

Probability Weighting in Recursive Evaluation of Two-Stage Prospects

Mohammed Abdellaoui, Olivier L'haridon, Antoine Nebout-Javal

To cite this version:

Mohammed Abdellaoui, Olivier L'haridon, Antoine Nebout-Javal. Probability Weighting in Recursive Evaluation of Two-Stage Prospects. Journées des jeunes chercheurs du Département SAE2, Sep 2014, Nancy, France. hal-02796663

HAL Id: hal-02796663 <https://hal.inrae.fr/hal-02796663v1>

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Probability Weighting in Recursive Evaluation of Two-Stage Prospects

Mohammed Abdellaoui. ∗ Olivier L'Haridon † Antoine Nebout ‡

September 24, 2014

∗HEC Paris, France [†]Université de Rennes, France ‡INRA, ALISS, France.

 $24-25$ September 2014 JJC - Dpt SAE2 - INRA- Nancy -1

Outline

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0)

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

1/ Introductory remarks

2/ Conceptual framework

3/ Experimental study

4/ Concluding remarks

 \triangleright prospects? Why investigating the evaluation of Two-stage

[Two-stage](#page-4-0) [prospect and](#page-4-0) [reduction of](#page-4-0) [compound](#page-4-0) [lotteries](#page-4-0) [Three](#page-5-0) [observations on](#page-5-0) [compound risk](#page-5-0)

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

Why investigating the evaluation of Two-stage prospects?

Two-stage prospect and reduction of compound lotteries

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0) . lotteries Two-stage prospect and reduction of compound [Three](#page-5-0) [observations on](#page-5-0) [compound risk](#page-5-0) [Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0) [Experimental](#page-14-0) [Design](#page-14-0) [Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

Table 1: compound risk and its reduced one-stage lottery

 \Box Rational Decision makers (DMs) reduce compound risks, represented by compound lotteries, into single stage lotteries by using the Reduction of compound prospects axiom (RCP).

⇒ Rational DMs should exhibit a perfect neutrality toward compound risk.

However...

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0) [Two-stage](#page-4-0) [prospect and](#page-4-0) [reduction of](#page-4-0) [compound](#page-4-0) [lotteries](#page-4-0) . compound risk Three observations on [Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0) [Experimental](#page-14-0) [Design](#page-14-0) [Model](#page-22-0) [Specification](#page-22-0) [Results](#page-25-0)

- 1. Reduction of compound prospects have been descriptively challenged in many empirical investigations:
	- \Box Bar Hillel (1973), Bernasconi & Loomes (1992), Budescu & Fisher (2001), Abdellaoui, Klibanoff & Placido (2014), Nebout & Dubois (2014)...
- 2. Following Becker & Brownson (1964) and Yates and Zukowski (1976), Segal (1987, 1990) represented ambiguous bets as two-stage prospects.
- 3. Prospect Theory (PT) is the most succesful descriptive model of decision making under risk and ambiguity.

 \Rightarrow Would it still be the case when dealing with attitudes toward two-stage prospects?

. Background Theoretical and Empirical [Notation](#page-7-0)

[Evaluation I](#page-9-0)

[Stylized fact](#page-10-0)

[Evaluation II](#page-11-0)

[Experimental](#page-14-0)

[Design](#page-14-0)

[Model](#page-22-0)

[Specification](#page-22-0)

[Results](#page-25-0)

Theoretical and Empirical Background

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

 \triangleright Notation

[Evaluation I](#page-9-0) [Stylized fact](#page-10-0)

[Evaluation II](#page-11-0)

[Experimental](#page-14-0)

[Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

- \Box $(x, p; y)$ denotes the one-stage prospect resulting in outcome x with probability p and in outcome y with probability $1 - p$ with $x \geq y \geq 0.$
	- Probability p is generated using a known urn containing 100 balls numbered from 1 to 100, i.e. drawing a ball which has a number between 1 and $p \times 100$.
- \Box $(x, E_p; y)$ denotes the corresponding ambiguous prospect. The probability $P(E_p)$ is unknown to the DM.
	- We use an unknown urn containing 100 balls numbered from 1 to 100 in unknown proportions, i.e. drawing a ball which has a number between 1 and $p \times 100$. Symmetry arguments imply $P(E_p) = p$. (Chew & Sagi, 2006, 2008)

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0) [Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Notation](#page-7-0)

 \triangleright Evaluation I

[Stylized fact](#page-10-0)

[Evaluation II](#page-11-0)

[Experimental](#page-14-0)

[Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

 \Box Under Expected Utility (EU), prospects are evaluated as follows: $EU(x, p; y) = pu(x) + (1 - p)u(y)$

– Where u is the utility function (and a risk attitude index). – Violations of EU popularized by Kahneman & Tversky.

 \Box Under Prospect Theory (PT), prospects are evaluated as follows in the gain domain:

$$
PT(x, p; y) = w(p)u(x) + (1 - w(p))u(y)
$$

- u is the utility function.
- w is the probability weighting function. w is strictly increasing and satisfies $w(0) = 0$ and $w(1) = 1$.

 \Rightarrow Many experimental evidence on RDU under risk and ambiguity.

Probability weighting under risk and ambiguity

 \Rightarrow Ambiguity increases likelihood insensitivity.

How to evaluate two-stage prospects?

[Results](#page-25-0)

□ Traditional Recursive Expected Utility (TREU):

$$
\Rightarrow \frac{1}{2} \times EU(P) + \frac{1}{2} \times EU(Q)
$$

How to evaluate two-stage prospects?

$$
\Rightarrow \frac{1}{2} \times \phi \left[EU(P) \right] + \frac{1}{2} \times \phi \left[EU(Q) \right]
$$

- Kreps $&$ Porteus (1978) introduced this transformed EU functionnal to account for delayed resolution of uncertainty.
- Klibanof $\&$ al. (2005) used the same preference functional to model ambiguity. (Seo, 2009, Ergin & Gul (2008),...)

How to evaluate two-stage prospects?

$$
\Rightarrow \pi_1 \times \phi \left[PT(P) \right] + \pi_2 \times \phi \left[PT(Q) \right]
$$

- Segal (1987) suggested this recursive form of RDU to model ambiguity attitudes through second-order probabilities.
- Abdellaoui & Zank (2014) provide the first axiomatization of this general form of Prospect Theory.

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

. Experimental \triangleright Design

[outline](#page-15-0)

[One-stage](#page-16-0)

[prospects](#page-16-0)

[Two-stage](#page-19-0)

[prospects](#page-19-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

Experimental Design

 \Rightarrow We can compare our results to these benchmark studies.

CE1 Id45 (17)

Alternative B

 $\overline{\Box}$

 $\overline{\mathbb{C}}$

 $50\in$

 $\cal G$

CE1 Id45 (13)

Alternative A

n° 1 à 100 vous gagnez : 18 €

 \Box 2 first stage probability levels: 1/3 and 2/3.

 \Rightarrow Elicitation, comparison and test of 4 second stage probability weighting functions.

Alternative A

(Deux tirages)

Alternative B

(Un seul tirage)

Example 100 boules

Exemples

 \mathbb{C} .

Alternative A

(Deux tirages)

Alternative B (Un seul tirage)

Tirage Preliminaire $\begin{matrix} \left(\bullet\right)\\ \bullet \end{matrix}$ Rien n'est gagné \bullet \boxdot
 \boxdot $\boxed{\vdots}$ \bigodot Vous tirez une boule dans l'urne $\overline{?}$ $\overline{\mathbf{r}}$ $\overline{\mathcal{C}}$ $\overline{2}$ $\overline{}$ $\overline{\mathcal{L}}$ $\overline{\mathcal{L}}$ $\overline{2}$ $\overline{2}$ $\sqrt{2}$ $\overline{?}$ $\overline{}$ $\overline{?}$ 2222 $\boldsymbol{\eta}$ 121212 γ ? (? (? (? (? (?) ? $? ? ? ?$ 50 € n° 1 à 50 vous gagnez : $0 \in$ sinon

Exemples

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

Specification Model [TREU and REU](#page-23-0) [RPT](#page-24-0)

[Results](#page-25-0)

Model Specification

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0) \triangleright REU TREU and

[RPT](#page-24-0)

[Results](#page-25-0)

Using the equivalence revealed by the elicitation of the matching probability r:

 $((\bar{x}, p), q) \sim (\bar{x}, m)$

we infer the following equalities:

1. Under TREU, we have:

 $q \times p = m$

2. Under REU, we have:

 $q \times \phi(p) = \phi(m)$

Where ϕ is a transformation function.

Parametric specification: $\phi(x) = x^{1/\theta}$.

e have:

$\quad \Box \quad$ Parametric specifications:

$$
u(x) = x^{\alpha}
$$
 and $w(p) = exp(-(-\ln(p)^{\gamma})^{\delta}$.

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

\triangleright Results

[RCP and TREU](#page-26-0) [REU](#page-27-0) [RPT under risk](#page-28-0) [Additional results](#page-30-0)

[Concluding](#page-32-0)

[remarks](#page-32-0)

Results

Results: RCP and TREU

Table 2: RCP $(\Delta = m - pq)/pq)$

- \Box RCP is globally violated, thus TREU is not descriptively valid for evaluating two-stage prospects.
- \Box Overall, we observe preference for the compound prospect, especially for $q = 1/3$.

[Concluding](#page-32-0) [remarks](#page-32-0)

Table 3: Parameter θ empirical distribution characteristics under REU

 \Box ϕ is convex for $q = 1/3$ and linear for $q = 2/3$.

 \Box The transformation function φ in REU can not absorb the observed discrepancies from RCP.

 \Box Function, w^* , depends on probability q. While it is close to linearity for $q = 1/3$, it is convex for $q = 2/3$.

 \Rightarrow Inverse than for REU but same problem (differences both for elevation and curvature between $w^*_{1/3}$ and $w^*_{2/3}$).

Results: RPT under risk

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0) [Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0) [Experimental](#page-14-0) [Design](#page-14-0) [Model](#page-22-0) [Specification](#page-22-0) [Results](#page-25-0) [RCP and TREU](#page-26-0) **[REU](#page-27-0)** [RPT under risk](#page-28-0) \triangleright results Additional [Concluding](#page-32-0) [remarks](#page-32-0)

 Adding ambiguity (first and second stage) does not change our main results i.e.

- Impact of probability q on the shape of function ϕ .
- Stage dependent pwf.
- Dependence of the second stage pwf on the first stage probability.
- \Box Benchmark results are found for the single stage pwf under risk and ambiguity.
- \Box No association between RCP and ambiguity attitudes (\neq from Halevy, 2008 and Segal).

24-25 September 2014 JJC - Dpt SAE2 - INRA- Nancy – 29

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

[RCP and TREU](#page-26-0)

[REU](#page-27-0)

[RPT under risk](#page-28-0)

[Additional results](#page-30-0) . Concluding \triangleright remarks

1. Recursive evaluation of two-stage prospects is more complex than allowed by any existing recursive model.

2. In Kreps and Porteus (or KMM) integral, function ϕ is sensitive to the first-stage probability of winning.

3. Second-stage probability weighting is very sensitive to the first-stage winning probability.

 \Rightarrow Abdellaoui & Zank (2014) first axiomatized a RPT model that could account for our experimental findings.

[Why investigating](#page-3-0) [the evaluation of](#page-3-0) [Two-stage](#page-3-0) [prospects?](#page-3-0) [Theoretical and](#page-6-0)

[Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0)

[RCP and TREU](#page-26-0)

[REU](#page-27-0)

[RPT under risk](#page-28-0)

[Additional results](#page-30-0)

. [Concluding](#page-32-0) [remarks](#page-32-0)

Thank you for your attention!

Alternative B

 \Box

 $\overline{\Gamma}$

 \mathcal{C}

 \mathcal{C}

 \cap

 \subset

90 boules

100 boules

[Theoretical and](#page-6-0) [Empirical](#page-6-0) [Background](#page-6-0)

[Experimental](#page-14-0) [Design](#page-14-0)

[Model](#page-22-0) [Specification](#page-22-0)

[Results](#page-25-0) [RCP and TREU](#page-26-0) **[REU](#page-27-0)** [RPT under risk](#page-28-0) [Additional results](#page-30-0) . [Concluding](#page-32-0) \triangleright [remarks](#page-32-0)

Fox & Tversky (1995) introduced the comparative ignorance hypothesis as a condition of observability of ambiguity aversion. For this hypothesis they proposed the following conjecture :

"When evaluating an uncertain event in isolation, people attempt to assess its likelihood – as a good bayesian would – paying relatively little attention to second-order characteristics such as vagueness or weight of evidence. However, when people compare two events about which they have different levels of knowledge, the contrast makes the less familiar bet less attractive or the more familiar bet more attractive". p 588.

 \Rightarrow Many experimental tests of this hypothesis. Non neutrality toward ambiguity is always observed! (Fox & Tversky (1995), Chow & Sarin (2001), Rubaltelli & al. (2010))

 \Rightarrow Complete analysis in Nebout (2011).