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Stochasticity in molecular biology

I Trajectories on single cells : bursting and repartition at
division are major sources of randomness in gene expression.

[Golding et al. Cell 2005, Kondev Physics Today 2014]
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A typical example linking gene expression to cell fate

The antagonism between
regulatory proteins (Transcription
Factor) Gata-1/PU.1 in
heamatopoietic progenitor

[Enver et al. Stem Cell 2009]
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Cell fate explained by a deterministic dynamical system

The antagonism Gata-1/PU1,
modeled by ODE

Cell fate “=” attractor of a
dynamical system.

[Duff et al. JMB 2012]
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Reversibility of the gene expresion profile (and cell fate ?) in in vitro cell culture

experiment

[Chang et al. Nature Letters 08] [Pina et al. Nature cell bio. 2012]
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We define a pure-jump process (X (t))t≥0 on R∗+ with two different
transitions :

I Bursting at rate λb(x) and jump distribution κb(y , x)1{y>x}dy

I Division at rate λd(x) and jump distribution κd(y , x)1{y<x}dy

Pathwise construction : Let (Un,Vn)n≥1 be i.i.d ∝ U(0, 1),

I Time step : Tn = Tn−1 + (1/λ(Xn−1)) ln(1/Un−1), where

λ(x) = λb(x) + λd(x).

I State step : Xn = F−1
κ (Vn,Xn−1), where Fκ(y , x) is the cum.

dist. fonct. associated to

κ(y , x) =
λb(x)

λb(x) + λd(x)
κb(y , x)1{y>x}︸ ︷︷ ︸

Bursting (gain)

+
λd(x)

λb(x) + λd(x)
κd(y , x)1{y<x}︸ ︷︷ ︸

Division (loss)

.

I X (t) = Xn−1 for all Tn−1 ≤ t < Tn.
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Example of sample paths
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This model is well-defined up to the explosion time,

T∞ = lim
n→∞

Tn

Remark
Non-explosion + irreducibility + Existence of a unique invariant
measure ⇒ ergodicity.

Lyapounov-fonction strategy (see [Meyn and Tweedie 93]) can
provide sufficient criteria.
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I An analogous study on the set of probability density (
∫
u = 1).

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0

λb(y)u(t, y)κb(x , y)dy︸ ︷︷ ︸
Bursting (gain)

−λd(x)u(t, x) +

∫ ∞
x

λd(y)u(t, y)κd(x , y)dy︸ ︷︷ ︸
Division (loss)

This defines a semi-group P(t) on L1. We will use

Theorem (Pichor and Rudnicki JM2A 2000)
If P(t) is a stochastic semigroup : ‖P(t)u‖1 = ‖u‖1, is partially
integral, e.g. there exists t0 > 0 and p s.t.∫ ∞

0

∫ ∞
0

p(x , y) dy dx > 0 and P(t0)u(x) ≥
∫ ∞

0

p(x , y)u(y) dy

and if P(t) possess a unique invariant density, then P(t) is
asymptotically stable.
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The Master equation may be rewritten as

du

dt
= −λu + K (λu), (1)

where

Kv(x) =

∫ x

0

λb(y)

λb(y) + λd(y)
u(t, y)κb(x , y)dy︸ ︷︷ ︸

Bursting (gain)

+

∫ ∞
x

λd(y)

λb(y) + λd(y)
u(t, y)κd(x , y)dy︸ ︷︷ ︸

Division (loss)

If K has a strictly positive fixed point in L1, then P(t) is stochastic
([Mackey et al. SIAM 13]). Note also that any stationary solution
u∗ of (1) must satisfy the flux condition∫ x

0

(∫ ∞
x

κb(z , y)dz
)
λb(y)u∗(y)dy︸ ︷︷ ︸

“ from x− to x+ ”

=

∫ ∞
x

(∫ x

0

κd(z , y)dz
)
λd(y)u∗(y)dy︸ ︷︷ ︸

“ from x+ to x− ”
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We consider the separable case

κb(x , y) = −K ′b(x)

Kb(y)
, x > y , κd(x , y) =

K ′d(x)

Kd(y)
, x < y .

where Kb(y)→ 0 as y →∞ and K (y)→ 0 as y → 0. We define

G (x) =
K ′d(x)

Kd(x)
− K ′b(x)

Kb(x)
, Qb(x) =

∫ x

x

λb(y)

λ(y)
G (y)dy .

Theorem
Suppose that

cb :=

∫ ∞
0

Kb(x)

λ(x)
G (x)e−Qb(x)dx <∞,

∫ ∞
0

Kb(x)G (x)e−Qb(x)dx <∞

Then the semigroup {P(t)}t≥0 is stochastic and is asymptotically
stable, with

u∗(x) =
1

cb

Kb(x)

λ(x)
G (x)e−Qb(x)
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du∗

dx
=
[
− λ′(x)

λ(x)
+

K ′b(x)

Kb(x)
+

G ′(x)

G (x)
+
λb(x)

λ(x)
G (x)

]
u∗(x)
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I This theorem can be used to show asymptotic convergence for
“non-trivial” parameters function.

In particular, the growth-division model

∂u(t, x)

∂t
+

∂g(x)u(t, x)

∂x︸ ︷︷ ︸
Continuous production

= −λd(x)u(t, x) +

∫ ∞
x

λd(y)u(t, y)
K ′d(x)

Kd(y)
dy︸ ︷︷ ︸

Division (loss)

,

converges for
λd(x) = αxβ−1 + xβ+1

g(x) = xβ

Kd(x) = x ,

for 0 ≤ β ≤ 1, 0 < α < 1, towards

u∗(x) =
Kd(x)

cg(x)
e
−

∫ x
x̄
λd (y)

g(y)
dy
,

but
λd
g

/∈ L1
0
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Absorbing probabilities / Mean waiting time : We can also
solve (analytically) the backward equation, Af (x) = A(x),

Af (x) = λb(x)
(∫ ∞

x
(f (y)− f (x))κb(y , x)dy

)
︸ ︷︷ ︸

Bursting (gain)

+ λd(x)
(∫ x

0
(f (y)− f (x))κd(y , x)dy

)
︸ ︷︷ ︸

Division (loss)

.

If
τ+
z := inf{t ≥ 0,Xt ≥ z},

then
V+
z (y) = Ey

[
τ+
z

]
is solution of {

AV+
z (y) = −1, y < z ,

V+
z (y) = 0, y ≥ z .

(2)

13/23



Biology Single cell model Population model

The mean waiting time is non-monotonic with respect to the
bursting property.
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The mean waiting time is also affected by the asymmetry of the
division.
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We wish to investigate (macroscopic) population models with
nonlinear feedback on the division rate

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0

λb(y)u(t, y)κb(x , y)dy︸ ︷︷ ︸
Bursting

−λd(x ,S)u(t, x) + 2

∫ ∞
x

λd(y ,S)u(t, y)κd(x , y)dy︸ ︷︷ ︸
Division

−µ(x)u(t, x)︸ ︷︷ ︸
Cell death

with κd symmetric (total molecular content preserved at division)
the feeback strenght is given by

S(t) =

∫ ∞
0

ψ(x)u(t, x)dx , ψ(x) = 1{x≥x0}.

We will restrict to the case of constant division and death rates, so
that

d

dt

(∫ ∞
0

u(t, x)dx
)

= (λ(S)− µ)

∫ ∞
0

u(t, x)dx
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If all cells participate to the regulation of the division rate
(x0 = 0), we have immediately

Theorem
Let κb(x , y) = −K ′b(x)

Kb(y) , and κd(x , y) =
K ′d (x)
Kd (y) . We assume

cb :=

∫ ∞
0

Kb(x)

λ(x)
G (x)e−Qb(x)dx <∞,

∫ ∞
0

Kb(x)G (x)e−Qb(x)dx <∞

and that S 7→ λd(S) is continuous monotonically decreasing, with
λd(0) > µ and limS→∞ λd(S) < µ, then, for any initial density u0,
u(t, x) converges as t →∞ in L1 towards

λ−1
d (µ)u∗.
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In the case x0 > 0, we can not prove convergence towards a
steady-state, and numerical results indicate the presence of
oscillation through a Hopf-bifurcation.

Remark
We can however prove persistance results in certain cases

0 < inf
t≥0

∫ ∞
0

u(t, x)dx ≤ sup
t≥0

∫ ∞
0

u(t, x)dx <∞
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Numerical results

∂u(t, x)

∂t
+
∂g(x)u(t, x)

∂x︸ ︷︷ ︸
Continuous production

= −λd (x, S)u(t, x) + 2

∫ ∞
x

λd (y, S)u(t, y)κd (x, y)dy︸ ︷︷ ︸
Division

−µ(x)u(t, x)︸ ︷︷ ︸
Cell death
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Numerical results indicate a Hopf bifurcation

∂u(t, x)

∂t
+
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Continuous production

= −λd (x, S)u(t, x) + 2

∫ ∞
x

λd (y, S)u(t, y)κd (x, y)dy︸ ︷︷ ︸
Division

−µ(x)u(t, x)︸ ︷︷ ︸
Cell death
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The bursting property shifts the Hopf bifurcation

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0
λb(y)u(t, y)κb(x, y)dy︸ ︷︷ ︸

Bursting

−λd (x, S)u(t, x) + 2

∫ ∞
x

λd (y, S)u(t, y)κd (x, y)dy︸ ︷︷ ︸
Division

−µ(x)u(t, x)︸ ︷︷ ︸
Cell death

with µ = 1, λd(x , S) ≡ 10
1+0.1∗S , Kd(x) = x , x0 = 1,

Kb(x) = e−x/b, λb(x) ≡ λb

bλb\λb 100 10 1 0.1

0.6 + + + +

0.5 - + + +

0.4 - - + +

0.1 - - - +

Table : +=Asymptotic convergence towards steady state - = oscillation
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The asymmetry at division also shifts the Hopf bifurcation

∂u(t, x)

∂t
+
∂g(x)u(t, x)

∂x︸ ︷︷ ︸
Continuous production

= −λd (x, S)u(t, x) + 2

∫ ∞
x

λd (y, S)u(t, y)κd (x, y)dy︸ ︷︷ ︸
Division

−µ(x)u(t, x)︸ ︷︷ ︸
Cell death

with µ = 1, λd(x , S) ≡ 10
1+0.1∗S ,

κd(·, x) = 0.5N (xp, xp(1− p)) + 0.5N (x(1− p), xp(1− p)),
x0 = 1, g(x) ≡ g

g\p 0.5 0.4 0.2 0.1 0.01

0.7 - + + + +

0.6 - - + + +

0.5 - - - - +

Table : +=Asymptotic convergence towards steady state - = oscillation
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Upon an assumption of separable bursting and division kernel,
we found a complete characterisation of the single cell model :

I Criteria for convergence towards steady-state, and analytical
solution (and bifurcation)

I Mean waiting time to reach a given level

Such study can be used to infer the burst rate and/or division
rate in a dividing cell population.
While looking at the nonlinear population model, the bursting
properties and division mechanism are shown to have a profound
impact on homeostasis that will be further investigated.

Thank you for your attention !
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