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Stochasticity in Molecular biology, links with cell fate



Biology

Stochasticity in molecular biology

» Trajectories on single cells : bursting and repartition at
division are major sources of randomness in gene expression.
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Biology

A typical example linking gene expression to cell fate

The antagonism between
regulatory proteins (Transcription
Factor) Gata-1/PU.1 in
heamatopoietic progenitor

Myeloid cells (PU.1)

[Enver et al. Stem Cell 2009]
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Biology

Cell fate explained by a deterministic dynamical system

The antagonism Gata-1/PUL,
modeled by ODE
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Biology

Reversibility of the gene expresion profile (and cell fate ?) in in vitro cell culture
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Single cell model : Bursting and Division as Jump Processes



Single cell model

We define a pure-jump process (X(t))¢>0 on R with two different
transitions :

> Bursting at rate A\p(x) and jump distribution kp(y, x)1(, sy dy

» Division at rate Ag(x) and jump distribution r4(y, x)1{, < dy
Pathwise construction : Let (U,, V,)n>1 be i.i.d o U(0, 1),

» Timestep : T, = Tp—1+ (1/AN(Xn=1)) In(1/Un—1), where

A(x) = Ap(x) + Ag(x).

» State step : X, = F.}(V,, X,_1), where F.(y, x) is the cum.
dist. fonct. associated to

(¥ Ad(x)
k(y,x) = mﬁb(%x)l{y»q + mﬂd(%x)l{yq} .
Bursting (gain) Division (loss)

> X(t) = Xn_1 forall T,_y <t < T
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Single cell model

Example of sample paths

One stochastic trajectory, A =10 One stochastic trajectory, A,=100
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Single cell model

This model is well-defined up to the explosion time,

Too = lim T,

n—oo

Remark
Non-explosion + irreducibility + Existence of a unique invariant
measure = ergodicity.

Lyapounov-fonction strategy (see [Meyn and Tweedie 93]) can
provide sufficient criteria.
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» An analogous study on the set of probability density ([ v = 1).

aU(atz:X) = —Xp(x)u(t, x) +/0X Ao(y)u(t, y)rp(x, y)dy

Bursting (gain)

Aau(e0)+ [ Aty alx )y

X

Division (loss)
This defines a semi-group P(t) on L!. We will use

Theorem (Pichor and Rudnicki JM2A 2000)

If P(t) is a stochastic semigroup : |P(t)ull1 = ||ul|1, is partially
integral, e.g. there exists ty > 0 and p s.t.

/O°° /0°° px,y)dydx>0 and P(to)u(x) > /OOo p(x, y)u(y) dy

and if P(t) possess a unique invariant density, then P(t) is
asymptotically stable.
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Single cell model

The Master equation may be rewritten as
du

e —Au+ K(Au), (1)

where

Bursting (gain)

o0 Ad(y)
+/X o) + Agy) VB IRal )y

Division (loss)

If K has a strictly positive fixed point in L', then P(t) is stochastic
([Mackey et al. SIAM 13]). Note also that any stationary solution
u* of (1) must satisfy the flux condition

/OX (/:o ”b(ZvY)C’Z) Ao(y)u(y)dy = /XOO (/OX Hd(z,y)dz)/\d(y)u*(y)dy

* from x— to xT " * from xt to x— "
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Single cell model

We consider the separable case

o) =~ x>y kalxn) = S <y,

where Kp(y) — 0 as y — oo and K(y) — 0 as y — 0. We define

- 8- oua- e

Theorem
Suppose that

oo K o0

Cp = / b(x) G(x)e~ @™ dx < oo, / Kp(x)G(x)e~ @M dx < oo
0o A() 0

Then the semigroup {P(t)}+>0 is stochastic and is asymptotically

stable, with
i K b (X )

ta(x) = cp A(x)

w2 e
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Single cell model

Steady-state profile

A=1, b=10
Ae=5, b=2
0.45 A,=10, b-1
A,=100, Db=0.1
0.4




Single cell model

» This theorem can be used to show asymptotic convergence for
“non-trivial” parameters function.

In particular, the growth-division model

o !
o), PP su(e) + [ At ) 1 dy.
ot Ox X Kd(y)
—_——
Continuous production

Division (loss)
converges for

Ad(x) = axP~1 4 xPH1
g(x)=x"
Kq(x) = x,
for0< <1, 0<a<l, towards
>< ()
u*(X) = Kd(X) Ad(y) dy,
cg(x)
but

Ad
%41
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Single cell model

Absorbing probabilities / Mean waiting time : We can also
solve (analytically) the backward equation, Af(x) = A(x),

A7) =2 ([ () = FG0esly )y

Bursting (gain)
a0 [ () = F)raly. )

Division (loss)

If
7 =inf{t >0,X; > z},
then

is solution of



Single cell model

The mean waiting time is non-monotonic with respect to the
bursting property.

Mean waiting time to go up from x=1 to z=10 Mean waiting time to go down from z=10 to x=1
10t

mean time
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Single cell model

The mean waiting time is also affected by the asymmetry of the
division.

_Mean waiting time to go up from x=1 to z=10 Mean waiting time to go down from z=10 to x=1
o 0 -1

mean,_time
mean time

)\d(X) = 2,
kd(:,x) = 0.5N (xp, xp(1 — p)) + 0.5N(x(1 — p), xp(1 — p)),
Kp(x) = e/b bAp =2

2 e



Nonlinear (macroscopic) population model
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Population model Theory Numerics

We wish to investigate (macroscopic) population models with
nonlinear feedback on the division rate

augt,X) = —Ap(x)u(t, x) +/OX Ao(y)u(t, y)rs(x, y)dy

Bursting

—Aa(x, S)u(t,x) +2 /OO Ma(y, S)u(t,y)ka(x, y)dy — p(x)u(t, x)
Cell death

Division
with kg symmetric (total molecular content preserved at division)
the feeback strenght is given by

t) = / ¢ t X an 1/J(X) = l{XZXo}'

We will restrict to the case of constant division and death rates, so

that
jt(/o ot x)obx) = ()\(S)—u)/o u(t, x)dx
162 e



Population model Theory Numerics

If all cells participate to the regulation of the division rate
(xo = 0), we have immediately
Theorem KI() K1)
X X
Let kp(x,y) = — Rty and kd(x,y) = R We assume

cp = / Ko(x) G(x)e" @MW dx < oo, / Kp(x)G(x)e~ @M dx < oo
0o A(¥) 0

and that S — X\4(S) is continuous monotonically decreasing, with
Ad(0) > p and lims_,o0 Ad(S) < u, then, for any initial density ug,
u(t,x) converges as t — oo in L' towards

A ().
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Population model Theory Numerics

In the case xp > 0, we can not prove convergence towards a
steady-state, and numerical results indicate the presence of
oscillation through a Hopf-bifurcation.

Remark
We can however prove persistance results in certain cases

0< inf/ u(t, x)dx < sup/ u(t, x)dx < oo
0 0

t>0 t>0

w2



Population model Theory Numerics

Numerical results

du(t, x) n dg(x)u(t, x)
ot ox

= “ g6, Sult, x) +2 / ™ Naly, S)ult, y)rg(x, y)dy — p(x)u(t, x)

Cell death

Continuous production Division

time evolution of the normalized profile time evolution of the S

Number of cells

8 10 o 200 100 600 800 1000

w=1 Ag(x,5) = Hé%' K4(x) =x, x0 =1, g(x) =0.6

10,2: |



Population model Theory Numerics

Numerical results indicate a Hopf bifurcation

du(t, x) dg(x)u(t, x) oo
+———— = =Xglx, S)u(t,x) + 2/ Ad(y, S)u(t, y)rg(x, y)dy — p(x)u(t, x)
ot Ox x ——
- - Cell death
Continuous production Division

time evolution of the normalized profile time evolution of S
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time
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1000

=1, A(x,5) = 1+0 20—, Ka(x) =x, x0 =1, g(x) = 0.5
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Population model Theory Numerics

The bursting property shifts the Hopf bifurcation

P2 n st x) 4 [ A0 s 0y Al St ) +2 [T Ay, St v)maes )y — 0w
ot 0 X ~——

Cell d
Bursting Division

with =1, A\g(x,S) = 1+é+*5’ Ka(x) =x, xo =1,
Kb(X) = e_X/b, )\b(X) =M

bAp\A\p 100 10 1 0.1
0.6 + + + +
0.5 - + 4+ +
0.4 - -+ +
0.1 - - -+
Table : +=Asymptotic convergence towards steady state - = oscillation
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Population model Theory Numerics

The asymmetry at division also shifts the Hopf bifurcation

2 OERINED gt Syt ) 42 [ Aglys S)ute, Yingl ey — e )
ot Ox x ——

Continuous production

Cell death
Division
with g =1, A\g(x,S) = 2%«
! ) — 140.1xS’

kd(:,x) = 0.5N (xp, xp(1 — p)) + 0.5N(x(1 — p), xp(1 — p)),
x=1¢g(x)=g

g\p 05 04 02 01 0.01

0.7 - + +  + +
0.6 - - + + +
0.5 - - - - +
Table : +=Asymptotic convergence towards steady state - = oscillation
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Population model Theory Numerics

Upon an assumption of separable bursting and division kernel,
we found a complete characterisation of the single cell model :

» Criteria for convergence towards steady-state, and analytical
solution (and bifurcation)

» Mean waiting time to reach a given level

Such study can be used to infer the burst rate and/or division
rate in a dividing cell population.

While looking at the nonlinear population model, the bursting
properties and division mechanism are shown to have a profound
impact on homeostasis that will be further investigated.

Thank you for your attention !

B
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