

Towards nonlinear cell population model structured by molecular content

Romain Yvinec, M. Mackey, M. Tyran-Kamińska, A. Marciniak-Czochra

▶ To cite this version:

Romain Yvinec, M. Mackey, M. Tyran-Kamińska, A. Marciniak-Czochra. Towards nonlinear cell population model structured by molecular content. 9. European Conference on Mathematical and Theoretical Biology - ECMTB14, Chalmers University of Technology. SWE., Jun 2014, Göteborg, Sweden. hal-02797850

HAL Id: hal-02797850 https://hal.inrae.fr/hal-02797850

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards nonlinear cell population model structured by molecular content

Romain Yvinec

Inra Tours - Match Heidelberg

Joint work with M. Mackey, M. Tyran-Kaminska, A. Marciniak-Czochra

Stochasticity in Molecular biology, links with cell fate

Single cell model : Bursting and Division as Jump Processes

Nonlinear (macroscopic) population model Theoretical results Numerical results

Stochasticity in Molecular biology, links with cell fate

Single cell model : Bursting and Division as Jump Processes

Nonlinear (macroscopic) population model

Stochasticity in molecular biology

 Trajectories on single cells : bursting and repartition at division are major sources of randomness in gene expression.

[Golding et al. Cell 2005, Kondev Physics Today 2014] on a

A typical example linking gene expression to cell fate

The antagonism between regulatory proteins (Transcription Factor) Gata-1/PU.1 in heamatopoietic progenitor

[Enver et al. Stem Cell 2009]

Cell fate explained by a deterministic dynamical system

The antagonism Gata-1/PU1, modeled by ODE

$$\frac{d[G]}{dt} = a_1 \frac{[G]^n}{\theta_{a_1}^n + [G]^n} + b_1 \frac{\theta_{b_1}^n}{\theta_{b_1}^n + [P]^n} - k_1[G]$$
$$\frac{d[P]}{dt} = a_2 \frac{[P]^n}{\theta_{a_2}^n + [P]^n} + b_2 \frac{\theta_{b_2}^n}{\theta_{b_2}^n + [G]^n} - k_2[P]$$

Cell fate "=" attractor of a dynamical system.

[Duff et al. JMB 2012]

Reversibility of the gene expresion profile (and cell fate?) in *in vitro* cell culture experiment

[Chang et al. Nature Letters 08]

[Pina et al. Nature cell bio. 2012]

Stochasticity in Molecular biology, links with cell fate

Single cell model : Bursting and Division as Jump Processes

Nonlinear (macroscopic) population model

We define a pure-jump process $(X(t))_{t\geq 0}$ on \mathbb{R}^*_+ with two different transitions :

- Bursting at rate $\lambda_b(x)$ and jump distribution $\kappa_b(y, x) \mathbf{1}_{\{y>x\}} dy$
- Division at rate $\lambda_d(x)$ and jump distribution $\kappa_d(y, x) \mathbf{1}_{\{y < x\}} dy$

Pathwise construction : Let $(U_n, V_n)_{n \ge 1}$ be i.i.d $\propto \mathbb{U}(0, 1)$,

• Time step : $T_n = T_{n-1} + (1/\lambda(X_{n-1})) \ln(1/U_{n-1})$, where

$$\lambda(x) = \lambda_b(x) + \lambda_d(x).$$

State step : X_n = F⁻¹_κ(V_n, X_{n-1}), where F_κ(y, x) is the cum. dist. fonct. associated to

$$\kappa(y,x) = \underbrace{\frac{\lambda_b(x)}{\lambda_b(x) + \lambda_d(x)} \kappa_b(y,x) \mathbf{1}_{\{y > x\}}}_{\text{Bursting (gain)}} + \underbrace{\frac{\lambda_d(x)}{\lambda_b(x) + \lambda_d(x)} \kappa_d(y,x) \mathbf{1}_{\{y < x\}}}_{\text{Division (loss)}}.$$

$$\blacktriangleright X(t) = X_{n-1} \text{ for all } T_{n-1} \leq t < T_n.$$

Example of sample paths

20

This model is well-defined up to the explosion time,

$$T_{\infty} = \lim_{n \to \infty} T_n$$

Remark

Non-explosion + irreducibility + Existence of a unique invariant measure \Rightarrow ergodicity.

Lyapounov-fonction strategy (see [Meyn and Tweedie 93]) can provide sufficient criteria.

• An analogous study on the set of probability density $(\int u = 1)$.

$$\frac{\partial u(t,x)}{\partial t} = \underbrace{-\lambda_b(x)u(t,x) + \int_0^x \lambda_b(y)u(t,y)\kappa_b(x,y)dy}_{\text{Bursting (gain)}} \underbrace{-\lambda_d(x)u(t,x) + \int_x^\infty \lambda_d(y)u(t,y)\kappa_d(x,y)dy}_{\text{Division (loss)}}$$

This defines a semi-group P(t) on L^1 . We will use

Theorem (Pichor and Rudnicki JM2A 2000) If P(t) is a stochastic semigroup : $||P(t)u||_1 = ||u||_1$, is partially integral, e.g. there exists $t_0 > 0$ and p s.t.

$$\int_0^\infty \int_0^\infty p(x,y)\,dy\,dx>0 \quad \text{and} \quad P(t_0)u(x)\geq \int_0^\infty p(x,y)u(y)\,dy$$

and if P(t) possess a unique invariant density, then P(t) is asymptotically stable.

The Master equation may be rewritten as

$$\frac{du}{dt} = -\lambda u + K(\lambda u), \tag{1}$$

where

$$Kv(x) = \underbrace{\int_{0}^{x} \frac{\lambda_{b}(y)}{\lambda_{b}(y) + \lambda_{d}(y)} u(t, y)\kappa_{b}(x, y)dy}_{\text{Bursting (gain)}} + \underbrace{\int_{x}^{\infty} \frac{\lambda_{d}(y)}{\lambda_{b}(y) + \lambda_{d}(y)} u(t, y)\kappa_{d}(x, y)dy}_{\text{Division (loss)}}$$

If K has a strictly positive fixed point in L^1 , then P(t) is stochastic ([Mackey et al. SIAM 13]). Note also that any stationary solution u^* of (1) must satisfy the flux condition

$$\underbrace{\int_{0}^{x} \left(\int_{x}^{\infty} \kappa_{b}(z,y) dz\right) \lambda_{b}(y) u^{*}(y) dy}_{\text{"from } x^{-} \text{ to } x^{+} \text{"}} = \underbrace{\int_{x}^{\infty} \left(\int_{0}^{x} \kappa_{d}(z,y) dz\right) \lambda_{d}(y) u^{*}(y) dy}_{\text{"from } x^{+} \text{ to } x^{-} \text{"}}$$

We consider the separable case

$$\kappa_b(x,y) = -rac{K_b'(x)}{K_b(y)}, \quad x > y, \quad \kappa_d(x,y) = rac{K_d'(x)}{K_d(y)}, \quad x < y.$$

where $K_b(y) \to 0$ as $y \to \infty$ and $K(y) \to 0$ as $y \to 0$. We define

$$G(x) = \frac{K'_d(x)}{K_d(x)} - \frac{K'_b(x)}{K_b(x)}, \quad Q_b(x) = \int_x^{\overline{x}} \frac{\lambda_b(y)}{\lambda(y)} G(y) dy.$$

Theorem

Suppose that

$$c_b := \int_0^\infty \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)} dx < \infty, \quad \int_0^\infty K_b(x) G(x) e^{-Q_b(x)} dx < \infty$$

Then the semigroup $\{P(t)\}_{t\geq 0}$ is stochastic and is asymptotically stable, with

$$u_*(x) = \frac{1}{c_b} \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)}$$

・ロ・・聞・・聞・・聞・・ 聞・ ろんの

$$\frac{du^*}{dx} = \Big[-\frac{\lambda'(x)}{\lambda(x)} + \frac{K_b'(x)}{K_b(x)} + \frac{G'(x)}{G(x)} + \frac{\lambda_b(x)}{\lambda(x)}G(x) \Big] u^*(x)$$

 $\mathcal{K}_b(x) = e^{-x/b}$, $\lambda_b(x) = \lambda_b \frac{1+x^n}{\Lambda+x^n}$, $\mathcal{K}_d(x) = x$, $\lambda_d(x) = 1$.

< ∃⇒

æ

This theorem can be used to show asymptotic convergence for "non-trivial" parameters function.

In particular, the growth-division model

$$\frac{\partial u(t,x)}{\partial t} + \underbrace{\frac{\partial g(x)u(t,x)}{\partial x}}_{\text{Continuous production}} = \underbrace{-\lambda_d(x)u(t,x) + \int_x^\infty \lambda_d(y)u(t,y)\frac{K_d'(x)}{K_d(y)}dy}_{\text{Division (loss)}},$$

converges for

$$\lambda_d(x) = \alpha x^{\beta-1} + x^{\beta+1}$$
$$g(x) = x^{\beta}$$
$$K_d(x) = x,$$
for $0 \le \beta \le 1, \ 0 < \alpha < 1$, towards
$$u_*(x) = \frac{K_d(x)}{cg(x)} e^{-\int_{\bar{x}}^x \frac{\lambda_d(y)}{g(y)} dy}$$

but

$$\frac{\lambda_d}{g} \notin L^1_0$$

個 ト イヨト イヨト

Absorbing probabilities / Mean waiting time : We can also solve (analytically) the backward equation, Af(x) = A(x),

$$\mathcal{A}f(x) = \underbrace{\lambda_b(x) \Big(\int_x^{\infty} (f(y) - f(x)) \kappa_b(y, x) dy \Big)}_{\text{Bursting (gain)}} + \underbrace{\lambda_d(x) \Big(\int_0^x (f(y) - f(x)) \kappa_d(y, x) dy \Big)}_{\text{Division (loss)}}.$$

lf

$$\tau_z^+ := \inf\{t \ge 0, X_t \ge z\},\$$

then

$$V_z^+(y) = \mathbb{E}_y[\tau_z^+]$$

is solution of

$$\begin{cases} \mathcal{A}V_z^+(y) = -1, \quad y < z, \\ V_z^+(y) = 0, \quad y \ge z. \end{cases}$$
(2)

The mean waiting time is non-monotonic with respect to the bursting property.

$$\lambda_d \equiv$$
 2, $K_d(x) = x$, $\lambda_b(x) \equiv \lambda_b$, $K_b(x) = e^{-x/b}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = • • ○ <

The mean waiting time is also affected by the asymmetry of the division.

$$\lambda_d(x) \equiv 2, \ \kappa_d(\cdot, x) = 0.5 \mathcal{N}(xp, xp(1-p)) + 0.5 \mathcal{N}(x(1-p), xp(1-p)), \ \kappa_b(x) = e^{-x/b}, \ b\lambda_b = 2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stochasticity in Molecular biology, links with cell fate

Single cell model : Bursting and Division as Jump Processes

Nonlinear (macroscopic) population model

Theoretical results Numerical results We wish to investigate (macroscopic) population models with nonlinear feedback on the division rate

$$\frac{\partial u(t,x)}{\partial t} = \underbrace{-\lambda_b(x)u(t,x) + \int_0^x \lambda_b(y)u(t,y)\kappa_b(x,y)dy}_{\text{Bursting}}$$

$$\underbrace{-\lambda_d(x, \mathbf{S})u(t,x) + 2\int_x^\infty \lambda_d(y, \mathbf{S})u(t,y)\kappa_d(x,y)dy}_{\text{Division}} - \underbrace{\mu(x)u(t,x)}_{\text{Cell death}}$$

with κ_d symmetric (total molecular content preserved at division) the feeback strength is given by

$$S(t) = \int_0^\infty \psi(x)u(t,x)dx, \quad \psi(x) = \mathbf{1}_{\{x \ge x_0\}}.$$

We will restrict to the case of *constant* division and death rates, so that

$$\frac{d}{dt}\Big(\int_0^\infty u(t,x)dx\Big) = (\lambda(S) - \mu)\int_0^\infty u(t,x)dx$$

If all cells participate to the regulation of the division rate $(x_0 = 0)$, we have immediately

Theorem

Let
$$\kappa_b(x,y) = -\frac{\kappa_b'(x)}{\kappa_b(y)}$$
, and $\kappa_d(x,y) = \frac{\kappa_d'(x)}{\kappa_d(y)}$. We assume

$$c_b := \int_0^\infty \frac{K_b(x)}{\lambda(x)} G(x) e^{-Q_b(x)} dx < \infty, \quad \int_0^\infty K_b(x) G(x) e^{-Q_b(x)} dx < \infty$$

and that $S \mapsto \lambda_d(S)$ is continuous monotonically decreasing, with $\lambda_d(0) > \mu$ and $\lim_{S \to \infty} \lambda_d(S) < \mu$, then, for any initial density u_0 , u(t, x) converges as $t \to \infty$ in L^1 towards

$$\lambda_d^{-1}(\mu)u^*.$$

・ロト・日本・日本・日本・日本・日本

In the case $x_0 > 0$, we can not prove convergence towards a steady-state, and numerical results indicate the presence of oscillation through a Hopf-bifurcation.

Remark

We can however prove persistance results in certain cases

$$0 < \inf_{t \ge 0} \int_0^\infty u(t, x) dx \le \sup_{t \ge 0} \int_0^\infty u(t, x) dx < \infty$$

Numerical results

$$\mu = 1$$
, $\lambda_d(x, S) \equiv \frac{10}{1+0.1*S}$, $K_d(x) = x$, $x_0 = 1$, $g(x) \equiv 0.6$

Numerical results indicate a Hopf bifurcation

$$\mu = 1$$
, $\lambda_d(x, S) \equiv \frac{10}{1+0.1*S}$, $K_d(x) = x$, $x_0 = 1$, $g(x) \equiv 0.5$

The bursting property shifts the Hopf bifurcation

$$\frac{\partial u(t,x)}{\partial t} = \underbrace{-\lambda_b(x)u(t,x) + \int_0^x \lambda_b(y)u(t,y)\kappa_b(x,y)dy}_{\text{Bursting}} \underbrace{-\lambda_d(x,S)u(t,x) + 2\int_x^\infty \lambda_d(y,S)u(t,y)\kappa_d(x,y)dy}_{\text{Division}} - \underbrace{\frac{\mu(x)u}{Cell \, d}}_{\text{Cell } d}$$
with $\mu = 1$, $\lambda_d(x,S) \equiv \frac{10}{1+0.1*S}$, $K_d(x) = x$, $x_0 = 1$, $K_b(x) = e^{-x/b}$, $\lambda_b(x) \equiv \lambda_b$

$$\underbrace{\frac{b\lambda_b \setminus \lambda_b \quad 100 \quad 10 \quad 1 \quad 0.1}{0.6 \quad + \quad + \quad + \quad +}}_{0.5 \quad - \quad + \quad + \quad +} \underbrace{\frac{0.4 \quad - \quad - \quad + \quad +}}_{0.1 \quad - \quad - \quad - \quad +}$$

Table : +=Asymptotic convergence towards steady state - = oscillation

The asymmetry at division also shifts the Hopf bifurcation

$$\frac{\frac{\partial u(t,x)}{\partial t}}{\frac{\partial u(t,x)}{\partial t}} \underbrace{+ \frac{\frac{\partial g(x)u(t,x)}{\partial x}}{\frac{\partial x}{Continuous production}}}_{Continuous production} \underbrace{= -\lambda_d(x,S)u(t,x) + 2\int_x^{\infty} \lambda_d(y,S)u(t,y)\kappa_d(x,y)dy}_{Division} \underbrace{- \frac{\mu(x)u(t,x)}{Cell \, death}}_{Cell \, death}$$
with $\mu = 1$, $\lambda_d(x,S) \equiv \frac{10}{1+0.1*S}$, $\kappa_d(\cdot,x) = 0.5\mathcal{N}(xp,xp(1-p)) + 0.5\mathcal{N}(x(1-p),xp(1-p))$, $x_0 = 1$, $g(x) \equiv g$

$g \setminus p$	0.5	0.4	0.2	0.1	0.01
0.7	-	+	+	+	+
0.6	-	-	+	+	+
0.5	-	-	-	-	+

Table : +=Asymptotic convergence towards steady state - = oscillation

Upon an assumption of **separable bursting and division kernel**, we found a complete characterisation of the single cell model :

- Criteria for convergence towards steady-state, and analytical solution (and bifurcation)
- Mean waiting time to reach a given level

Such study can be used to infer the **burst rate** and/or **division rate** in a dividing cell population.

While looking at the nonlinear population model, the bursting properties and division mechanism are shown to have a profound impact on homeostasis that will be further investigated.

Thank you for your attention !