We define a pure-jump process (X (t)) t≥0 on R * + with two different transitions :

Bursting at rate λ b (x) and jump distribution κ b (y , x)1 {y >x} dy Division at rate λ d (x) and jump distribution κ d (y , x)1 {y <x} dy Pathwise construction : Let (U n , V n ) n≥1 be i.i.d ∝ U(0, 1), Time step : T n = T n-1 + (1/λ(X n-1 )) ln(1/U n-1 ), where

λ(x) = λ b (x) + λ d (x).
State step : X n = F -1 κ (V n , X n-1 ), where F κ (y , x) is the cum. dist. fonct. associated to

κ(y , x) = λ b (x) λ b (x) + λ d (x) κ b (y , x)1 {y >x} Bursting (gain) + λ d (x) λ b (x) + λ d (x) κ d (y , x)1 {y <x} Division (loss) . X (t) = X n-1 for all T n-1 ≤ t < T n .
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Example of sample paths This model is well-defined up to the explosion time,

T ∞ = lim n→∞ T n

Remark

Non-explosion + irreducibility + Existence of a unique invariant measure ⇒ ergodicity.

Lyapounov-fonction strategy (see [Meyn and Tweedie 93]) can provide sufficient criteria.

An analogous study on the set of probability density ( u = 1).

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y )u(t, y )κ b (x, y )dy Bursting (gain) -λ d (x)u(t, x) + ∞ x λ d (y )u(t, y )κ d (x, y )dy Division (loss)
This defines a semi-group P(t) on L 1 . We will use

Theorem (Pichor and Rudnicki JM2A 2000)

If P(t) is a stochastic semigroup : P(t)u 1 = u 1 , is partially integral, e.g. there exists t 0 > 0 and p s.t. and if P(t) possess a unique invariant density, then P(t) is asymptotically stable.

The Master equation may be rewritten as

du dt = -λu + K (λu), (1) 
where

Kv (x) = x 0 λ b (y ) λ b (y ) + λ d (y ) u(t, y )κ b (x, y )dy Bursting (gain) + ∞ x λ d (y ) λ b (y ) + λ d (y ) u(t, y )κ d (x, y )dy Division (loss)
If K has a strictly positive fixed point in L 1 , then P(t) is stochastic ([Mackey et al. SIAM 13]). Note also that any stationary solution u * of (1) must satisfy the flux condition

x 0 ∞ x κ b (z, y )dz λ b (y )u * (y )dy " from x -to x + " = ∞ x x 0 κ d (z, y )dz λ d (y )u * (y )dy " from x + to x -" 9/23
We consider the separable case

κ b (x, y ) = - K b (x) K b (y ) , x > y , κ d (x, y ) = K d (x) K d (y ) , x < y .
where K b (y ) → 0 as y → ∞ and K (y ) → 0 as y → 0. We define

G (x) = K d (x) K d (x) - K b (x) K b (x) , Q b (x) = x x λ b (y ) λ(y ) G (y )dy . Theorem Suppose that c b := ∞ 0 K b (x) λ(x) G (x)e -Q b (x) dx < ∞, ∞ 0 K b (x)G (x)e -Q b (x) dx < ∞
Then the semigroup {P(t)} t≥0 is stochastic and is asymptotically stable, with x Steady-state profile

u * (x) = 1 c b K b (x) λ(x) G (x)e -Q b (x) du * dx = - λ (x) λ(x) + K b (x) K b (x) + G (x) G (x) + λ b (x) λ(x) G (x) u * (x)
λ b =1, b=10 λ b =5, b=2 λ b =10, b=1 λ b =100, b=0.1 K b (x) = e -x/b , λ b (x) = λ b 1+x n Λ+x n , K d (x) = x, λ d (x) = 1. 11/23
This theorem can be used to show asymptotic convergence for "non-trivial" parameters function. In particular, the growth-division model

∂u(t, x) ∂t + ∂g (x)u(t, x) ∂x Continuous production = -λ d (x)u(t, x) + ∞ x λ d (y )u(t, y ) K d (x) K d (y ) dy Division (loss) , converges for λ d (x) = αx β-1 + x β+1 g (x) = x β K d (x) = x, for 0 ≤ β ≤ 1, 0 < α < 1, towards u * (x) = K d (x) cg (x) e -x x λ d (y ) g (y ) dy , but λ d g / ∈ L 1 0 12/23
Absorbing probabilities / Mean waiting time : We can also solve (analytically) the backward equation, Af (x) = A(x),

Af (x) = λ b (x) ∞ x (f (y ) -f (x))κ b (y , x)

dy

Bursting (gain)

+ λ d (x) x 0 (f (y ) -f (x))κ d (y , x)dy Division (loss) 
.

If τ + z := inf{t ≥ 0, X t ≥ z}, then V + z (y ) = E y τ + z is solution of AV + z (y ) = -1, y < z, V + z (y ) = 0, y ≥ z.
(2)

The mean waiting time is non-monotonic with respect to the bursting property.

-2 10 -1 10 0 10 1 10 2 10 3 mean time 

λb =1 b λb =2 b λb =3 b λb =4 b λb =5 b λb =10 λ d ≡ 2, K d (x) = x, λ b (x) ≡ λ b , K b (x) = e -x/b
The mean waiting time is also affected by the asymmetry of the division. 

λ d (x) ≡ 2, κ d (•, x) = 0.5N (xp, xp(1 -p)) + 0.5N (x(1 -p), xp(1 -p)), K b (x) = e -x/

Numerical results

We wish to investigate (macroscopic) population models with nonlinear feedback on the division rate

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y )u(t, y )κ b (x, y )dy Bursting -λ d (x, S)u(t, x) + 2 ∞ x λ d (y , S)u(t, y )κ d (x, y )dy Division -µ(x)u(t, x)
Cell death with κ d symmetric (total molecular content preserved at division) the feeback strenght is given by

S(t) = ∞ 0 ψ(x)u(t, x)dx, ψ(x) = 1 {x≥x 0 } .
We will restrict to the case of constant division and death rates, so that d dt

∞ 0 u(t, x)dx = (λ(S) -µ) ∞ 0 u(t, x)dx
If all cells participate to the regulation of the division rate (x 0 = 0), we have immediately y ) , and y ) . We assume

Theorem Let κ b (x, y ) = - K b (x) K b (
κ d (x, y ) = K d (x) K d (
c b := ∞ 0 K b (x) λ(x) G (x)e -Q b (x) dx < ∞, ∞ 0 K b (x)G (x)e -Q b (x) dx < ∞
and that S → λ d (S) is continuous monotonically decreasing, with λ d (0) > µ and lim S→∞ λ d (S) < µ, then, for any initial density u 0 , u(t, x) converges as t → ∞ in L 1 towards

λ -1 d (µ)u * .
In the case x 0 > 0, we can not prove convergence towards a steady-state, and numerical results indicate the presence of oscillation through a Hopf-bifurcation.

Remark

We can however prove persistance results in certain cases 

0 < inf t≥0 ∞ 0 u(t, x)dx ≤ sup
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A typical example linking gene expression to cell fate

The antagonism between regulatory proteins (Transcription Factor) Gata-1/PU.1 in heamatopoietic progenitor [Enver et al. Stem Cell 2009] Cell fate explained by a deterministic dynamical system

The antagonism Gata-1/PU1, modeled by ODE Cell fate "=" attractor of a dynamical system.

[ Duff et al. JMB 2012] Upon an assumption of separable bursting and division kernel, we found a complete characterisation of the single cell model : Criteria for convergence towards steady-state, and analytical solution (and bifurcation) Mean waiting time to reach a given level Such study can be used to infer the burst rate and/or division rate in a dividing cell population. While looking at the nonlinear population model, the bursting properties and division mechanism are shown to have a profound impact on homeostasis that will be further investigated.
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