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Summary

We use Pure-Jump Markov processes to describe the stochastic protein bursting production and molecular repartition at division. We find asymptotic convergence criteria and analytical solutions for the
steady-state probability density of proteins in a single cell. We also find analytical solutions of mean waiting time to reach a given level. This findings are used to caracterise the behavior of the model
as a function of parameters (bifurcation) and can be applied for inverse problems. Finally, we study a population model based on a non-linear extension of the single cell model. We find with numerical
simulations situations where a Hopf bifurcation occurs, and where unfrequent but large burst prevents oscillations.

1. The model: Pure-Jump Markov process

The building blocks of this model are two non local operators
that represent respectivly the bursting and division.
•Bursting: at rate λb(x), a cell increases its molecular con-

tent, from x to y according to the bursting kernel distribution
κb(y, x)1{y>x}dy

•Division: at rate λd(x), a cell gives rise to two cells of lower
molecular content, y and x−y, according to the (symmetric)
division kernel distribution κd(y, x)1{y<x}dy

Following a single cell line, this model gives a one-
dimensional pure-jump Markov (X(t))t≥0 on R∗+, whose typical
trajectories are shown in figure 1.
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Figure 1: Single cell sample path trajectories.

Following the whole population, this model gives a
measure-valued pure-jump Markov process, that can be rep-
resented as a tree (Figure 2)

A cell tree, λb=10 A cell tree, λb=100

Figure 2: Cell population evolution

2. Single cell model

Following a single cell line, the generator of (X(t))t≥0 is
given by (for bounded functions f )

Af (x) = λb(x)
(∫ ∞

x
(f (y)− f (x))κb(y, x)dy

)
+ λd(x)

(∫ x

0
(f (y)− f (x))κd(y, x)dy

)
.

The evolution equation (Master equation) on the probability
density (

∫
u(t, x)dx = 1) is given by.

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0
λb(y)u(t, y)κb(x, y)dy

− λd(x)u(t, x) +

∫ ∞
x

λd(y)u(t, y)κd(x, y)dy

This defines a semi-group P (t) on L1. We will use the

Lemma 1. (taken from [4])
If P (t)

• is a stochastic semigroup: ‖P (t)u‖1 = ‖u‖1,
• is partially integral: there exists t0 > 0 and p s.t.∫ ∞

0

∫ ∞
0

p(x, y) dy dx > 0 and P (t0)u(x) ≥
∫ ∞
0

p(x, y)u(y) dy

• and possess a unique invariant density,
then P (t) is asymptotically stable.

2.1 Asymptotic stability of the density
The Master equation may be rewritten as

du

dt
= −λu + K(λu),

where λ(y) := λb(y) + λd(y) and

Kv(x) :=

∫ x

0

λb(y)

λ(y)
u(t, y)κb(x, y)dy +

∫ ∞
x

λd(y)

λ(y)
u(t, y)κd(x, y)dy

If K has a strictly positive fixed point in L1, then P (t) is stochas-
tic ([5, 1]). We consider the separable kernel case

κb(x, y) = −
K ′b(x)

Kb(y)
, x > y, κd(x, y) =

K ′d(x)

Kd(y)
, x < y.

where Kb(y)→ 0 as y →∞ and K(y)→ 0 as y → 0. We define

G(x) =
K ′d(x)

Kd(x)
− K ′b(x)

Kb(x)
, Qb(x) =

∫ x

x

λb(y)

λ(y)
G(y)dy.

Theorem 1. Asymptotic stability

Suppose that

cb :=

∫ ∞
0

Kb(x)

λ(x)
G(x)e−Qb(x)dx <∞,

∫ ∞
0

Kb(x)G(x)e−Qb(x)dx <∞

Then the semigroup {P (t)}t≥0 is stochastic and is asymp-
totically stable. For any initial density u0, u(t, x) converges
to

u∗(x) =
1

cb

Kb(x)

λ(x)
G(x)e−Qb(x)

Remark 1 Lyapounov-fonction strategy ([3]) can be used to find
sufficient conditions of ergodicity in more general cases.

Corollary 1. Bifurcation (see [2])
The number of modes of the stationary solution are linked to
the number of solutions of

0 = −λ
′(x)

λ(x)
+
K ′b(x)

Kb(x)
+
G′(x)

G(x)
+
λb(x)

λ(x)
G(x)
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Figure 3: Kb(x) = e−x/b, λb(x) = λb
1+xn

Λ+xn, Kd(x) = x.

2.2 Mean waiting time
We can also solve (analytically) the backward equation,
Af (x) = A(x). We found for instance that the mean waiting
time is non-monotonic with respect to the bursting property.
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Figure 4: Kb(x) = e−x/b, λb(x) ≡ λb, Kd(x) = x.

3. Nonlinear population model

We wish to investigate the (macroscopic) population model
with nonlinear feedback on the division rate

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0
λb(y)u(t, y)κb(x, y)dy

− λd(x, S)u(t, x) + 2

∫ ∞
x

λd(y, S)u(t, y)κd(x, y)dy − µ(x)u(t, x)

where the feeback strenght is given by

S(t) =

∫ ∞
0

ψ(x)u(t, x)dx, ψ(x) = 1{x≥x0}.

We will restrict to the case of constant division and death
rates, so that

d

dt

(∫ ∞
0

u(t, x)dx
)

= (λd(S)− µ)

∫ ∞
0

u(t, x)dx

3.1 All cells participate to the feedback
If x0 = 0, S(t) =

∫∞
0 u(t, x)dx, and we have immediately

Theorem 2. Asymptotic stability
Under the hypothesis of Theorem 1, and if S 7→ λd(S) is
continuous monotonically decreasing, with λd(0) > µ and
limS→∞ λd(S) < µ, then for any initial density u0, the solu-
tion u(t, x) converges as t→∞ in L1 towards

λ−1
d (µ)u∗.

3.2 A fraction on cells participate to the feed-
back

In the case x0 > 0, we can only prove a persistance result for
the equation

∂u(t, x)

∂t
+
∂g(x)u(t, x)

∂x
=

− λd(S)u(t, x) + 2

∫ ∞
x

λd(S)u(t, y)κd(x, y)dy − µu(t, x)

Theorem 3. Persistance
With g smooth, bounded and bounded away from 0, starting
with a positive u0 ∈ L1, we have

0 < inf
t≥0

∫ ∞
0

u(t, x)dx ≤ sup
t≥0

∫ ∞
0

u(t, x)dx <∞

0 < inf
t≥0

S(t) ≤ sup
t≥0

S(t) <∞

3.3 Numerical results indicate a Hopf bifurca-
tion
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Figure 5: λd(x, S) ≡ 10
1+0.1∗S ,x0 = 1, g(x) ≡ 0.6

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

d
e
n
s
i
t
y

x

time evolution of the normalized profile

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000

N
u
m
b
e
r
 
o
f
 
c
e
l
l
s

time

time evolution of S

value of S(t)

candidate limit of S

Figure 6: λd(x, S) ≡ 10
1+0.1∗S , x0 = 1, g(x) ≡ 0.5

We found that the bursting and the asymmetry of the divi-
sion shift the Hopf bifurcation

bλb\λb 100 10 1 0.1

0.6 + + + +

0.5 - + + +

0.4 - - + +

0.1 - - - +

g\p 0.5 0.4 0.2 0.1 0.01

0.7 - + + + +

0.6 - - + + +

0.5 - - - - +

0.4 - - - - -
Table 1: Left: Unfrequent but large burst prevent oscillations.
Right: with κd(·, x) = 0.5N (xp, xp(1− p)) + 0.5N (x(1− p), xp(1−
p)), the asymmetry of the division prevents oscillations.

4. Conclusion and Perspectives

Upon an assumption of separable bursting and division
kernel, we found a complete characterisation of the single cell
model:
•Criteria for convergence towards steady-state, and analytical

solution (and bifurcation)
•Mean waiting time to reach a given level

Such study can be used to infer the burst rate and/or division
rate in a dividing cell population.

While looking at the nonlinear population model, the bursting
properties and division mechanism are shown to have a pro-
found impact on homeostasis that will be further investigated.
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