Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials
Laurent Roumeas, Chahinaz Aouf, Eric Dubreucq, Hélène Fulcrand

To cite this version:
Laurent Roumeas, Chahinaz Aouf, Eric Dubreucq, Hélène Fulcrand. Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials. EcobioCap Final Meeting, Feb 2015, Montpellier, France. hal-02796378

HAL Id: hal-02796378
https://hal.inrae.fr/hal-02796378
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials

Laurent ROUMEAS, Chahinez AOUF
Eric DUBREUCQ and Hélène FULCRAND

INRA Montpellier - UMR 1083 & 1208
roumeas@supagro.inra.fr
INTRODUCTION

WORLD ANNUAL PRODUCTION OF PHENOL
2000: 6 million tons
2010: 8 million tons
2020: 12 million tons (prediction)

EUROPEAN PHENOL USE
2 million tons per year; more than 80% for plastic materials and resin

APPLICATIONS
• Plastic materials: thermosetting (polycarbonate, epoxy)
• Plastic fibers: nylon (polyamide)
• Electric isolating
• Bactericid paint
• Hydrophobic coating
• Anionic detergent
• Thermic ink
• Insulating glue

Market in expansion
New production plant in Nanjing, China (INEOS and SINOPEC): 400,000 tons (end 2013)

Bisphenol A (BPA) and polyphenylene oxide (for epoxy and polycarbonate resins)

Specialities
Fiber production (caprolactame, cyclohexanol and cyclohexanone)
Phenolic resins (composite materials)

ECOBIOCAP
Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials
Laurent ROUMEAS

26/02/2015
Need to find quickly alternatives to petroleum-based aromatic compounds to halt the massive contamination of our environment and protect human beings from its negative impacts on health.
Substitution of chemical phenol by natural polyphenols

Lignin

Condensed tannins

R^1, R^2 = OH or H
R^3 = H, Gal
Agro-industrial wastes
(wine and cider making, fruit juice)

Sawmill co-products
and forest biomass

Winemaking Biomass

<table>
<thead>
<tr>
<th></th>
<th>seeds</th>
<th>pomaces</th>
<th>stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual output</td>
<td>80 000-140 000 t</td>
<td>700 000 t</td>
<td>300 000 t</td>
</tr>
<tr>
<td>Tannins (% DM weight)</td>
<td>6 -16%</td>
<td>0,04 - 1,2%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Conifers (36%)

France

French Forest
16 000 000 Ha
2,5 billions m³
- From phenolic models

- From commercial extracts

ECOBIOCAP
Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials
Laurent ROUMEAS
DEPOLYMERIZATION: a key step

- to get an homogeneous raw material or fine chemicals
- to get the same synthons from different tannin sources
- to suppress one step (simultaneous extraction/depolymerization)

Large scale process for production of biobased phenols
DEPOLYMERIZATION : obtention of phenolic synthons

ECOBIOCAP
Substitution of chemical phenols by plant polyphenols for processing phenolic biomaterials
Laurent ROUMEAS
Perspectives

- **Materials**: thermoplastic; polyester, polyamide, vinylester,... and composite
- **Fine chemistry**: Medicinal, cosmetic
 - Lubricant
 - Surfactant
Thank you for your attention!

Co-workers
Lucas Suc
Guillaume Billerach