Bursting and division in a nonlinear cell population model
Romain Yvinec

To cite this version:
Romain Yvinec. Bursting and division in a nonlinear cell population model. Stochastic Biology: from Cells to Populations, May 2014, Vienne, Austria. , 1 p., 2014. hal-02796022

HAL Id: hal-02796022
https://hal.inrae.fr/hal-02796022
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1. The model: Pure-Jump Markov process

The building blocks of this model are two non-local operators that represent respectively the bursting and division.

- **Bursting:** at rate \(\lambda(x) \), a cell increases its molecular content, from \(x \) to \(y \), according to the bursting kernel distribution \(s(x,y) \).

- **Division:** at rate \(\mu(x) \), a cell gives rise to two cells of lower molecular content, \(y < x \), according to the (symmetric) division kernel distribution \(w(x,y) \).

Following a single cell line, this model gives a one-dimensional pure jump Markov \(\{X(t)\}_{t \geq 0} \) on \(\mathbb{R} \), whose typical trajectories are shown in figure 1.

![Figure 1: Single cell sample path trajectories.](image)

2. Single cell model

Following a single cell line, the generator of \(\{X(t)\}_{t \geq 0} \) is given by (for bounded functions \(f \))

\[
Af(x) = \lambda(x) \int (f(y) - f(x)w(x,y))dy + \mu(x) \int (f(y) - f(x)s(x,y))dy.
\]

The evolution equation (Master equation) on the probability density \(u(x,y,t) \) is given by

\[
\frac{du(x,y,t)}{dt} = -\lambda(x)u(x,y,t) + \int \lambda(y)u(x,y,z)w(x,z)dy - \mu(x)u(x,y,t) + \int \lambda(y)u(x,z,y)s(x,z)dz.
\]

This defines a semi-group \(P(t) \) on \(L^1 \). We will use the

Lemma 1. (taken from [4])

If \(P(t) \)

- is a stochastic semigroup: \(\|P(t)\| = \|\mu_{t}\| \),
- is partially integral: there exists \(\lambda_{0} > 0 \) and \(\mu_{0}, \mu_{1} \) s.t.
 \[
 \int \mu_{0}(x) \mu_{1}(y)dx\mu_{1}(y)dy > 0,
 \]
- and possesses a unique invariant measure, then \(P(t) \) is asymptotically stable.

2.1 Asymptotic stability of the density

The Master equation may be rewritten as

\[
\frac{du(x,t)}{dt} = -\lambda(x)u(x,t) + \int \lambda(y)u(x,y,t)w(x,y)dy - \mu(x)u(x,t) + \int \lambda(y)u(x,t)\mu_{1}(y)dy.
\]

where \(\lambda_{0} = \lambda(x) + \lambda(y) \) and

\[
\kappa(x,y) = \int \lambda(y)u(x,y,t)w(x,y)dy + \int \lambda(y)u(x,y,t)\mu_{1}(y)dy.
\]

If \(\kappa \) has a strictly positive fixed point in \(L^1 \), then \(P(t) \) is stochastic \([5, 1] \). We consider the separable kernel case

\[
\lambda_{0}(x,y) = \lambda(x), \quad x > y, \quad \lambda_{0}(x,y) = \lambda(y), \quad x < y.
\]

where \(\lambda_{0}(y) = \lambda_{0} \lambda_{y} = \lambda_{y}, \lambda_{y} \) and \(K(y) = \lambda_{y} \). We define

\[
\tilde{\lambda}(y) = \lambda_{0}(y) \frac{\lambda_{y}}{\lambda(y)}, \quad x > y, \quad \tilde{\lambda}(y) = \lambda_{0}(y) \frac{\lambda_{y}}{\lambda(y)}, \quad x < y.
\]

Theorem 1. Asymptotic stability

Suppose that

\[
\tilde{\lambda} = \int \lambda(y)K(y)^2 \mu_{1}(y)dy < \infty \quad \text{and} \quad \lim_{\mu_{1}(y)\rightarrow \infty} \int \lambda(y)K(y)^2 \mu_{1}(y)dy < \mu_{0}.
\]

Then the semigroup \(\{P(t)\}_{t \geq 0} \) is stochastically and asymptotically stable.

For any initial density \(u_{0}(x) \), \(u(x,t) \) converges to

\[
u_{0}(x) \kappa(x) \rightarrow \hat{u}(x).
\]

Remark 1 Lyapunov-function strategy (32) can be used to find sufficient conditions of ergodicity in more general cases.

Corollary 1 Bifurcation (see [2])

The number of modes of the stationary solution are linked to the number of solutions of

\[
0 = \frac{\lambda_{0}(x)}{\lambda_{y}(x)} K_{y}(x) K_{y}(x) + G_{y}(x) \lambda_{0}(x) \kappa(x).
\]

2.2 Mean waiting time

We can also solve (analytically) the backward equation, \(\frac{\partial}{\partial x} \hat{u}(x) = \hat{u}(x) \).

We found for instance that the mean waiting time is non-monotonic with respect to the bursting property.

![Figure 3: \(K_{y}(x) = e^{-\lambda_{y}(x)} \), \(\lambda_{y}(x) = \lambda_{0}(x) \lambda_{y}(x) \).](image)

3. Nonlinear population model

We wish to investigate the (macroscopic) population model with nonlinear feedback on the division rate

\[
\frac{dS(t)}{dt} = -\lambda(x)S(x,t) + \int \lambda(y)u(y,x,t)w(x,y)dy - \mu(x)S(x,t) + \int \lambda(y)u(y,x,t)\mu_{1}(y)dy.
\]

where the feedback strength is given by

\[
\int \left(\psi(x) \right) dx.
\]

We will restrict to the case of constant division and death rates, so that

\[
\int \left(\psi(x) \right) dx = \frac{\lambda_{0}(x)}{\lambda_{y}(x)} K_{y}(x) K_{y}(x) + G_{y}(x) \lambda_{0}(x) \kappa(x).
\]

3.1 All cells participate to the feedback

\[
x \geq 0, \quad S(t) = \int_{x=0}^{\infty} \psi(x) dx, \quad \lambda(y) = \text{constant}.
\]

We have immediately

\[
\frac{dS(t)}{dt} = -\lambda(x)S(x,t) + \int \lambda(y)u(y,x,t)w(x,y)dy - \mu(x)S(x,t) + \int \lambda(y)u(y,x,t)\mu_{1}(y)dy.
\]

2.3 A fraction on cells participate to the feedback

In the case \(x > 0 \), we can only prove a persistence result for the equation

\[
\frac{dS(t)}{dt} = -\lambda(x)S(x,t) + \int \lambda(y)u(y,x,t)w(x,y)dy - \mu(x)S(x,t) + \int \lambda(y)u(y,x,t)\mu_{1}(y)dy.
\]

Theorem 3 Persistence

With \(\psi \) smooth, bounded and bounded away from \(t \), starting with a positive \(S(0) \), we have

\[
0 < \int u(x,y,t)dy \leq \sup \{ \psi(x) \}, \quad \mu(x) \delta(t) < \infty
\]

3.3 Numerical results indicate Hopf bifurcation

![Figure 5: \(\lambda_{y}(x) = 0 \), \(\psi(x) = 0 \).](image)

![Figure 6: \(\lambda_{y}(x) = 0 \), \(\psi(x) = 0 \).](image)

We found that the bursting and the asymmetry of the division shift the Hopf bifurcation

\[
\frac{\lambda_{y}(x)}{\lambda_{y}(x)} K_{y}(x) K_{y}(x) + G_{y}(x) \lambda_{0}(x) \kappa(x)
\]

\[
\begin{array}{cccc}
\lambda_{y}(x) = 0.4 & 0.2 & 0.2 & 0.2 \\
\lambda_{y}(x) = 0.6 & 0.4 & 0.4 & 0.4 \\
\lambda_{y}(x) = 0.8 & 0.6 & 0.6 & 0.6 \\
\lambda_{y}(x) = 1.0 & 0.8 & 0.8 & 0.8
\end{array}
\]

Table 1: Effect of cell burst proportions. Right: with \(\lambda_{y}(x) = 0.4, \psi(x) = 1 \). \(\psi(x) \) is the asymmetry of the division prevents oscillations.

4. Conclusion and Perspectives

Upon an assumption of separable bursting and division kernel, we found a complete characterisation of the single cell model.

- Criteria for convergence towards steady-state, and analytical solution (and bifurcation)
- Mean waiting time to reach a given level
- Such study can be used to infer the burst rate and/or division rate in a dividing cell population.

While looking at the nonlinear population model, the bursting properties and division mechanism are shown to have a profound impact on homeostasis that will be further investigated.

References

