Becker-Döring model

Reversible one-step agregation

C i `C1 p i ÝÝá âÝÝ q i`1 C i`1
(1) § In spontaneous polymerization experiment, § Initial condition given by C i pt " 0q " 0 @i ě 2. § Measured variable : ř iěN iC i (N is an unknown parameter)
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Becker-Döring model

Reversible one-step agregation

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1
(1) § The (observed) nucleation time is given by inftt ě 0 :

ÿ iěN iC i ptq ě ρM | C i pt " 0q " Mδ i"1 u .
Another quantity of interest is the following First Passage Time,

inftt ě 0 : C N ptq ě ρ | C i pt " 0q " Mδ i"1 u .
Motivation Numerical results Coarse-graining LDP

Becker-Döring model

Reversible one-step agregation

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1 §
What are the dependencies of the nucleation time with respect to the model parameters ? total mass : M ; nucleus size : N aggregation rates : p i , i ě 1 fragmentation rates : q i , i ě 2 § What is the nucleation time for very large initial quantity M and nucleus size N ? § In experiment, M « 10 10 ´10 15 , Size of (observed) polymers « 10 3 ´10 6 , N "?.

$ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i . Equilibrium is given by J i " J " 0, which implies c i " Q i c i 1 , Q i "
p 1 p 2 ¨¨¨p i´1 q 2 q 3 ¨¨¨q i The mass at equilibrium is given by

ρpc 1 q " ÿ iě1 iQ i c i 1
If this series has a finite radius of convergence, z s , then there is a critical mass ρ s "

ÿ iě1 iQ i z i s $ ' ' ' & ' ' ' % dc i dt " J i´1 ´Ji , i ě 2 , J i " p i c 1 c i ´qi`1 c i`1 , i ě 1 , dc 1 dt " ´J1 ´ř8 i"1 J i .
[Ball, Carr, Penrose, CMP (1986)]

If M ď ρ s , then (with strong convergence)

lim tÑ8 c i ptq " Q i z i , ρpzq " M If M ą ρ s , then (with weak convergence) lim tÑ8 c i ptq " Q i z i s , M ´ρpz s q ""loss of mass"
As M OE ρ s , there is a solution for which J i « J ˚is exponentially small, and § (for finite t) c i ptq ´ci p0q is exponentially small § lim tÑ8 c i ptq ´ci p0q is not exponentially small

Stochastic Becker-Döring model

Reversible one-step agregation

C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1
We define a continuous time Markov Chain on tpC i q i ě 1 :

C i P N, ÿ iě1 iC i " Mu
Transitions are given by

P $ & % C 1 pt `dtq " C 1 ptq ´1 C i pt `dtq " C i ptq ´1 C i`1 pt `dtq " C i`1 ptq `1 , .
- 

" p i C 1 ptqC i ptqdt `opdtq
C i `C1 p i
ÝÝá âÝÝ

q i`1 C i`1
We define a continuous time Markov Chain on tpC i q i ě 1 :

C i P N, ÿ iě1 iC i " Mu (8,0,0) (6,1,0) (4,2 ,0) 
(2,3,0)

(5,0,1)

(3,1,1) (1,2,1) (2,0,2) (0,4,0) (0,1,2) (7,0,0) (5,1,0) (3,2,0) (1,3,0) (4,0,1) (2,1,1) (0,2,1) (1,0,2) (a) (b)
We are interested in inftt ě 0 :

C N ptq ě 1 | C i pt " 0q " Mδ i"1 u .

Outline

Amyloid diseases and Becker-Döring model Numerical results

Coarse-graining

Large deviations § Law of large numbers as M Ñ 8 [Jeon. CMP (1998)] § Any macroscopic quantity like.

inftt ě 0 :

ÿ iěN iC i ptq ě ρM | C i pt " 0q " Mδ i"1 u .
converges (if reachable) to a finite deterministic value as M Ñ 8. § This may not be true for microscopic quantity, for instance.

inftt ě 0 :

C N ptq ě 1 | C i pt " 0q " Mδ i"1 u .
[Y., D'Orsogna, Chou JCP ( 2012)] [Y., Bernard, Hingant, Pujo-Menjouet JCP ( 2016)] § Non-monotonous w.r.t reaction rate § Bimodal for 'small' fragmentation rate N=10, p 1 " 0.5, p k " 1 and q k " q for k ě 2,. § 'Weak' dependency w.r.t. total monomer number M p 1 " 0.5, p k " 1 and q k " 100 for k ě 2,. § Normalized standard deviation nonmonotonous. § Normalized standard deviation non zero pour M Ñ 8.

p 1 " 0.5, p k " 1 and q k " 100 for k ě 2,.

Outline

Amyloid diseases and Becker-Döring model Numerical results

Coarse-graining

Large deviations
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When N Ñ 8?

We start from a rescaled model (ε " 1{N, ε 2 " 1{M)

$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq . With f ε pt, xq " ř iě2 c ε i ptq1 rpi´1{2qε,pi`1{2qεq pxq, Scaling idea : excess of monomer c ε 1 ptq " ε 2 c 1 ptq , Compensated aggregation / fragmentation p ε pxq " ÿ iě2 pp i {ε 2 q1 rεi,εpi`1qr q ε pxq " ÿ iě3 q i 1 rεi,εpi`1qr
and slow first step :

p ε 1 " p 1 ε 4 ,
When N Ñ 8?

We start from a rescaled model (ε " 1{N, ε 2 " 1{M)

$ ' & ' % dc ε i dt " 1 ε " J ε i´1 ´Jε i ‰ , i ě 2 , m ε " c ε 1 ptq `ε2 ÿ iě2 ic ε i ptq . With f ε pt, xq " ř iě2 c ε i ptq1 rpi´1{2qε,pi`1{2qεq
pxq, From the polymer point of view, we have accelerated fluxes, all of the same order :

1 ε p ε 1 C ε 1 C ε 1 Ý ÝÝÝÝÝ á â ÝÝÝÝÝ Ý 1 ε q ε 2 C ε 2 C ε 2 C ε i´1 1 ε p ε pεpi´1qqC ε 1 C ε i´1 Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý 1 ε q ε pεiqC ε i C ε i 1 ε p ε pεiqC ε 1 C ε i Ý ÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝ Ý 1 ε q ε pεpi`1qqC ε i`1 C ε i`1 , d dt ż `8 0 f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´q2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 rp ε pxqc ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx ,
Theorem (Deschamps, Hingant, Y. ( 2016))

we have f ε Ñ f (weakly in X " tν P M b pr0, 8q : 

f ε pt, xqϕpxq dx " " p ε 1 c ε 1 ptq 2 ´q2 c ε 2 ptq ‰ ˜1 ε ż 5{2ε 3{2ε ϕpxq dx ż `8 0 rp ε pxqc ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx ,
Theorem (Deschamps, Hingant, Y. ( 2016))

Nptq is an explicit function of c 1 ptq, and is given by a quasi steadystate approximation of c ε 2 " f ε pt, 2εq, given by the solution of # 0 " rJ i´1 pc 1 q ´Ji pc 1 qs , i ě 2 , c 1 ptq " c 1 .

When c 1 ą lim xÑ0 qpxq ppxq , the solution of J i " J ‰ 0 is linked to the loss of mass in the classical BD theory.

A much simpler version of this model consider that a single aggregate may be formed at a time :

k p k pm´kεq Ý ÝÝÝÝÝ á â ÝÝÝÝÝ Ý q k`1 k `1 ,
which converges (with time rescaling) to dx dt " ppxqpm ´xq ´qpxq § To leading order the stationary prob. density is u ˚px q " C e ´1 ε ş x log ´qpyq ppy qpm´y q ¯dy a ppxqpm ´xqqpxq . § MFPT is explicit and is exponentially large in ε § The "rate" is exponentially small

  ´qpxqs ϕ 1 pxqf pt, xq dx , and c 1 ptq `ş xf pt, xq " m, for all ϕ P C c p0, 8q. This is the weak form of Bf Bt `BpJpx, tqf pt, xqq Bx " 0 , Jpx, tq " ppxqc 1 ptq ´qpxq . ε 1 ptqf ε pt, xq∆ ε ϕpxq ´qε pxqf ε pt, xq∆ ´εϕpx qs dx , Theorem (Deschamps, Hingant, Y. (2016)) ´qpxqs ϕ 1 pxqf pt, xq dx , for all ϕ P C b p0, 8q, which gives the boundary condition lim xÑ0 Jpx, tqf pt, xq " Nptq .

  

  

  

  

  

  

§ Indirect interaction between polymer C i , i ě 2 via the available number of monomers C 1 .

Deterministic BD model -Some remarks § For constant or linear kinetic rates p i , q i , one can reduce the system to 1 or 2 ODEs on

ic i . § Based on scaling arguments, one can show that for q i " 0 (irreversible nucleation), inftt ě 0 : c N ptq ě ρM | c i pt " 0q " Mδ i"1 u » 1 M .

while for "q i Ñ 8 2 (pre-equilibrium nucleation),

When N Ñ 8?

We start from a rescaled model (ε " 1{N, ε 2 " 1{M)

where ∆ ε ϕpxq " ϕpx`εq´vphipxq ε .

Quantifying the large deviation in toy model

A much simpler version of this model consider that a single aggregate may be formed at a time :

which converges (with time rescaling) to dx dt " ppxqpm ´xq ´qpxq

Can we perform similar calculations with n clusters ?
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which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?
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which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?
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which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?
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which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?
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which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Can we perform similar calculations with n clusters ?
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ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ q k 1 `1 pk 0 , k 1 `1q , which converges (with time rescaling) to dx dt " ppxqpm ´x ´y q ´qpxq dy dt " ppy qpm ´x ´y q ´qpy q Next : § Proving Large Deviation Principle for the full (S)BD § Quantifying the MFPT § Data fitting in spontaneous polymerization experiment

Thanks for your attention !