Much more accurate measurements

The bursting event are well characterized [Yu et al. Science 06] Much more accurate measurements

Trajectories can be analyzed on single cells.

[ Golding et al. Cell 2005, Kondev Physics Today 2014] Much more accurate measurements Bifurcation can be studied on probability distributions.

[ Song et al. Plos CB 2010, Mackey et al. JTB 2011, SIAM 2013] A typical example linking gene expression to cell fate

The antagonism Gata-1/PU.1 in heamatopoietic progenitor [Enver et al. Stem Cell 2009] A typical example linking gene expression to cell fate

The antagonism Gata-1/PU1, modeled by ODE [Duff et al. JMB 2012] A typical example linking gene expression to cell fate We define a pure-jump process (X (t)) t≥0 on R * + with two different transitions :

Bursting at rate λ b (x) and jump distribution κ b (y , x)1 {y >x} dy Division at rate λ d (x) and jump distribution κ d (y , x)1 {y <x} dy Pathwise construction with the sequence (U n , V n ) n≥1 , of i.i.d uniform random variable on (0, 1)

T n = T n-1 -(1/λ(X n-1 )) ln(U n-1 ), where λ(x) = λ b (x) + λ d (x). X n = F -1 K (V n , X n-1 ), where F K (y , x) is the cum. dist. fonct. associated to K (y , x) = λ b (x) λ b (x) + λ d (x) κ b (y , x)1 {y >x} + λ d (x) λ b (x) + λ d (x) κ d (y , x)1 {y <x} . X (t) = X n-1 for all T n-1 ≤ t < T n .
This model is well-defined up to the explosion time,

T ∞ = lim n→∞ T n A well-known sufficient condition for non-explosion (T ∞ = ∞) is given by n≥0 1 λ b (X n ) + λ d (X n ) = ∞.
In particular, this is the case for bounded jump rate.

Another criteria is provided by Lyapounov-fonction strategy (see [Meyn and Tweedie 93]). Let A be the generator of (X (t)) t≥0 ,

Af (x) = λ b (x) ∞ x (f (y ) -f (x))κ b (y , x)dy + λ d (x) x 0 (f (y ) -f (x))κ d (y , x)dy .
If there exists c > 0, V a positive measurable function s.t V (x) → ∞ when x → 0 and x → ∞, V ∈ D(A) and

AV (x) ≤ cV (x), x > 0, then (X (t)) t≥0 is non-explosif. The fonction V (x) = x -γ 1 {x≤1} + x α 1 {x>1} is suitable if there exists A, B, β, δ, κ b (y , x) = ∞ y κ b (z, x)dz ≤ c(x/y ) β , β > α κ d (y , x) = y 0 κ d (z, x)dz ≤ c(y /x) δ , δ > γ λ d (x) < Aλ b (x) + B as x → 0 and lim x→0 λ b (x)x δ 1 x y -δ κ b (y , x)dy < ∞ λ b (x) < Aλ d (x) + B as x → ∞ and lim x→∞ λ d (x)x -α x 1 y α κ d (y , x)dy < ∞
Remark "Similar" condition holds for ergodicity.

Remark

Non-explosion + irreductibility + Existence of a unique invariant measure ⇒ ergodicity.

An analogous study on the set of probability density ( u = 1).

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y )u(t, y )κ b (x, y )dy -λ d (x)u(t, x) + ∞ x λ d (y )u(t, y )κ d (x, y )dy
This defines a semi-group P(t) on L 1 . We will use

Theorem (Pichor and Rudnicki JM2A 2000)

If P(t) is a stochastic semigroup : P(t)u 1 = u 1 , is partially integral : there exists t 0 > 0 and p s.t.

∞ 0 ∞ 0 p(x, y ) dy dx > 0 and P(t 0 )u(x) ≥ ∞ 0 p(x, y )u(y ) dy
and possess a unique invariant density, then P(t) is asymptotically stable.

The Master equation may be rewritten as

du dt = -λu + K (λu), (1) 
where

Kv (x) = x 0 λ b (y ) λ b (y ) + λ d (y ) u(t, y )κ b (x, y )dy + ∞ x λ d (y ) λ b (y ) + λ d (y ) u(t, y )κ d (x, y )dy
If K has a strictly positive fixed point in L 1 , then P(t) is stochastic ([Mackey et al. SIAM 13]). Note also that any stationary solution u * of (1) must satisfy the flux condition

x 0 κ b (x, y )λ b (y )u * (y )dy = ∞ x κ d (x, y )λ d (y )u * (y )dy 13/30
We consider the separable case

κ b (x, y ) = - K b (x) K b (y ) , x > y , κ d (x, y ) = K d (x) K d (y ) , x < y .
where K b (y ) → 0 as y → ∞ and K (y ) → 0 as y → 0. We define

G (x) = K d (x) K d (x) - K b (x) K b (x) , Q b (x) = x x λ b (y ) λ(y ) G (y )dy . Theorem Suppose that c b := ∞ 0 K b (x) λ(x) G (x)e -Q b (x) dx < ∞, ∞ 0 K b (x)G (x)e -Q b (x) dx < ∞
Then the semigroup {P(t)} t≥0 is stochastic and is asymptotically stable, with 

u * (x) = 1 c b K b (x) λ(x) G (x)e -Q b (x) du * dx = - λ (x) λ(x) + K b (x) K b (x) + G (x) G (x) + λ b (x) λ(x) G (x) u * (x)
x Steady-state profile

λ b =1, b=10 λ b =5, b=2 λ b =10, b=1 λ b =100, b=0.1 K b (x) = e -x/b , λ b (x) = λ b 1+x n Λ+x n , K d (x) = x, λ d (x) = 1.
This theorem can be used to show asymptotic convergence for "non-trivial" parameters function.

In particular, the growth-division model

∂u(t, x) ∂t + ∂g (x)u(t, x) ∂x = -λ d (x)u(t, x) + ∞ x λ d (y )u(t, y ) K d (x) K d (y ) dy , converges for λ d (x) = αx β-1 + x β+1 g (x) = x β K d (x) = x, for 0 ≤ β ≤ 1, 0 < α < 1, towards u * (x) = K d (x) cg (x) e -x x λ d (y ) g (y ) dy , but λ d g / ∈ L 1 0 16/30
Absorbing probabilities/ Mean waiting time : We can also solve (analytically) the backward equation, 

Af (x) = A(x). If τ u,z := inf{t ≥ 0, X t ≥ z}, then V u,z (y ) = E y τ u,z is solution of AV u,z (y ) = -1, y < z, V u,z (y ) = 0, y ≥ z. (2 
K b (x) = e -x/b , λ b (x) = λ b 1+x n Λ+x n , K d (x) = x, λ d (x) ≡ 1.
K b (x) = e -x/b , λ b (x) = λ b 1+x n Λ+x n , K d (x) = x, λ d (x) ≡ 1.
The mean waiting time is non-monotonic with respect to the bursting property. 

λb =1 b λb =2 b λb =3 b λb =4 b λb =5 b λb =10 λ d ≡ 2, K d (x) = x, λ b (x) ≡ λ b , K b (x) = e -x/b 20/30
The mean waiting time is also affected by the asymmetry of the division. 

λ d (x) ≡ 2, K d (x) = 0.5N (xp, xp(1 -p)) + 0.5N (x(1 -p), xp(1 -p)), K b (x) = e -x/b , bλ b = 2
We wish to investigate (macroscopic) population models with nonlinear feedback on the division rate

∂u(t, x) ∂t = -λ b (x)u(t, x) + x 0 λ b (y )u(t, y )κ b (x, y )dy -λ d (x, S)u(t, x) + 2 ∞ x λ d (y , S)u(t, y )κ d (x, y )dy -µ(x)u(t, x)
with κ d symmetric (total molecular content preserved at division) the feeback strenght is given by

S(t) = ∞ 0 ψ(x)u(t, x)dx, ψ(x) = 1 {x≥x 0 } .
We will restrict to the case of constant division and death rates, so that d dt

∞ 0 u(t, x)dx = (λ(S) -µ) ∞ 0 u(t, x)dx
If all cells participate to the regulation of the division rate (x 0 = 0), we have immediately y ) , and κ d (x, y ) = y ) . We assume

Theorem Let κ b (x, y ) = - K b (x) K b (
K d (x) K d (
c b := ∞ 0 K b (x) λ(x) G (x)e -Q b (x) dx < ∞, ∞ 0 K b (x)G (x)e -Q b (x) dx < ∞
and that S → λ d (S) is continuous monotonically decreasing, with λ d (0) > µ and lim S→∞ λ d (S) < µ, then, for any initial density u 0 , u(t, x) converges as t → ∞ in L 1 towards

λ -1 d (µ)u * .
In the case x 0 > 0, we can only prove a persistance result for the equation

∂u(t, x) ∂t + ∂g (x)u(t, x) ∂x = -λ d (S)u(t, x) + 2 ∞ x λ d (S)u(t, y )κ d (x, y )dy -µu(t, x)

Theorem

With g smooth, bounded and bounded away from 0, starting with a positive u 0 ∈ L 1 , we have

0 < inf t≥0 ∞ 0 u(t, x)dx ≤ sup t≥0 ∞ 0 u(t, x)dx < ∞ 0 < inf t≥0 S(t) ≤ sup t≥0 S(t) < ∞
Démonstration.

We define v (t, x) := e t 0 (µ-λ d (S(s)))ds u(t, x), so that

∂v (t, x) ∂t + ∂g (x)v (t, x) ∂x = -2λ d (S)v (t, x)+2λ d (S) ∞ x v (t, y )κ d (x, y )dy
We use a coupling strategy to show that

∞ x 0 v (t, x)dx ≥ c(1 + ε(t))
with ε(t) → 0 (at exponential speed). For this, we use the coupling 

Af (x, y ) = g (x)f (x) + g (y )f (y ) + 2λ d (S(t)) 1 0 (f (xz, yz) -f (x, y ))dz + 2( λ d ∞ -λ d (S(t))) 1 0 (f (xz, y ) -f (x, y ))dz . Then, ∞ x 0 v (t, x)dx ≥ ∞ x 0 w (t, x)dx where ∂w (t, x) ∂t + ∂g (x)w (t, x) ∂x = -2 λ d ∞ w (t, x)+2 λ d ∞ ∞ x w (t, y )κ d (x,

[
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  y )dy which converges as t → ∞ due to hypotheses on g , κ d .λ d (x, S) ≡ 10 1+0.1 * S , K d (x) = x, x 0 = 1, g (x) ≡ 0.6 27/30The bursting property shifts the Hopf bifurcation : with µ = 1,λ d (x, S) ≡ 10 1+0.1 * S , K d (x) = x, x 0 = 1, K b (x) = e -x/b , λ b (x) ≡ λ b bλ b \λ b 100 10 1The asymmetry at division also shifts the Hopf bifurcation : withµ = 1, λ d (x, S) ≡ 10 1+0.1 * S , κ d (•, x) = 0.5N (xp, xp(1 -p)) + 0.5N (x(1 -p), xp(1 -p)),x 0 = 1, g (x) ≡ g g \p 0.5 0.4 0.2 0.1

Outline