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Bursting and Division in a Nonlinear Cell Population Model

We use Pure-Jump Markov processes to describe the stochastic protein bursting production and molecular repartition at division. We find asymptotic convergence criteria and analytical solutions for the steady-state probability density of proteins in a single cell. We also find analytical solutions of mean waiting time to reach a given level. This findings are used to caracterise the behavior of the model as a function of parameters (bifurcation) and can be applied for inverse problems. Finally, we study a population model based on a non-linear extension of the single cell model. We find with numerical simulations situations where a Hopf bifurcation occurs, and where unfrequent but large burst prevents oscillations.

The model: Pure-Jump Markov process

The building blocks of this model are two non local operators that represent respectivly the bursting and division.

• Bursting: at rate λ b (x), a cell increases its molecular content, from x to y according to the bursting kernel distribution κ b (y, x)1 {y>x} dy

• Division: at rate λ d (x), a cell gives rise to two cells of lower molecular content, y and x-y, according to the (symmetric) division kernel distribution κ d (y, x)1 {y<x} dy Following a single cell line, this model gives a onedimensional pure-jump Markov (X(t)) t≥0 on R * + , whose typical trajectories are shown in figure 1. Following the whole population, this model gives a measure-valued pure-jump Markov process, that can be represented as a tree (Figure 2) 

A cell tree, λ b =10 A cell tree, λ b =100

Single cell model

Following a single cell line, the generator of (X(t)) t≥0 is given by (for bounded functions f )

Af (x) = λ b (x) ∞ x (f (y) -f (x))κ b (y, x)dy + λ d (x) x 0 (f (y) -f (x))κ d (y, x)dy .
The evolution equation (Master equation) on the probability density ( u(t, x)dx = 1) is given by.

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y)u(t, y)κ b (x, y)dy -λ d (x)u(t, x) + ∞ x λ d (y)u(t, y)κ d (x, y)dy
This defines a semi-group P (t) on L 1 . We will use the

Lemma 1. (taken from [4])

If P (t)

• is a stochastic semigroup:

P (t)u 1 = u 1 ,
• is partially integral: there exists t 0 > 0 and p s.t. • and possess a unique invariant density, then P (t) is asymptotically stable.

Asymptotic stability of the density

The Master equation may be rewritten as

du dt = -λu + K(λu),
where λ(y) := λ b (y) + λ d (y) and

Kv(x) := x 0 λ b (y) λ(y) u(t, y)κ b (x, y)dy + ∞ x λ d (y) λ(y) u(t, y)κ d (x, y)dy If K has a strictly positive fixed point in L 1 , then P (t) is stochas- tic ([5, 1]
). We consider the separable kernel case

κ b (x, y) = - K b (x) K b (y) , x > y, κ d (x, y) = K d (x) K d (y) , x < y.
where K b (y) → 0 as y → ∞ and K(y) → 0 as y → 0. We define

G(x) = K d (x) K d (x) - K b (x) K b (x) , Q b (x) = x x λ b (y) λ(y) G(y)dy.

Theorem 1. Asymptotic stability

Suppose that

c b := ∞ 0 K b (x) λ(x) G(x)e -Q b (x) dx < ∞, ∞ 0 K b (x)G(x)e -Q b (x) dx < ∞
Then the semigroup {P (t)} t≥0 is stochastic and is asymptotically stable. For any initial density u 0 , u(t, x) converges to

u * (x) = 1 c b K b (x) λ(x) G(x)e -Q b (x)
Remark 1 Lyapounov-fonction strategy ( [START_REF] Meyn | Markov chains and stochastic stability[END_REF]) can be used to find sufficient conditions of ergodicity in more general cases.

Corollary 1. Bifurcation (see [2])

The number of modes of the stationary solution are linked to the number of solutions of 

0 = - λ (x) λ(x) + K b (x) K b (x) + G (x) G(x) + λ b (x) λ(x) G(x)
x Steady-state profile

λ b =1, b=10 λ b =5, b=2 λ b =10, b=1 λ b =100, b=0.1 Figure 3: K b (x) = e -x/b , λ b (x) = λ b 1+x n Λ+x n , K d (x) = x.

Mean waiting time

We can also solve (analytically) the backward equation, Af (x) = A(x). We found for instance that the mean waiting time is non-monotonic with respect to the bursting property. 

λ b =1 b λ b =2 b λ b =3 b λ b =4 b λ b =5 b λ b =10 Figure 4: K b (x) = e -x/b , λ b (x) ≡ λ b , K d (x) = x.

Nonlinear population model

We wish to investigate the (macroscopic) population model with nonlinear feedback on the division rate

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y)u(t, y)κ b (x, y)dy -λ d (x, S)u(t, x) + 2 ∞ x λ d (y, S)u(t, y)κ d (x, y)dy -µ(x)u(t, x)
where the feeback strenght is given by

S(t) = ∞ 0 ψ(x)u(t, x)dx, ψ(x) = 1 {x≥x 0 } .
We will restrict to the case of constant division and death rates, so that

d dt ∞ 0 u(t, x)dx = (λ d (S) -µ) ∞ 0 u(t, x)dx

All cells participate to the feedback

If x 0 = 0, S(t) = ∞ 0 u(t, x)dx, and we have immediately

Theorem 2. Asymptotic stability

Under the hypothesis of Theorem 1, and if S → λ d (S) is continuous monotonically decreasing, with λ d (0) > µ and lim S→∞ λ d (S) < µ, then for any initial density u 0 , the solution u(t, x)

converges as t → ∞ in L 1 towards λ -1 d (µ)u * .

A fraction on cells participate to the feedback

In the case x 0 > 0, we can only prove a persistance result for the equation

∂u(t, x) ∂t + ∂g(x)u(t, x) ∂x = -λ d (S)u(t, x) + 2 ∞ x λ d (S)u(t, y)κ d (x, y)dy -µu(t, x)
Theorem 3. Persistance With g smooth, bounded and bounded away from 0, starting with a positive u 0 ∈ L 1 , we have 

0 < inf t≥0 ∞ 0 u(t, x)dx ≤ sup t≥0 ∞ 0 u(t, x)dx < ∞ 0 < inf t≥0 S(t) ≤ sup
d (•, x) = 0.5N (xp, xp(1 -p)) + 0.5N (x(1 -p), xp(1 - p))
, the asymmetry of the division prevents oscillations.

Conclusion and Perspectives

Upon an assumption of separable bursting and division kernel, we found a complete characterisation of the single cell model:

• Criteria for convergence towards steady-state, and analytical solution (and bifurcation)

• Mean waiting time to reach a given level Such study can be used to infer the burst rate and/or division rate in a dividing cell population. While looking at the nonlinear population model, the bursting properties and division mechanism are shown to have a profound impact on homeostasis that will be further investigated.
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 56 Figure 5: λ d (x, S) ≡ 10 1+0.1 * S ,x 0 = 1, g(x) ≡ 0.6
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 1 Left: Unfrequent but large burst prevent oscillations. Right: with κ