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ABSTRACT 

The relationship between fire and long-term trends in tallgrass prairie vegetation was assessed at 
Fort Riley and Konza Prairie Biological Station (KPBS) in Kansas.  Linear trends of surface 
greenness were previously estimated using BFAST and MODIS MOD13Q1 NDVI composite 
images from 2001 to 2010.  To explain trends, fire frequency and seasonality (fire regime) was 
determined and each site was divided into spatial strata using administrative or management units.  
Generalized linear models (GLM) were used to explain trends by fire regime and/or stratification.  
Spatialized versions of GLMs were also computed address unexplained spatial components.  Non-
spatial models for FRK showed fire regime explained only 4% of trends compared to strata (7-
26%).  At KPBS, fire regime and spatial stratification explained 14% and 39%, respectively.  At 
both sites, improvements in performance were minimal using both fire and strata as explanatory 
variables.  Model spatialization resulted in a 5% improvement at FRK, but with weak spatial 
structure in the residuals, and was not necessary at KPBS as the existing stratification most of the 
spatial structure in model residuals.  All models at KPBS performed better for each explanatory 
variable and combination tested.  Fire has only a marginal effect on vegetation trends at FRK 
despite its widespread use as a grassland management tool to improve vegetation health, and 
explains much more of the trends at KPBS.  Analysis of predictors from spatial models with 
existing stratification yielded an approach with fewer strata but similar performance and may 
provide insight about additional explanatory variables omitted from this analysis. 

INTRODUCTION 

The role of fire in maintaining mesic grasslands is a well-studied topic (1,2).  In the Flint Hills 
ecoregion of North American, fire has been historically important in the maintenance of tallgrass 
prairie ecosystems and is today used by many private landowners to favor C4 grasses and 
increase vegetation productivity for cattle grazing (3,4).  Fire frequency and timing can have 
significant impacts on the spatial pattern of plant productivity, vegetation structure, and nutrient 
cycling (5,6,7,8).   When considered with other factors such as weather and climate, topographic 
position, grazing, and other anthropogenic disturbances the impact of fire on grassland dynamics is 
even more complex (9,10,11,12,13).   

Here we consider promoting sustainable military grasslands as a primary objective and measure 
sustainability using results from a long-term analysis of grassland vegetation trends derived from 
remotely-sensed estimates of normalized difference vegetation index (NDVI) data.  Given the 
geographic extent of military training lands and their diverse ecological settings, defining and 
agreeing on metrics to measure “sustainable use” is difficult.  The influence of fire and land use 
practices on grassland vegetation trends is assessed to provide military land managers with site-
specific feedback about progress towards sustainability goals. 
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Spatial statistical tools are used to analyze spatiotemporal trends in vegetation and fire regime 
using a time series of multisource remote sensing images over the period 2001-2010.  Results 
from non-spatial and spatial statistical analyses with spatial stratification are compared to identify 
the best method for explaining vegetation dynamics.  Also introduced is an approach for proposing 
an improved, and simplified, spatial stratification better adapted to the response variable.  

METHODS 

Study Area 

Fort Riley is a 41,128 ha U.S. Army installation located in northeast Kansas (39°11’N, 96°48’W), 
on the Kansas River within Geary, Riley and Clay counties. The installation is located in the Flint 
Hill ecoregion (14) and vegetation is dominated by grasslands (81%) followed by woodlands (16%) 
and shrublands (3%).  Dominant plant species in grassland areas include big bluestem 
(Andropogon gerardii), Indiangrass (Sorghastrum nutans), switchgrass (Panicum virgatum), and 
little bluestem (Schizachyrium scoparium).  These characteristic tallgrass prairie species are 
actively managed using prescribed fire during the fall, winter, and spring seasons but wildfires 
resulting from military training may occur during any season.  The installation is subdivided into 
103 training area units within which military training occurs.  Disturbances from military training 
include a variety of on- and off-road field maneuvers (including tracked and wheeled combat 
vehicle operations), mortar and artillery fire, small arms fire, and aircraft flights.  

The Konza Prairie Biological Station (KPBS) was included in this analysis to contrast vegetation 
change measured at Fort Riley with that at a relatively natural grassland site.  KPBS is owned by 
the Nature Conservancy, operated by the Division of Biology at Kansas State University, and is a 
Long Term Ecological Research Site supported by the U.S. National Science Foundation.  KPBS 
has similar vegetation, soils and climate due to its close proximity (< 10 km) to Fort Riley. The 
KPBS site is subdivided into 48 sub-watershed areas which serve as experimental units where 
specific combinations of prescribed burning and grazing by cattle and native bison are applied.   

Vegetation Activity Change Data 

A vegetation change indicator was developed to characterize long-term trends in activity.  The 
indicator was obtained using a temporal decomposition method applied to a time series of MODIS 
16-day maximum value composite NDVI images (MOD13Q1) between January 2001 and 
December 2010.  The method (described in 15) consists of three steps:  (1) NDVI time series 
decomposition using BFAST based on LOESS (16), (2) analysis of the BFAST trend component 
using linear regression, and (3) identification of significant positive or negative trend slopes using a 
Student’s t-test.  This method has already been applied to the Fort Riley and KPBS study areas 
(17). 

Fire Regime Data 

A fire regime indicator was also developed to characterize burning activities according to season 
and frequency by analyzing a time series of multisource remote sensing data for the period 2001-
2010 (Figure 1).  Primary data were high spatial resolution (HSR) images most appropriate for 
delineating burn scars at local and regional scales (18).  A total of 83 Landsat 5 TM images were 
acquired and burn scars extracted using a combination of unsupervised classification of the near-
infrared band with CAPI techniques (19).  Due to persistent cloud contamination in the HSR 
images, 135 additional MODIS Burned Area Product (MCD45) images were used to complement 
the HSR time series.   

Model Development 

Generalized linear models (GLM) were computed on a per-pixel basis to determine how well fire 
regime and/or stratification explained degraded vegetation activity.  In the first non-spatial model, 
where independence between observations was assumed, a classical binomial GLM was used 
where the probability of success depended on site-specific characteristics.  The link between this 
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probability and the linear preditor based on individual characteristics was the logit and the 
estimation is done by maximum likelihood (20). 

  

Figure 1:  Fire frequency (left) and seasonality (right) for Fort Riley and Konza Prairie Biological 
Station (inset map) during the period 2001-2010.  Combining frequency and seasonality yielded 13 
total fire regime classes used in the analysis.  Black boundary lines indicate stratification units. 

A second model accounting for spatial correlation was also applied where a spatially random field 
was used to account for what was not explained in the independent model.  The model adds to the 
linear predictor the value of the random field at the observation site.  The Bayesian Markov Chain 
Monte Carlo method based on Metropolis dynamics was used to estimate model parameters.  The 
estimates are then taken as the posterior mean (21). 

Both types of models (non-spatial and spatial) were evaluated with two metrics.  The first was the 
Akaike Information Criterion (AIC) which summarizes the tradeoff between model accuracy and 
complexity (22,23).  The second metric is a ratio equal to 1 minus the residual deviance divided by 
null deviance (1 – (residual deviance / null deviance)).  If the ratio is low then, at the level of the 
study area, other explanatory variables not included in the model should be considered. 

Five models using different explanatory variables were tested and their ability to explain vegetation 
degradation assessed.  The initial assumption was that vegetation degradation would be explained 
adequately by only the fire regime (model 1), or only stratification (model 2), or a combination of 
fire regime and stratification (model 3).  However, the original stratification, especially at Fort Riley, 
was not specifically designed for use in monitoring grassland vegetation dynamics so a simplified 
stratification more adapted to the response variable was tested.  This stratification was developed 
by analyzing the distribution of the model predictor based only on the original stratification (model 
2) as a function of the stratification units.  Two additional models were developed.  One only with 
simplified stratification (model 4) and one with fire regime and simplified stratification (model 5). 

Model Validation 

Each GLM model generates a probability map for vegetation degradation.  Model performance was 
validated using two different reference datasets.  The first was the vegetation degradation class 
resulting from the previously mentioned MODIS NDVI trend analysis.  The second was a new HSR 
vegetation degradation class from a change analysis performed using two Landsat 5 TM images 
acquired near the beginning (08/05/2001) and end (08/30/2010) of the study period.  This method 
was recommended by Borak et al., (24), has been proven well adapted for grassland ecosystems 
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(15,25), and has been previously used to validate vegetation change activity for the Fort Riley and 
KPBS study areas (17). 

The HSR dataset consists of a raster with the same spatial resolution as the vegetation activity 
change map (250 m) in which each grid cell corresponds to one of two classes (degraded or non-
degraded) based on the interpretation of NDVI change derived from the Landsat 5 TM images.  
Since the GLM model estimates the probability of vegetation degradation, only the NDVI change 
class for degraded vegetation was retained during validation.  A contingency matrix was 
constructed with rows representing the reference data and columns with two classes of vegetation 
degradation probabilities (> 0.50 and <= 0.50).   

RESULTS 

The ratio (1 – residual deviance/null deviance) * 100 was used to determine how well explanatory 
variables in the five GLM models explained variability in the vegetation activity change indicator.  
Associated AIC values were also calculated to characterize the relative explanatory power of each 
model (Table 1). 

Impact of Fire on Vegetation Degradation 

To assess the effect of fire regime on vegetation activity change, results from GLM models with 
only the fire regime variable (model 1) were compared with those of GLM models with only 
stratification (model 2).  Fire alone explains very little at Fort Riley (4-11%) versus stratification 
alone (26-31%).  The marginal effect of fire on vegetation change is confirmed when also 
considering the results of the GLM model with fire and stratification (model 3).  The combination of 
fire regime and stratification does not improve the explanatory power of the model (27-31%).  This 
same applies to KPBS, except that the effect of fire on vegetation activity change is higher than 
Fort Riley (14-29%). 

Table 1:  Percentage of vegetation degradation explained by spatial and non-spatial GLM models.  
The value for n is the total number of modalities for explanatory variables used in each GLM 
model. 

 
At Fort Riley, regardless of the GLM model, using a spatial approach in the statistical analysis is 
needed.  Spatial versions of the GLM models provide a 4-7% improvement in performance 
compared to non-spatial models with the added benefit of systematically lower AIC values.  The 
situation at KPBS is slightly different.  Model spatialization is not needed if the analysis is done with 
the original stratification, as the percentage of vegetation activity change explained and AIC values 

GLM Models % of Vegetation Degradation Explained 

Fort Riley Models KPBS Models 

n Non-Spatial 
(AIC) 

Spatial  
(AIC) 

n Non-Spatial 
(AIC) 

Spatial  
(AIC) 

Model with only fire  

(model 1) 

13 4% 

(8244) 

11% 

(7614) 

13 14% 

(806) 

29% 

(673) 

Model with only original 
stratification (model 2) 

103 26% 

(6537) 

31% 

(6118) 

48 39% 

(650) 

40% 

(653) 

Model with fire and original 
stratification  (model 3) 

116 27% 

(6507) 

31% 

(6092) 

61 40% 

(661) 

43% 

(646) 

Model with only simplified 
stratification  (model 4) 

5 23% 

(6575) 

27% 

(6234) 

5 37% 

(577) 

46% 

(511) 

Model with fire and simplified 
stratification (model 5) 

18 23% 

(6579) 

27% 

(6296) 

18 37% 

(587) 

40% 

(580) 
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are the nearly same with both non-spatial and spatial models.  At KPBS, the original stratification 
already accounts for the type and distribution of explanatory variables in the models.  However, 
when modifying the original stratification (model 4), spatialization provides a 9% improvement in 
model performance with a decrease in AIC values from 577 to 511. 

Assessing the Performance of the Simplified Stratification Model  

By analyzing the range of predictor values for GLM models with only stratification (model 2) for 
each of the original management units (103 training areas at Fort Riley and 48 sub-watersheds at 
KPBS), a simplified stratification was proposed.  For both study areas, this simplification consists 
only of five strata obtained after reclassification of training areas or sub-watersheds. 

Results from the GLM model with original stratification (model 2) were compared to those of the 
GLM model with only simplified stratification (model 4).  At Fort Riley and KPBS, simplification 
explains nearly the same amount of vegetation activity change but with only five strata.  As already 
seen with the original stratification, adding the fire regime variable to simplified stratification in a 
GLM model (model 5) does not improve the ability to explain vegetation activity change.  
Therefore, the GLM model with only simplified stratification was considered most appropriate. 

Validating Vegetation Degradation Probabilities under Simplified Stratification 

The vegetation degradation probability maps for Fort Riley and KPBS generated by the GLM 
model with only simplified stratification (model 4) are shown in Figure 2.  Areas in red correspond 
to the highest probabilities of vegetation degradation as explained by the five new strata.  Areas in 
green suggest a low probability of vegetation degradation. 

Evaluation of the contingency matrix helps validate the vegetation degradation probability maps 
from the selected GLM model (Table 2).  Agreement is high at Fort Riley (59-76%) and moderate 
to relatively high at KPBS (40-62%) based on the reference data used.  These validation results 
suggest the new simplified stratification is capable of highlighting areas of degradation, especially 
at Fort Riley.  Identifying concentrations, or hot spots, of vegetation degradation can focus the 
attention of military land managers on specific areas where anthropogenic activities are having a 
negative impact on vegetation activity. 

 

Figure 2:  Probability of vegetation degradation for Fort Riley and Konza Prairie Biological Station 
(inset map).  Probabilities are based on the GLM model results using only the five simplified strata 
(model 4) as the explanatory variable. 

Table 2:  Contingency matrix with validation results for the Fort Riley and KPBS vegetation 
degradation probability maps.  Landsat and MODIS NDVI change classes are considered the 
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reference.  Numbers are percentage of vegetation degradation probability pixels belonging to the 
Landsat or MODIS NDVI change class. 

 

Reference Data  
for Vegetation Degradation Class 

Vegetation Degradation Probability 
Classes from GLM Model 4 

> 0.50 <= 0.50 

Fort Riley  Landsat NDVI change class 59 41 

MODIS NDVI change class 76 24 

KPBS  Landsat NDVI change class 40 60 

MODIS NDVI change class 62 38 

CONCLUSIONS 

Results from this analysis provide two major advances.  First, from a thematic perspective and 
contrary to what was expected, fire regime does not adequately explain patterns of vegetation 
activity change.  At both sites, based on comparison of models with only original stratification 
(model 2) with original stratification and fire (model 3), vegetation degradation is better explained 
by the original stratification.  This is especially true at Fort Riley. 

Second, from a methodological point of view, the soundest approach in finding a model that best 
explained vegetation activity change involved first using a one with the original stratification to form 
a new stratification better adapted to the response variable using a spatial approach.  At Fort Riley, 
where simplified stratification is very informative, the five new strata were used to characterize the 
probability of vegetation degradation provided by the GLM model (Figure 5, top left).  Strata 4 and 
5, respectively, have an average vegetation degradation probability of 0.79 and 0.75 which is 
significantly higher than that obtained for strata 1, 2, and 3.   

There appears to be contrasting approaches to fire management between Fort Riley and KPBS.  
Spring fires at KPBS tend to serve as a stabilizing factor with vegetation degradation due mainly to 
grazing activities combined with fire frequency and human disturbances.  In areas where training 
intensities are high at Fort Riley, spring fires are perhaps used to promote grassland health where 
military training disturbances are significant and frequent.  In other training areas, no fire regime 
dominates.  While the literature and results from KPBS support spring burning as a beneficial 
grassland management practice, when combined with frequent and intense training during a wet 
season it may actually be counterproductive and amplify vegetation degradation.  At the least, the 
influence of military training on vegetation dynamics is dominant and serves to minimize any 
potential benefit realized from a typical Flint Hills fire regime. 

To confirm such conclusions, more detailed and temporally consistent training data are required.  
While these data do exist, they are embedded within complex U.S. Army database management 
systems and are difficult to extract for use in natural resource studies.  Until such a time when 
training data is routinely available for Fort Riley land managers, the new simplified strata presented 
here may be used as a spatial guide to modify training schedules and prevent further declines in 
vegetation condition where degradation has been predicted and measured. 
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