

Probability Weighting in Recursive Evaluation of Two-Stage Prospects

Mohammed Abdellaoui, Olivier L'haridon, Antoine Nebout-Javal

▶ To cite this version:

Mohammed Abdellaoui, Olivier L'haridon, Antoine Nebout-Javal. Probability Weighting in Recursive Evaluation of Two-Stage Prospects. Journées des jeunes chercheurs du Département SAE2, Sep 2014, Nancy, France. hal-02796663

HAL Id: hal-02796663 https://hal.inrae.fr/hal-02796663

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Probability Weighting in Recursive Evaluation of Two-Stage Prospects

Mohammed Abdellaoui. *

Olivier L'Haridon †

Antoine Nebout[‡]

September 24, 2014

*HEC Paris, France [†]Université de Rennes, France [‡]INRA, ALISS, France.

24-25 September 2014

JJC - Dpt SAE2 - INRA- Nancy - 1

Outline

Why investigating the evaluation of Two-stage prospects?

Theoretical and Empirical Background

Experimental Design

Model Specification

Results

1/ Introductory remarks

2/ Conceptual framework

3/ Experimental study

4/ Concluding remarks

Two-stage prospect and reduction of compound lotteries Three observations on compound risk

Theoretical and Empirical Background

Experimental Design

Model Specification

Results

Why investigating the evaluation of Two-stage prospects?

Two-stage prospect and reduction of compound lotteries

Why investigating the evaluation of Two-stage prospects? Two-stage prospect and reduction of compound \triangleright lotteries Three observations on compound risk Theoretical and Empirical Background Experimental Design \square Model Specification Results

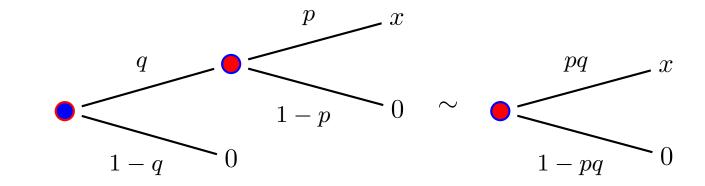


Table 1: compound risk and its reduced one-stage lottery

Rational Decision makers (DMs) reduce compound risks, represented by compound lotteries, into single stage lotteries by using the Reduction of compound prospects axiom (RCP).

 \Rightarrow Rational DMs should exhibit a perfect neutrality toward compound risk.

However...

Why investigating the evaluation of Two-stage prospects? Two-stage prospect and reduction of compound lotteries Three observations on \triangleright compound risk Theoretical and Empirical Background Experimental Design Model Specification Results

- 1. Reduction of compound prospects have been descriptively challenged in many empirical investigations:
 - Bar Hillel (1973), Bernasconi & Loomes (1992), Budescu & Fisher (2001), Abdellaoui, Klibanoff & Placido (2014), Nebout & Dubois (2014)...
- 2. Following Becker & Brownson (1964) and Yates and Zukowski (1976), Segal (1987, 1990) represented ambiguous bets as two-stage prospects.
- 3. Prospect Theory (PT) is the most succesful descriptive model of decision making under risk and ambiguity.

 \Rightarrow Would it still be the case when dealing with attitudes toward two-stage prospects?

Theoretical and Empirical Background Notation Evaluation I Stylized fact Evaluation II Experimental

Design

Model

Specification

Results

Theoretical and Empirical Background

Theoretical and Empirical Background

 \triangleright Notation

Evaluation I

Stylized fact

Evaluation II

Experimental Design

Model Specification

Results

- $\Box \quad (x, p; y) \text{ denotes the one-stage } prospect \text{ resulting in outcome } x \\ \text{with probability } p \text{ and in outcome } y \text{ with probability } 1 p \text{ with } \\ x \ge y \ge 0.$
 - Probability p is generated using a known urn containing 100 balls numbered from 1 to 100, i.e. drawing a ball which has a number between 1 and $p \times 100$.
- \Box $(x, E_p; y)$ denotes the corresponding ambiguous prospect. The probability $P(E_p)$ is unknown to the DM.
 - We use an unknown urn containing 100 balls numbered from 1 to 100 in unknown proportions, i.e. drawing a ball which has a number between 1 and $p \times 100$. Symmetry arguments imply $P(E_p) = p$. (Chew & Sagi, 2006, 2008)

 \square

Theoretical and Empirical Background

Notation

 \triangleright Evaluation I

Stylized fact

Evaluation II

Experimental

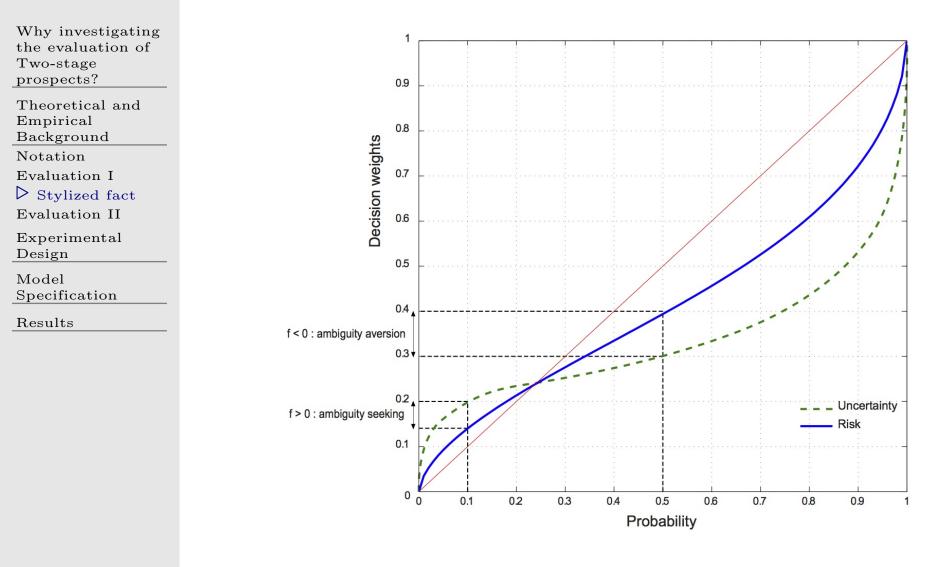
Design

Model Specification

Results

Under Expected Utility (EU), prospects are evaluated as follows: EU(x, p; y) = pu(x) + (1 - p)u(y)

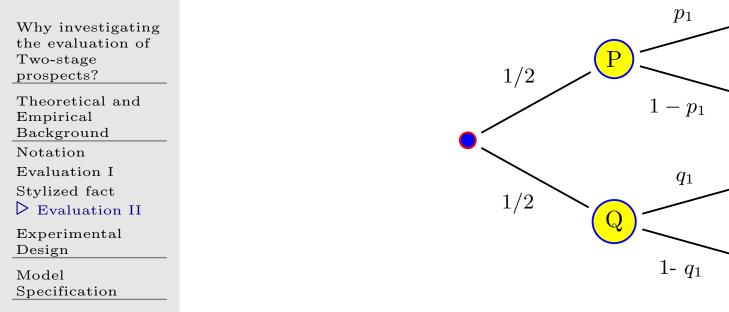
Where u is the utility function (and a risk attitude index).
Violations of EU popularized by Kahneman & Tversky.


Under Prospect Theory (PT), prospects are evaluated as follows in the gain domain:

$$PT(x, p; y) = w(p)u(x) + (1 - w(p))u(y)$$

- *u* is the utility function.
- w is the probability weighting function. w is strictly increasing and satisfies w(0) = 0 and w(1) = 1.

 \Rightarrow Many experimental evidence on RDU under risk and ambiguity.


Probability weighting under risk and ambiguity

 \Rightarrow Ambiguity increases **likelihood insensitivity.**

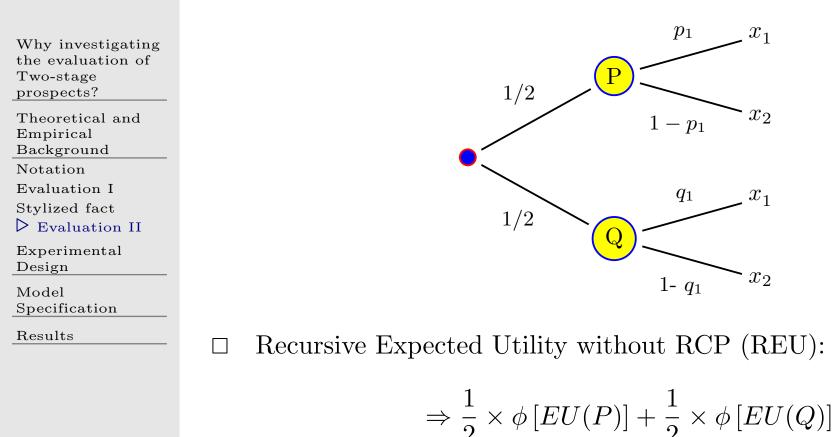
24-25 September 2014

How to evaluate two-stage prospects?

Results

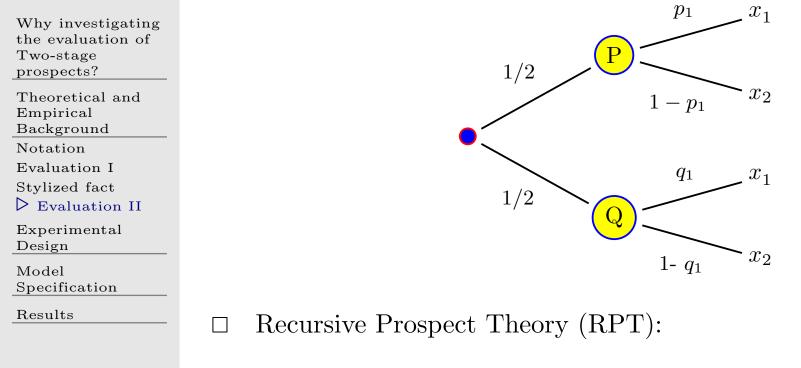
□ Traditional Recursive Expected Utility (TREU):

$$\Rightarrow \frac{1}{2} \times EU(P) + \frac{1}{2} \times EU(Q)$$


 x_1

 x_2

 x_1


 x_2

How to evaluate two-stage prospects?

- Kreps & Porteus (1978) introduced this transformed EU
 functionnal to account for delayed resolution of uncertainty.
- Klibanof & al. (2005) used the same preference functional to model ambiguity. (Seo, 2009, Ergin & Gul (2008),...)

How to evaluate two-stage prospects?

$$\Rightarrow \pi_1 \times \phi \left[PT(P) \right] + \pi_2 \times \phi \left[PT(Q) \right]$$

- Segal (1987) suggested this recursive form of RDU to model ambiguity attitudes through second-order probabilities.
- Abdellaoui & Zank (2014) provide the first axiomatization of this general form of Prospect Theory.

Theoretical and Empirical Background

 \triangleright Experimental \triangleright Design

outline

One-stage prospects

Two-stage

prospects

Model Specification

Results

Experimental Design

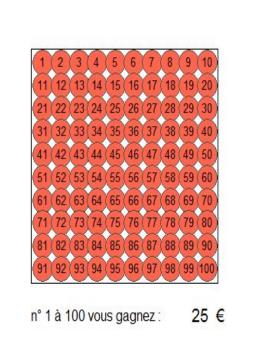
Why investigating the evaluation of	62 subjects:
Two-stage prospects?	\Box Parts 1 & 2: certainty equivalents for known and unknown
Theoretical and Empirical	Ellsberg urns $(2 \times 13 \text{ equivalents}).$
Background	\Box Parts 3 & 4: matching probabilities for two-stage prospects
Experimental Design	$(2 \times 10 \text{ equivalents}).$
\triangleright outline One-stage	\square Payment: show up 10 euros + RIS (max 50 euros).
prospects Two-stage prospects	\Box Individual interviews (about 45 minutes).
Model Specification	
Results	Under RPT, we aim to elicit the following functionals:

	Elicitation 1: Risk	Elicitation 2: Ambiguity
Attitudes towards	u	$ ilde{u}$
1-stage prospects	w	ilde w
Attitudes towards		
2-stage prospects	w^*	$ ilde{w}^*$

Why investigating the evaluation of		$c \sim$	(x, p; y) and \hat{a}	$\check{e} \sim (x, x)$	$E_p; y)$			$c_p \sim 0$	(x, p; y)	and \tilde{c}_{l}	$_p \sim (x,$	$E_p; y)$	
$\frac{\text{Two-stage}}{\text{prospects}?}$	\overline{x}	50	40	50	50	25	10	50	50	50	50	50	50	50
Theoretical and Empirical	y	25	20	10	35	5	0	0	0	0	0	0	0	0
Background	p	0.30	0.30	0.30	0.30	0.30	0.30	0.02	0.06	0.17	0.33	0.50	0.67	0.94
${f Experimental}$ Design	E_p	E_{30}	E_{30}	E_{30}	E_{30}	E_{30}	E_{30}	E_2	E_6	E_{17}	E_{33}	E_{50}	E_{67}	E_{94}
$\begin{array}{c} \text{outline} \\ \text{One-stage} \\ \triangleright \text{ prospects} \end{array}$														
Two-stage prospects		Under	risk,	we e	licit a	c and	c_p fo	ollowi	ng Al	odella	aoui 8	k al.	(2008)	3).
Model Specification														
Results		(2011)		iguity	v, we	elicit	\tilde{c} and	d \tilde{c}_p f	ollow	ing A	Abdel	laoui	& al.	,

 \Rightarrow We can compare our results to these benchmark studies.

🛃 CE1 Id45 (17)

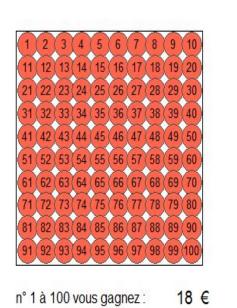

Affichage Settings

1	2	3	4	5	6	7	8	9	(10)	
11)	12	13	(14	15	(16	17	18	(19	20	
21)	22	23	24	25	26	27	28	29	(30)	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51)	52	53	54	55	56	57	58	59	60)	
61	62	63	64	65	66	67	68	69	(70)	
71)	72	73	(74)	(75	(76	$(\overline{11})$	78	(79	80	
81)	82	83	84	85	86	87	88	89	(90)	
91)	92	93	94	95	96	97	98	99	100	
n° 1	à 5	50 v	ous	ga	gne	Z:		5	60 €	
sinc	n								0 €	

Alternative A

ſ	Г	С	0€	
6		с	5€	
6	Γ	С	10€	
G		с	15€	
6	Г	С	20€	
С	V	0	25€	
С	Г	(•	30€	
С		6	35 €	
С	Г	¢	40€	
С		(•	45€	
С	Г	æ	50€	

Exemples


Alternative B

📣 CE1 Id45 (13)

?	?	?	(?	?	?	?	?	?	?
?	?	2	?	?	?	?	2	?	2
2	?	?	?	?	?	?	?	?	2
?)	?	?	(?	(?	(?	(?	(?	(?	(?)
?)	?	?	?	(?)	?	?	?	?	?
?)	?	?	?	2	?	?	?	?	?
?)	?	?	?	?	?	?	?	?	?
?)	?	?	?	?	?	?	?	?	?
?)	?	?	?	?	?	?	?	?	?
?)	?	?	?	?	?	?	?	?	?
-	~	~	~	-	-	-	-	-	-
1	à	50 v	ous	ga	gne	Z		5	0
	n		ous	ga	gne	<i>L</i> .		-	0

0	Γ	С	15€
c	Γ	С	15.5€
6	Γ	С	16€
¢	Γ	С	16.5 €
0	Γ	С	17€
6	Γ	С	17.5€
0	$\overline{\checkmark}$	(*	18€
С	Γ	(*	18.5 €
С	Γ	¢	19€
с	Γ	(*	19.5 €
С	Г	¢	20€

Why investigating	-											
the evaluation of Two-stage	_			((ā	$(\bar{x},p),q)$	$\sim (\bar{x}, m)$) and ($(\bar{x}, E_p),$	$q) \sim (\bar{x})$	$\tilde{m},\tilde{m})$		
prospects? Theoretical and	-	q	1/3	1/3	1/3	1/3	1/3	2/3	2/3	2/3	2/3	2/3
Empirical Background	-	p	0.06	0.17	0.33	0.50	0.94	0.06	0.17	0.50	0.75	0.94
Experimental Design		E_p	E_6	E_{17}	E_{33}	E_{50}	E_{94}	E_6	E_{17}	E_{50}	E_{75}	E_{94}
outline One-stage prospects Two-stage ▷ prospects		$ar{x}$ =	= 50.									
Model Specification Results						ties for stage ä	v	second	l stage	stage,	0.75 0.94	

 \square 2 first stage probability levels: 1/3 and 2/3.

 \Rightarrow Elicitation, comparison and test of 4 second stage probability weighting functions.

Alternative A

(Deux tirages)

Alternative B

(Un seul tirage)

Tirage Preliminaire						
	Rien n'est gagné					
	/ous tirez une boule dans l'urne	c	Г	с	0 boules	
1234561	8 9 10	с	$\overline{\nabla}$	С	10 boules	12345578910
(11) (12) (13) (14) (15) (16) (1	7 (18 (19 (20)	с	Γ	C	20 boules	
31 32 33 34 35 36 3		C		С	30 boules	(21)(22)(23)(24)(25)(26)(27)(28)(29)(30) (31)(32)(33)(34)(35)(36)(37)(38)(39)(40)
(41) 42) 43) 44) 45) 46) 4 (51) 52) 53) 54) 55) 56) 5	\times \times \times \times	с	Г	С	40 boules	(41)(42)(43)(44)(45)(46)(47)(48)(49)(50) (51)(52)(53)(54)(55)(56)(57)(58)(59)(60)
61 62 63 64 65 66 6 (71 (72 (73 (74 (75 (76 (7		C	Γ	С	50 boules	61 62 63 64 65 66 67 68 69 70 (71 72 73 74 75 76 77 78 79 80)
81 82 83 84 85 86 8 (91 92 93 94 95 96 9	7 88 89 90	c	Г	C	60 boules	81 82 83 84 85 86 87 88 89 90
		с	Г	<u>C</u>	70 boules	91 92 93 94 95 96 97 98 99 100
n° 1 à 30 vous gagnez :	50 €	с	Г	С	80 boules	n° 1 à 10 vous gagnez : 50 €
sinon	0 €	с	Г	C	90 boules	sinon 0 €

○ □ ○ 100 boules

Exemples

Alternative A

(Deux tirages)

Alternative B

(Un seul tirage)

Tirage Preliminaire							
\odot \odot	Rien n'est gagné						
	Vous tirez une boule dans l'urne	c	Г	c	30 boules		
2222	222222	c	Γ	С	31 boules	0000000	0 0 10
??????	2 2 2 2 2 2 2	c	Г	С	32 boules	11 (12 (13 (14 (15 (16 (17)	18 19 20
$\begin{array}{c} 2 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \end{array}$	2 2 2 2 2 2 2	C		С	33 boules	21 (22 (23) 24 (25) 26 (27) 31 (32) 33 (34) 35 (36) 37 (28 (29 (30 38 (39 (40
? ? ? ? ? ?	? ? ? ? ? ? ? ? ? ? ? ? ? ?	C	Γ	С	34 boules	(41) (42) (43) (44) (45) (46) (47) ((51) (52) (53) (54) (55) (56) (57) ($\prec \succ \prec \vdash$
$\begin{array}{c} \hline 2 \\ 2 \\$		Ċ	V	С	35 boules	61 62 63 64 65 66 67 (71 (72 (73 (74 (75 (76 (77 (68 69 70
? ? ? ? ?	2 7 7 7 7 7	с	Γ	с	36 boules	81 82 83 84 85 86 87	88 (89 (90)
		c	Γ	С	37 boules	91 92 93 94 95 96 97	98 (99 (100)
n° 1 à 50 vous g	agnez: 50 €	c	Г	c	38 boules	n° 1 à 35 vous gagnez :	50 €
sinon	0 €	с		c	39 boules	sinon	0 €

40 boules

Exemples

Г

С

Theoretical and Empirical Background

Experimental Design

Model Specification TREU and REU RPT

 $\operatorname{Results}$

Model Specification

Theoretical and Empirical Background

Experimental

Design

Model <u>Specification</u> TREU and REU RPT

Results

Using the equivalence revealed by the elicitation of the matching probability r:

 $((\bar{x},p),q) \sim (\bar{x},m)$

we infer the following equalities:

1. Under TREU, we have:

 $q \times p = m$

2. Under REU, we have:

 $q \times \phi(p) = \phi(m)$

Where ϕ is a transformation function.

Parametric specification: $\phi(x) = x^{1/\theta}$.

Why investigating the evaluation of Two-stage prospects?	Under F	RΡ'
Theoretical and Empirical		
Background	Setup	
$\mathbf{Experimental}$	Secup	
Design		
Model		
Specification		
TREU and REU		
▷ RPT	One-	
Results	stage	
	Suage	1

T, we have:

-	Setup	RPT-r	RPT-a		
_		RPT for "risk-risk"	RPT for "risk-ambiguity"		
	One- stage		$c \sim (x,p;y)$		
		$c \sim (x, p; y)$ $u(c) = w(p)u(x) + (1 - w(p))u(y)$	u(c) = w(p)u(x) + (1 - w(p))u(y)		
			$\tilde{c} \sim (x, E_p; y)$		
			$u(\tilde{c}) = \tilde{w}(p)u(x) + (1 - \tilde{w}(p))u(y)$		
-	Two-	$((\bar{x},p),q)\sim ((\bar{x},m),1)$	$((\bar{x}, E_p), q) \sim ((\bar{x}, \tilde{m}), 1)$		
	stage	$w(q)w^{\star}(p)=w^{\star}(m)$	$w(q)\tilde{w}^{\star}(p) = w^{\star}(\tilde{m})$		

Parametric specifications:

$$u(x) = x^{\alpha}$$
 and $w(p) = exp(-(-ln(p)^{\gamma})^{\delta})$.

Theoretical and Empirical Background

Experimental Design

Model Specification

\triangleright Results

RCP and TREU REU RPT under risk Additional results Concluding remarks

Results

Results: RCP and TREU

		q = 1/3			q = 2/3		
Why investigating the evaluation of Two-stage	<i>p</i>	$\#(\Delta\gtrless 0)$	t-test		$\#(\Delta \gtrless 0)$	<i>t</i> -test	
prospects? Theoretical and	0.06	60/2	8.42**		48/14	2.12**	
Empirical Background	0.17	38/24	3.65^{**}		27/35	-0.22^{ns}	
Experimental Design	0.33	26/28	2.26^{*}		-	-	
Model Specification	0.50	39/23	3.39^{**}		24/38	-1.96^{*}	
Results RCP and	0.75	-	-		24/25	0.33^{ns}	
▷ TREU REU	0.94	27/35	0.69^{ns}		40/22	1.99**	
RPT under risk Additional results		Table 9	$\mathbf{P} \cdot \mathbf{BCP} (\mathbf{A} - \mathbf{A})$	- m	-na)/na)		

Table 2: RCP $(\Delta = m - pq)/pq)$

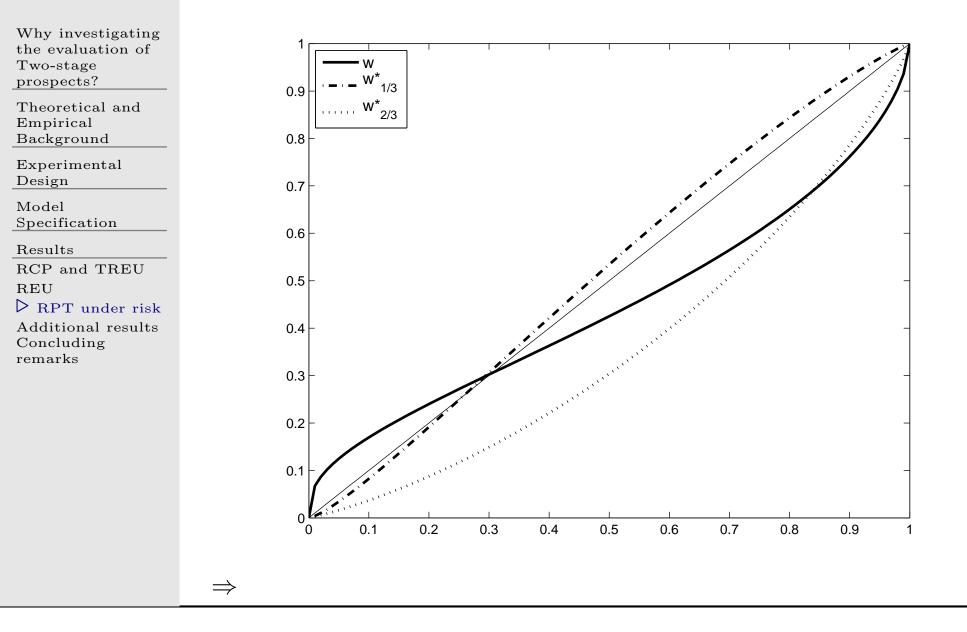
- □ RCP is globally violated, thus TREU is not descriptively valid for evaluating two-stage prospects.
- \Box Overall, we observe preference for the compound prospect, especially for q = 1/3.

Concluding remarks

o-stage spects?			Probability q	1
eoretical and pirical kground		1/3	2/3	$\{1/3, 2/3\}$
erimental ign	Mean	0.89	1.03	0.91
del cification	Median	0.90	0.98	0.91
ults	Std	0.18	0.35	0.18
RCP and TREU > REU RPT under risk	IQR	0.75 - 0.98	0.83-1.23	0.79-1.01

Table 3: Parameter θ empirical distribution characteristics under REU

 $\Box \phi$ is convex for q = 1/3 and linear for q = 2/3.


 $\Box \quad \text{The transformation function } \varphi \text{ in REU can not absorb the} \\ \text{observed discrepancies from RCP.}$

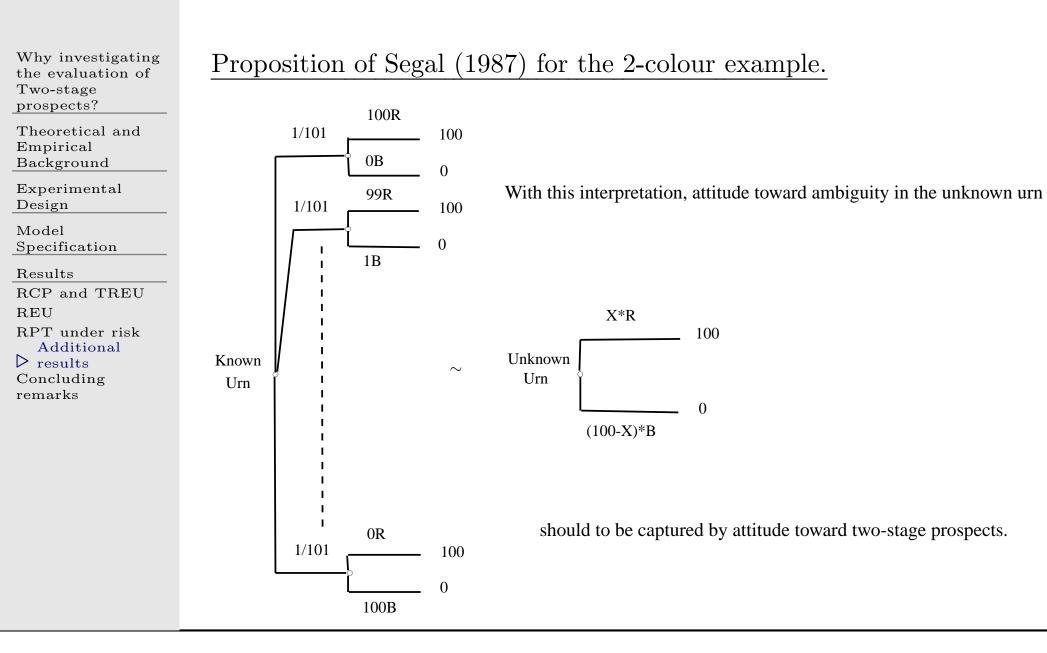
Why investigating the evaluation of	Stago	func	param -	Estimates			
Two-stage prospects?	Stage			Mean	Median	Std	IQR
Theoretical and Empirical Background	First	<u>u</u>	α	0.94	0.93	0.26	0.74-1.10
$\mathbf{Experimental}$ \mathbf{Design}		$w = rac{\gamma}{\delta}$	γ	1.06	1.07	0.32	0.85 - 1.22
Model			δ	0.62	0.61	0.20	0.48 - 0.77
Specification Results	Second .	$w_{1/2}$	$\gamma^*_{1/3}$	1.01	0.96	0.42	0.74-1.18
RCP and TREU REU			$\delta_{1/3}^{*}$	1.20	1.15	0.29	1.03 - 1.35
RPT under risk Additional results Concluding remarks		$w_{2/3}^*$	$\gamma^{*}_{2/3}$	1.66	1.63	0.52	1.25-2.04
			$\delta_{2/3}^{*}$	0.90	0.85	0.28	0.69-1.07

 \Box Function, w^* , depends on probability q. While it is close to linearity for q = 1/3, it is convex for q = 2/3.

 \Rightarrow Inverse than for REU but same problem (differences both for elevation and curvature between $w_{1/3}^*$ and $w_{2/3}^*$).

Results: RPT under risk

24-25 September 2014


JJC - Dpt SAE2 - INRA- Nancy – 27

Why investigating the evaluation of Two-stage prospects? Theoretical and Empirical Background Experimental Design Model Specification Results RCP and TREU REU RPT under risk Additional \triangleright results Concluding remarks

Adding ambiguity (first and second stage) does not change our main results i.e.

- Impact of probability q on the shape of function ϕ .
- Stage dependent pwf.
- Dependence of the second stage pwf on the first stage probability.
- $\hfill\square$ Benchmark results are found for the single stage pwf under risk and ambiguity.

□ No association between RCP and ambiguity attitudes (\neq from Halevy, 2008 and Segal).

JJC - Dpt SAE2 - INRA- Nancy – 29

Theoretical and Empirical Background

Experimental Design

Model Specification

Results

RCP and TREU REU RPT under risk Additional results Concluding

 \triangleright remarks

1. Recursive evaluation of two-stage prospects is more complex than allowed by any existing recursive model.

2. In Kreps and Porteus (or KMM) integral, function ϕ is sensitive to the first-stage probability of winning.

3. Second-stage probability weighting is very sensitive to the first-stage winning probability.

 \Rightarrow Abdellaoui & Zank (2014) first axiomatized a RPT model that could account for our experimental findings.

Why investigating the evaluation of Two-stage prospects? Theoretical and

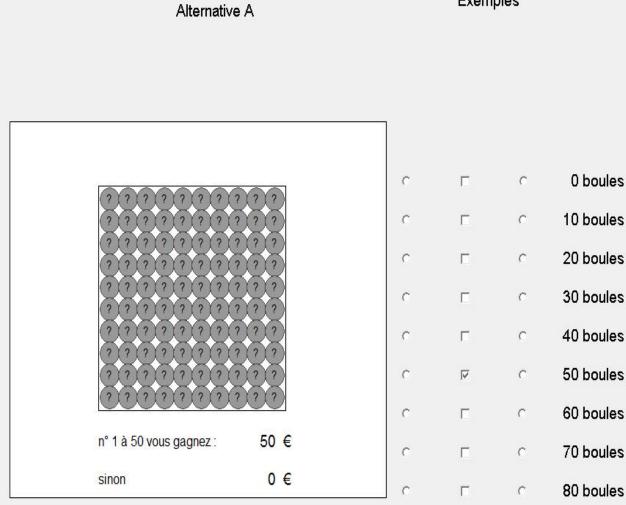
Empirical Background

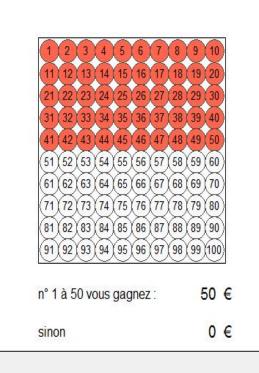
Experimental

Design

Model Specification

Results


RCP and TREU REU


RPT under risk

Additional results

 \triangleright Concluding \triangleright remarks

Thank you for your attention!

Г

Г

 \mathbf{C}

 \mathbf{C}

C

C

90 boules

100 boules

Theoretical and Empirical Background

Experimental Design

Model Specification

Results RCP and TREU REU RPT under risk Additional results Concluding ▷ remarks Fox & Tversky (1995) introduced the *comparative ignorance* hypothesis as a condition of observability of ambiguity aversion. For this hypothesis they proposed the following conjecture :

"When evaluating an uncertain event in isolation, people attempt to assess its likelihood – as a good bayesian would – paying relatively little attention to second-order characteristics such as vagueness or weight of evidence. However, when people compare two events about which they have different levels of knowledge, the contrast makes the less familiar bet less attractive or the more familiar bet more attractive". p 588.

 \Rightarrow Many experimental tests of this hypothesis. Non neutrality toward ambiguity is always observed! (Fox & Tversky (1995), Chow & Sarin (2001), Rubaltelli & al. (2010))

 \Rightarrow Complete analysis in Nebout (2011).