Intelligent food packaging: RFID bio-based sensing label to monitor food shelf life
Jean Clency Fabien Bibi, Nathalie N. Gontard, Carole Guillaume, Brice Sorli

To cite this version:
Jean Clency Fabien Bibi, Nathalie N. Gontard, Carole Guillaume, Brice Sorli. Intelligent food packaging: RFID bio-based sensing label to monitor food shelf life. EcobioCap Final Meeting, Feb 2015, Montpellier, France. hal-02796577

HAL Id: hal-02796577
https://hal.inrae.fr/hal-02796577
Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Intelligent food packaging
RFID bio-based sensing label to monitor food shelf life

Fabien BIBI – PhD Student (2012 – 2015)
Director: Nathalie GONTARD
Co-directors: Carole GUILLAUME, Brice SORLI
Objective

Development of the sensing bio-material

Detection

Threshold concentration in volatile markers of food degradation

Coupling of RFID (Radio Frequency IDentification) tag with the sensor

RFID: Wireless system for transferring data from a tag attached to an object
Sensor: Dielectric material

Vegetal protein: Wheat Gluten

- “bio” material and can be coated onto a substrate.
- displays sensitivity to gases and vapors (considered as food quality markers).
- exhibits electrical properties and dielectric properties (Dipoles, charges, charged molecular chains).

![Image of a dissymmetric molecule with high permanent dipolar moment.](image-url)

Dissymmetric molecule (High permanent dipolar moment)
Effects of electric field on Wheat Gluten

- Alternating electric field impacts:
 - Movement of molecular chain,
 - Rotation of dipoles,
 - Movement of charge.

Energy stored (dipoles, polarization): rep. by permittivity (ε').
Energy loss (conduction, friction): rep. by dielectric loss (ε'').
Effects of relative humidity (RH) on wheat gluten

Permittivity

- **Temp:** 25°C
- **Air:** 20% O₂, 0% CO₂, 80% N₂

Dielectric loss

- **Temp:** 25°C
- **Air:** 20% O₂, 0% CO₂, 80% N₂

Increase of permittivity with increase in RH.
- More polarizations because of water (dipole).
- Increase mobility of molecular chain and dipoles.

(Electromagnetic properties: Dielectric properties of food)

Increase in dielectric loss with increase in RH.
- Increase mobility of charges in the network. (J.Ahmed, 2007).
RFID (Radio Frequency IDentification)

How does RFID work?

- Wave emission
- Wave captured by the antenna
- Power supplied to microchip
- Wave emitted back to the reader

Reflected Power and reading distance
RFID + wheat gluten coated: Effects of relative humidity

- Effects of humidity on wheat gluten (permittivity and dielectric loss) => Modification of electrical property of RFID antenna.
 - Modification in reflected power.
 - Modification in reading distance.

RFID tag with wheat gluten layer deposited – Impact on reading distance

![Graph showing the theoretical read range forward (m) vs. frequency (MHz)]

- WG-RFID tag
- WG-RFID tag + moisture
- WG-RFID tag + moisture + drying

-2 m
Intelligent food packaging
RFID bio-based sensing label to monitor food shelf life

Thank you for your attention!!