mann-Whitney
- Test de Siegel-Tukey
- Test d'égalité des variances

Je veux comparer deux groupes entre eux ...

- Test de la médiane
- Test de Wilcoxon-Mann-Whitney
- Test de Siegel-Tukey

M

2.A. TEST DE LA MEDIANE

- ou Test de Mood
- Médiane équivalent de Moyenne en paramétrique
- Généralisation du test du signe au cas de deux échantillons indépendants
- H₀ : les deux échantillons ont la même médiane
 - □ M : médiane des deux échantillons regroupés
 - Sous H₀, il y a autant de valeurs supérieures à M dans chacun des deux échantillons, sinon il y a plus de valeurs supérieures à M dans l'un des deux échantillons
 - □ La distribution du nombre de valeurs supérieures à M = binomiale, p=0.50

м

2.A. TEST DE LA MEDIANE

a_i = nb. d'observations >M dans l'échantillon i, de taille n_i

	Echantillon 1	Echantillon 2	Total
>M	a1	a2	a1+a ₂
<m< td=""><td>n₁-a₁</td><td>n2-a₂</td><td>n₁+n₂-a₁-a₂</td></m<>	n ₁ -a ₁	n2-a ₂	n ₁ +n ₂ -a ₁ -a ₂
Total	n_1	n_2	n1+n ₂

$$T = \frac{(2a_1 - n_1)^2 (n_1 + n_2)}{n_1 n_2} \sim \chi^2 \ \text{à} \ 1 \ \text{ddl} \ *$$

^{*} Si n_1 et n_2 ne sont pas trop faibles

 Lignées sélectionnées sur l'aptitude à digérer le blé (critère : Enérgie Métabolisable)

D+	13.47	14.08	13.52	17.75	11.92	14.23	13.55	8.60	13.77	14.23	14.58	13.87
D-	5.78	6.69	9.53	12.82	5.02	14.04	5.85	8.51	11.53	9.81	8.31	9.15

M = 12.37

Etape n°1 : on observe les données ...

 Lignées sélectionnées sur l'aptitude à digérer le blé (critère : Enérgie Métabolisable)

D+	13.47	14.08	13.52	17.75	11.92	14.23	13.55	8.60	13.77	14.23	14.58	13.87
D-	5.78	6.69	9.53	12.82	5.02	14.04	5.85	8.51	11.53	9.81	8.31	9.15

M = 12.37

	D+	D-	Total
>M	10	2	12
<m< td=""><td>2</td><td>10</td><td>12</td></m<>	2	10	12
Total	12	12	24

w

2.A. TEST DE LA MEDIANE

	D+	D-	Total
>M	10	2	12
<m< td=""><td>2</td><td>10</td><td>12</td></m<>	2	10	12
Total	12	12	24

$$T = \frac{(2 \times 10 - 12)^2 (12 + 12)}{12 \times 12} = 10.67$$

- V.C. χ^2 à 1 d.d.l. = 3.84 (5%); 6.63 (1%); 10.83 (0.01%)
 - □ On rejette l'hypothèse H₀ selon laquelle les deux échantillons ont la même médiane, au seuil de 1%

Je veux toujours comparer deux échantillons entre eux...

- mais j'utilise plus d'information que « au-dessus » ou « au-dessous de la moyenne »
- Le test de la médiane est au test de Mann-Whitney ce que le test du signe est au test de Wilcoxon

2.B. TEST DE WILCOXON-MANN-WHITNEY

- Wilcoxon (test de la somme des rangs) et Mann-Whitney ont élaborés leurs tests indépendamment
- Ecriture différente
- Principe identique :
 - on mélange deux échantillons et on compare les rangs. Si les deux échantillons proviennent de la même population, les rangs seront identiques.
 - □ Pour chaque échantillon i, on calcule la valeur :

$$U_i = S_i - 0.5 n_i (n_i + 1)$$

- où S_i est la somme des rangs de l'échantillon i, de taille n_i
- □ La plus petite des deux U_i est comparée à la valeur limite dans la table. H₀ est rejetée si min(U₁, U₂)<V.L.

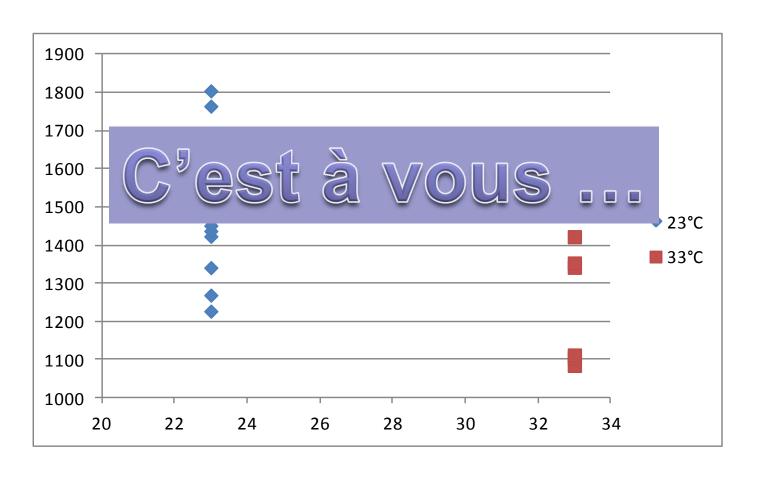
2.B. TEST DE WILCOXON-MANN-WHITNEY

■ Ex : poids des poulets élevés à 23°C ou 33°C

	• • • • • • • • • • • • • • • • • • •	·	
23°C	Rang	33°C	Rang
1227		1085	
1269		1104	
1341		1112	
1423		1342	
1437		1353	
1451		1422	
1507		1479	
1572		1534	
1584		1602	
1632			
1764			
1804			

H₀: les deux échantillons proviennent

de la même population


H₁: les deux échantillons proviennent

de deux populations différant seulement par leur position

(même variance)

Etape 1 : on regarde les données ...

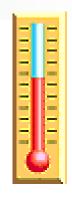
2.B. TEST DE WILCOXON-MANN-WHITNEY

23°C	Rang	33°C	Rang
1227	4	1085	1
1269	5	1104	2
1341	6	1112	3
1423	10	1342	7
1437	11	1353	8
1451	12	1422	9
1507	14	1479	13
1572	16	1534	15
1584	17	1602	18
1632	19		
1764	20		
1804	21		

H₀: les deux échantillons proviennent

de la même population

H₁: les deux échantillons proviennent


de deux populations différant seulement par leur position

(même variance)

$$U_{23^{\circ}C} = 155 - 0.5 \times 12 \times 13 = 77$$

 $U_{33^{\circ}C} = 76 - 0.5 \times 9 \times 10 = 31$

v.l. pour
$$n_1=12$$
 et $n_2=9$: 26 (5%)

♦ H₀ est conservée

2.B.TABLE DE MANN-WHITNEY (U)

											n.	1								
n ₂ -n ₁	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	-	-	-	0	2	5	8	13	17	23	30	37	45	55	64	75	87	99	113	127
1	-	-	-	1	3	6	10	15	20	26	33	41	50	59	70	81	93	106	119	
2	-	-	0	2	5	8	12	17	23	29	37	45	54	64	75	86	99	112		
3	-	-	1	3	6	10	14	19	26	33	40	49	59	69	80	92	105			
4	-	-	1	4	7	11	16	22	28	36	44	53	63	74	85	98				
5	-	-	2	4	8	13	18	24	31	39	47	57	67	78	90					
6	-	0	2	5	9	14	20	26	34	42	51	61	72	83						
7	-	0	3	6	11	16	22	29	37	45	55	65	76							
8	-	0	3	7	12	17	24	31	39	48	58	69								
9	-	0	4	8	13	19	26	34	42	52	62									
10	-	1	4	9	14	21	28	36	45	55										
11	-	1	5	10	15	22	30	38	48											
12	-	1	5	11	17	24	32	41	50											
13	-	1	6	11	18	25	34	43												
14	-	1	6	12	19	27	36	45												
15	-	2	7	13	20	29	38													
16	-	2	7	14	22	30	40													
17	-	2	8	15	23	32														
18	-	2	8	16	24	33														
19	-	3	9	17	25															
20	-	3	9	17	27															
21	-	3	10	18																
22	-	3	10	19																
23	-	3	11																	
24	-	4	11																	
25	-	4																		

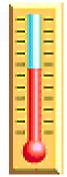
2.B. TEST DE MANN-WHITNEY (U)

- Approximation pour les grands échantillons (n, m > 20)
- \blacksquare U = min (U_n, U_m)

$$z = \frac{U + \frac{1}{2} - \frac{1}{2}mn}{\sqrt{\frac{mn(m+n+1)}{12}}} \sim \%(0,1)$$

■ Dans l'exemple précédent z = -1.599 ⇒ p=0.11

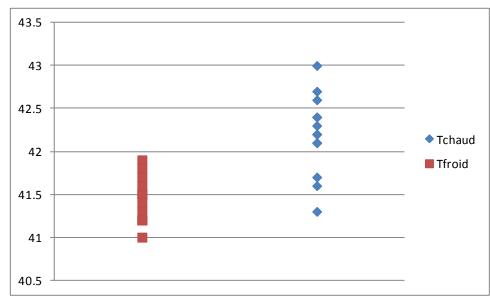
Je veux toujours comparer deux groupes, mais ...

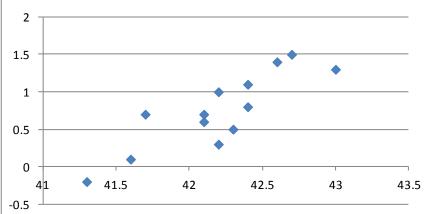

- mes échantillons ne sont plus indépendants les uns des autres
- Ils sont appariés

	Echantillons indépendants	Echantillons appariés				
Condition 1	Naf-Naf Nif-Nif Nouf-Nouf	Naf-Naf Nif-Nif Nouf-Nouf				
Condition 2	Riri Fifi Loulou	Naf-Naf Nif-Nif Nouf-Nouf				

2.C. TEST DU SIGNE ORDONNE DE WILCOXON

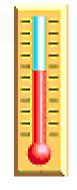
- Echantillons appariés
- Les différences entre observations appariées constitue un ensemble unique qui ne peut être analysé avec les méthodes précédentes
- Soit x_i, y_i les deux mesures de l'individu i
- On calcule $d_i = x_i y_i$
- H₀: il n'y a pas de différence entre les x_i et les y_i, donc les d_i ont la même probabilité d'être positives ou négatives
- ♦ le test du signe est justifié




Température des poulets mesurée au chaud ou au froid

Poulet	Tchaud	Tfroid	Tchaud-Tfroid	Tchaud-Tfroid	Rang	Signe
1	41.6	41.5	0.1	0.1	1	+
2	41.3	41.5	-0.2	0.2	2	-
3	42.2	41.9	0.3	0.3	3	+
4	42.3	41.8	0.5	0.5	4	+
5	42.1	41.5	0.6	0.6	5	+
6	42.1	41.4	0.7	0.7	6.5	+
7	41.7	41.0	0.7	0.7	6.5	+
8	42.4	41.6	0.8	0.8	8	+
9	42.2	41.2	1.0	1.0	9	+
10	42.4	41.3	1.1	1.1	10	+
11	43.0	41.7	1.3	1.3	11	+
12	42.6	41.2	1.4	1.4	12	+
13	42.7	41.2	1.5	1.5	13	+

Etape 1 : on regarde les données ...


Différence de température entre chaud et froid - échantillon apparié

Ce graphique-là, on ne peut le faire qu'avec des échantillons appariés

2.C. TEST DU SIGNE ORDONNE DE WILCOXON

Température des poulets mesurée au chaud ou au froid

Rang	Signe			
1	+			
2	-			
3	+			
4	+			
5	+			
7	+			
7	+			
8	+			
9	+			
10	+			
11	+			
12	+			
13	+			

Test du signe:

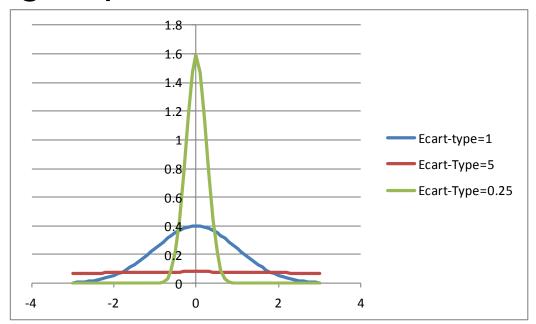
P(0 ou 13 signes négatifs) = $2 \times C_{13}^{0} \times 0.5^{13} = 0.00024$

P(1 ou 12 signes négatifs) = $2 \times C_{13}^{1} \times 0.5^{13} = 0.00317$

 \Rightarrow P = 0.003

⇒ H₀ rejetée

Test de Wilcoxon-Mann-Whitney:

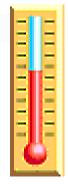

 $S_n = 2 < 10$ (v.l. à 1% pour n=13)

2.C. TEST DU SIGNE ORDONNE DE WILCOXON : TABLE

n	α ≤ 5 %	α ≤ 1 %
6	0	-
7	2	-
8	4	0
9	6	2
10	8	3
11	11	5
12	14	7
13	17	10
14	21	13
15	25	16
16	30	20
17	35	23
18	40	28
19	46	32
20	52	38

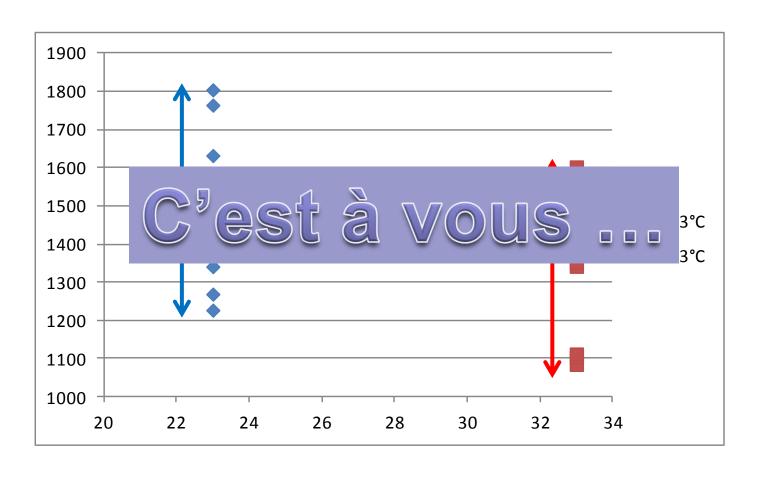
Tester l'égalité de variances entres groupes

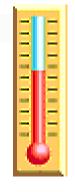
Pourquoi tester l'égalité des variances entre groupes ?



Parce que ces 3 distributions, de même moyenne, sont différentes ...

2.D. TEST D'EGALITE DES VARIANCES DE SIEGEL-TUKEY


- Équivalent du test paramétrique de Fisher-Snedecor
- Si les deux populations considérées ne diffèrent que par la variance, l'une des deux va avoir les positions les plus éloignées de la médiane, l'autre les positions les plus proches de la médiane
- On range l'échantillon regroupé par ordre croissant et on attribue la valeur 1 au plus petit, 2 au plus grand, 3 au 2ème plus petit, 4 au 2ème plus grand ...
 - Ex: pour les valeurs 8, 12, 25, 38, 54 on attribue les rangs 1, 3, 5, 4, 2



_		_	_
23°C	Rang	33°C	Rang
1227		1085	
1269		1104	
1341		1112	
1423		1342	
1437		1353	
1451		1422	
1507		1479	
1572		1534	
1584		1602	
1632			
1764			
1804			

Etape 1 : on regarde les données ...

2.D. TEST D'EGALITE DES VARIANCES DE SIEGEL-TUKEY

23°C	Rang	33°C	Rang
1227	7	1085	1
1269	9	1104	3
1341	11	1112	5
1423	19	1342	13
1437	21	1353	15
1451	20	1422	17
1507	16	1479	18
1572	12	1534	14
1584	10	1602	8
1632	6		
1764	4		
1804	2		

Test de Siegel-Tukey :

- $S_{23^{\circ}C} = 137, U_{23^{\circ}C} = 59$
- $S_{33^{\circ}C} = 94$, $U_{33^{\circ}C} = 49$
- v.l. pour n=9, m=12 : 45
 - □ H₀ conservée

Test de Fisher Snedecor :

- $V_{23^{\circ}C} = 32480.45$
- $V_{33^{\circ}C} = 38140.25$
- F = 1.174 < 3.31

COMPARAISON DE TROIS ECHANTILLONS OU PLUS

- Test de Kruskall-Wallis
- Test de Friedman (échantillons appariés)
- Homogénéité des variances

Rapprochons nous de la vraie vie

- On n'a rarement que deux situationsgroupes-traitements à comparer
- On a les mêmes questions qu'avant, mais avec plus de 2 groupes
 - Mes x groupes sont-ils équivalents
 - (groupes indépendants, Kruskall-Wallis)
 - (groupes appariés, Friedman)
 - Mes x groupes ont-ils la même variance ?

м

3.A. TEST DE KRUSKALL-WALLIS

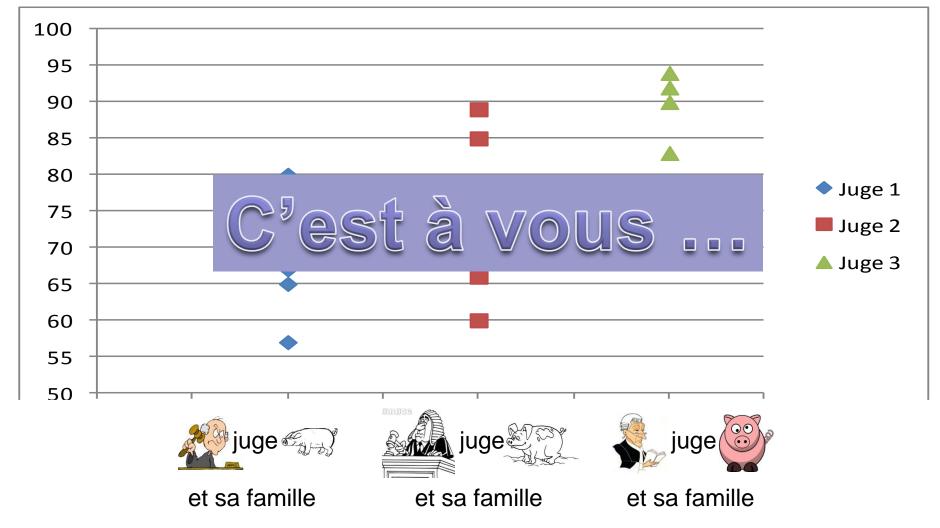
- Généralisation du test de Wilcoxon-Mann-Whitney pour plus de deux échantillons
- On a k traitements sur lesquels on fait plusieurs observations indépendantes
- H₀: les k échantillons ont la même distribution
- H₁: au moins un des k échantillons n'a pas la même distribution
- On mélange les k échantillons et on remplace les observations par leur rang. On calcule ensuite la statistique de test H :

$$H = \left\lceil \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{\left(R_{j}\right)^{2}}{n_{j}} \right\rceil - 3(N+1)$$

- □ R_i = somme des rangs de l'échantillon j
- □ nj : effectif de l'échantillon j
- □ N = effectif global

Si n_j≤5 ⇒Table Si n_i>5 ⇒ H ~ χ² à (k-1) d.d.l.

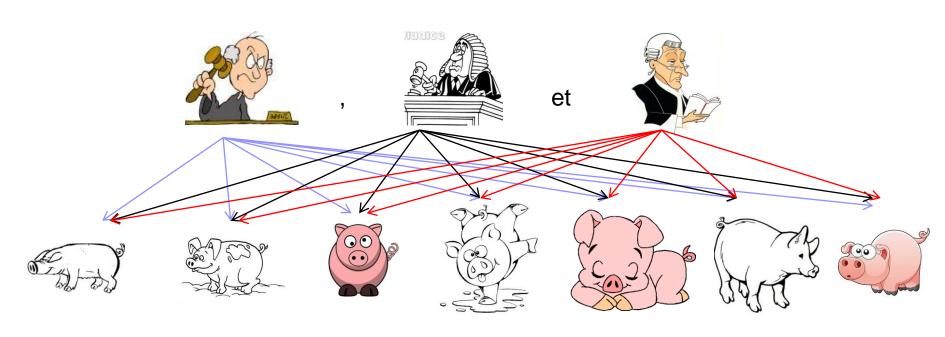
20


3.A. TEST DE KRUSKALL-WALLIS

 Ex : on compare les notes attribuées par 3 juges sur sept verrats (chaque juge note des verrats différents = indépendants)

Juge 1	Juge 2	Juge 3
65	77	79
67	69	83
80	66	78
72	85	92
75	89	94
57	74	70
76	60	90

Etape 1 : on observe les données ...



3.A. TEST DE KRUSKALL-WALLIS

Juge 1	Rang	Juge 2	Rang	Juge 3	Rang
65	3	77	12	79	14
67	5	69	6	83	16
80	15	66	4	78	13
72	8	85	17	92	20
75	10	89	18	94	21
57	1	74	9	70	7
76	11	60	2	90	19
R_{j}	53		68		110

H = 6.479 à comparer avec un χ^2 à 2 d.d.l. (v.l. 5% = 5.991)

On prend les mêmes et on recommence ...mais avec des échantillons appariés

jugent tous les 3 les mêmes cochons

3.B. TEST DE FRIEDMAN

- Echantillons appariés (on fait subir plusieurs traitements à un même sujet)
- H₀: les traitements ne diffèrent pas entre eux (en tenant compte de l'appariement)
- H₁: au moins un des traitements diffère
- x_{ij}: observation du sujet i (i=1, n) avec le traitement j (j=1,k)
- On remplace l'observation x_{ij} par son rang pour le sujet i, et on calcule la somme des rangs pour chaque traitement j
- On calcule ensuite S :

$$S = \left[\frac{12}{nk(k+1)} \sum_{j=1}^{k} R_{j}^{2}\right] - 3n(k+1) \sim \chi_{k-1}^{2}$$

n : nombre de sujets ; k : nombre de traitements ;

R_i: somme des rangs pour le traitement j


3.B. TEST DE FRIEDMAN

Ex : Si on reprend l'exemple précédent, les 3 juges notent les mêmes verrats

Verrat	Juge 1	Juge 2	Juge 3
1	65	77	79
2	67	69	83
3	80	66	78
4	72	85	92
5	75	89	94
6	57	74	70
7	76	60	90

Etape 1 ...

3.B. TEST DE FRIEDMAN

On remplace les valeurs par leurs rangs intra-sujet

Verrat	Juge 1	Juge 2	Juge 3
1	1	2	3
2	1	2	3
3	3	1	2
4	1	2	3
5	1	2	3
6	1	3	2
7	2	1	3
Total	10	13	19

$$S = \left[\frac{12}{21(3+1)}(10^2 + 13^2 + 19^2)\right] - 21(3+1) = 6.00 > 5.99 \text{ (v.l. de } \chi_2^2 \text{ à 5\%)}$$

\$\to\$ La différence entre juges est juste significative

- Généralisation du test des carrés des rangs
- On remplace les observations par les valeurs absolues des écarts à la moyenne dans chaque échantillon, on ordonne ces écarts absolus en combinant tous les échantillons, puis on calcule le carré de leurs rangs

Juge 1	Ecart à m	Juge 2	Ecart à m	Juge 3	Ecart à m
65	5.29	77	2.71	79	4.71
67	3.29	69	5.29	83	0.71
80	9.71	66	8.29	78	5.71
72	1.71	85	10.71	92	8.29
75	4.71	89	14.71	94	10.29
57	13.29	74	0.29	70	13.71
76	5.71	60	14.29	90	6.29
m=70.29		m=74.29		m=83.71	

Juge 1		Juge 2		Juge 3	
Ecart à m	Rang (Rang²)	Ecart à m	Rang (Rang²)	Ecart à m	Rang (Rang²)
5.29	8.5(72.25)	2.71	4(16)	4.71	6.5(42.25)
3.29	5(25)	5.29	8.5(72.25)	0.71	2(4)
9.71	15(225)	8.29	13.5(182.25)	5.71	10.5(110.25)
1.71	3(9)	10.71	17(289)	8.29	13.5(182.25)
4.71	6.5(42.25)	14.71	21(441)	10.29	16(256)
13.29	18(324)	0.29	1(1)	13.71	19(361)
5.71	10.5(110.25)	14.29	20(400)	6.29	12(144)
S ₁	807.75	S ₂	1401.5	S ₃	1099.85

$$\sum$$
 rangs²_{ij} = 3309.1

$$C = \frac{(\sum rangs_{ij}^2)^2}{N} = \frac{3309.1^2}{21} = 521403.86$$

En absence d'ex – aequo :

$$S_t^2 - C = \frac{(N-1)N(N+1)(2N+1)(8N+11)}{180}$$

$$S_{j}^{2} = \frac{807.75^{2} + 1401.5^{2} + 1099.85^{2}}{7} = 546618.91$$

$$H = (N-1)\frac{S_j^2 - C}{S_t^2 - C} = 1.28 \sim \chi^2 \text{ à 2 d.d.l.}$$

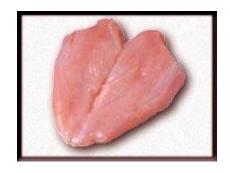
La différence de variance entre juges n'est pas significative

м

Dans tous les cas ...

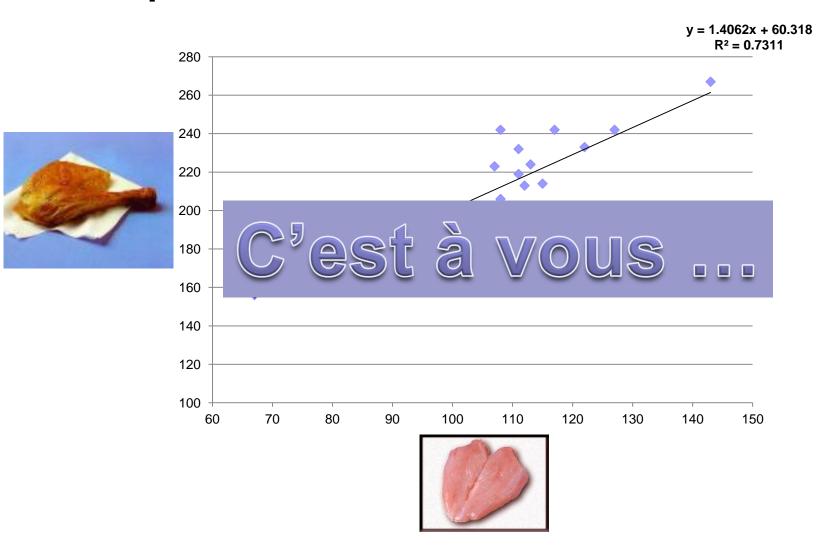
- Que l'on compare les médianes ou les variances des n groupes, le test dit « il y en a au moins un qui est différent », mais pas « c'est celui-là qui est différent des autres »
- On doit ensuite refaire les tests 2 à 2 pour savoir qui est différent de qui
- Il faut alors penser à la correction de Bonferroni (on divise la probabilité a par le nombre de tests)
 - □ Pour nos 3 groupes de cochons, on compare J1 et J2, J1 et J3,
 J2 et J3
 - □ On fait 3 tests
 - □ Pour déclarer une de ces différences significatives, elle doit être significative au seuil de 0.05/3=0.017 et non pas au seuil habituel de 0.05
 - □ On n'est pas obligés de faire tous les tests ...

CORRELATIONS ENTRE DONNEES BIVARIATES

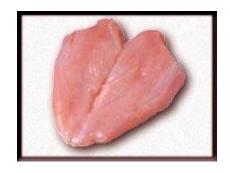

- Corrélation de rang de Spearman
- Corrélations de rang de Kendall

- Equivalent du coefficient de corrélation classique, mais calculé à partir des rangs et non des observations
- Utilise deux séries appariées X et Y, constituant n couples (X, Y)
- On calcule les rangs pour X, puis pour Y
- On calcule ensuite, pour chaque sujet i, la différence entre son rang pour X et son rang pour Y (d_i)
- On calcule enfin le coefficient de corrélation r_{XY} comme suit :

$$r_{XY} = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$


Sujet	Filet	Cuisse
1	111	232
2	143	267
3	113	224
4	122	233
5	94	200
6	111	219
7	82	178
8	111	192
9	107	189
10	108	206
11	108	242
12	115	214
13	127	242
14	112	213
15	117	242
16	80	178
17	107	223
18	105	185
19	111	196
20	67	156

Les poulets qui ont les plus gros filets ont-ils les plus grosses cuisses ?



Etape 1 ...

Sujet	Filet	Cuisse
1	111	232
2	143	267
3	113	224
4	122	233
5	94	200
6	111	219
7	82	178
8	111	192
9	107	189
10	108	206
11	108	242
12	115	214
13	127	242
14	112	213
15	117	242
16	80	178
17	107	223
18	105	185
19	111	196
20	67	156

Les poulets qui ont les plus gros filets ont-ils les plus grosses cuisses ?

 Etape 2: calculer les rangs des animaux pour la variable « filet » et pour la variable « cuisse »

Filet	Cuisse	Rang	Rang
1 1100	Guisse	Filet	Cuisse
111	232	11	15
143	267	20	20
113	224	15	14
122	233	18	16
94	200	4	8
111	219	12	12
82	178	3	3
111	192	13	6
107	189	6	5
108	206	8	9
108	242	9	17
115	214	16	11
127	242	19	19
112	213	14	10
117	242	17	18
80	178	2	2
107	223	7	13
105	185	5	4
111	196	10	7
67	156	1	1
	143 113 122 94 111 82 111 107 108 108 115 127 112 117 80 107 105 111	111 232 143 267 113 224 122 233 94 200 111 219 82 178 111 192 107 189 108 206 108 242 115 214 127 242 112 213 117 242 80 178 107 223 105 185 111 196	Filet Cuisse Filet 111 232 11 143 267 20 113 224 15 122 233 18 94 200 4 111 219 12 82 178 3 111 192 13 107 189 6 108 206 8 108 242 9 115 214 16 127 242 19 112 213 14 117 242 17 80 178 2 107 223 7 105 185 5 111 196 10

Etape 3: calculer les différences entre les rangs des animaux pour la variable « filet » et pour la variable « cuisse » et son carré

	Filet	Cuisse	Rang Filet	Rang Cuisse	d _i	d²;
1	67	156	1	1	0	0
2	80	178	2	2.5	-0.5	0.25
3	82	178	3	2.5	0.5	0.25
4	94	200	4	8	-4	16
5	105	185	5	4	1	1
6	107	189	6.5	5	1.5	2.25
7	107	223	6.5	13	-6.5	42.25
8	108	206	8.5	9	-0.5	0.25
9	108	242	8.5	18	-9.5	90.25
10	111	232	11.5	15	-3.5	12.25
11	111	219	11.5	12	-0.5	0.25
12	111	192	11.5	6	5.5	30.25
13	111	196	11.5	7	4.5	20.25
14	112	213	14	10	4	16
15	113	224	15	14	1	1
16	115	214	16	11	5	25
17	117	242	17	18	-1	1
18	122	233	18	16	2	4
19	127	242	19	18	1	1
20	143	267	20	20	0	0

- Etape 2 : calculer les rangs des animaux pour les variables « filet » et « cuisse »
- Etape 3 : calculer les différences de rang pour les deux variables
- $\Sigma d_i^2 = 263.5$
- Etape 4: calculer la corrélation

$$r_{\text{Filet,Cuise}} = 1 - \frac{6 \times 263.5}{20 \times (400 - 1)}$$

= 0.80

- Etape 5 : la corrélation est-elle significativement différente de 0 ?
- Si n<10 ⇒ Consulter la table</p>

n	5	6	7	8	9	10
α≤5%	1.00	0.89	0.79	0.74	0.68	0.65
α≤1%	-	1.00	0.93	0.88	0.83	0.79

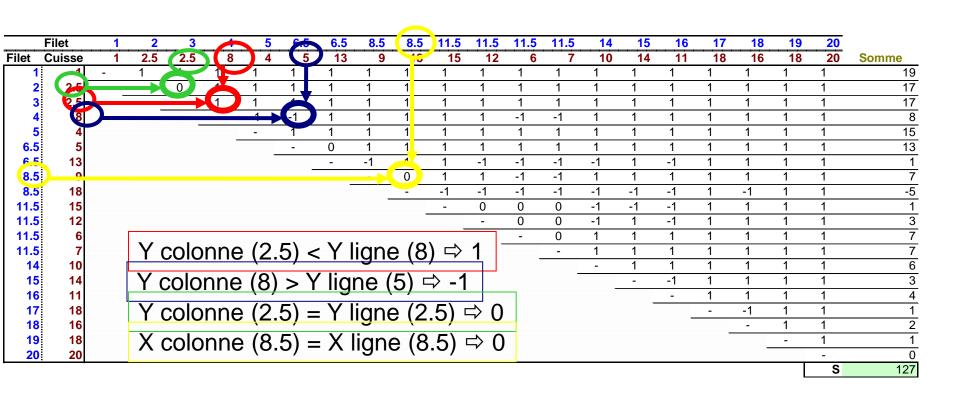
Si n≥10 ⇒ la corrélation suit approximativement une loi normale :

$$t = \frac{r_{X,Y}}{\sqrt{1 - r_{X,Y}^2}} \times \sqrt{n-2} \sim t \ a \ (n-2) \ d.d.l.$$

4.B. CORRELATION DE KENDALL

- On ordonne sur le rang de la variable X
- On calcule les rangs pour la variable Y
- On construit un tableau avec les rangs de X et Y en ligne et en colonne
- Pour chaque observation, on compare les rangs de Y en ligne et en colonne
 - □ Rang Y en colonne < Rang Y en ligne => 1
 - □ Rang Y en colonne > Rang Y en ligne => -1
 - □ Rang Y en colonne = Rang Y en ligne => 0
 - □ Rang X en colonne = Rang X en ligne => 0
 - □ On fait le total des valeurs => S de la formule
- Le coefficient τ de Kendall vaut alors :

$$\tau = \frac{2 \times S}{n(n-1)}$$


4.B. CORRELATION DE KENDALL

	Filet	Cuisse	Rang Filet	Rang Cuisse
1	67	156	1	1
2	80	178	2	2.5
3	82	178	3	2.5
4	94	200	4	8
5	105	185	5	4
6	107	189	6.5	5
7	107	223	6.5	13
8	108	206	8.5	9
9	108	242	8.5	18
10	111	232	11.5	15
11	111	219	11.5	12
12	111	192	11.5	6
13	111	196	11.5	7
14	112	213	14	10
15	113	224	15	14
16	115	214	16	11
17	117	242	17	18
18	122	233	18	16
19	127	242	19	18
20	143	267	20	20

4.B. CORRELATION DE KENDALL

$$\tau = (2 \times 127)/(20 \times 19) = 0.67$$