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Single cell Population model Biology Jump process

Stochasticity in molecular biology

[Eldar and Elowitz Nature 2010]
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Single cell Population model Biology Jump process

Much more accurate measurements

I The bursting event are well characterized

[Yu et al. Science 06]

2/30



Single cell Population model Biology Jump process

Much more accurate measurements

I Trajectories can be analyzed on single cells.

[Golding et al. Cell 2005, Kondev Physics Today 2014]
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Single cell Population model Biology Jump process

Much more accurate measurements

I Bifurcation can be studied on probability distributions.

[Song et al. Plos CB 2010, Mackey et al. JTB 2011, SIAM 2013]
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Single cell Population model Biology Jump process

A typical example linking gene expression to cell fate

The antagonism Gata-1/PU.1 in
heamatopoietic progenitor

[Enver et al. Stem Cell 2009]
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Single cell Population model Biology Jump process

A typical example linking gene expression to cell fate

The antagonism Gata-1/PU1,
modeled by ODE

[Duff et al. JMB 2012]
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A typical example linking gene expression to cell fate

[Chang et al. Nature Letters 08]
[Pina et al. Nature cell bio. 2012]
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Single cell Population model Biology Jump process

We define a pure-jump process (X (t))t≥0 on R∗+ with two different
transitions :

I Bursting at rate λb(x) and jump distribution κb(y , x)1{y>x}dy

I Division at rate λd(x) and jump distribution κd(y , x)1{y<x}dy

Pathwise construction with the sequence (Un,Vn)n≥1, of i.i.d
uniform random variable on (0, 1)

I Tn = Tn−1 − (1/λ(Xn−1)) ln(Un−1), where

λ(x) = λb(x) + λd(x).

I Xn = F−1
K (Vn,Xn−1), where FK (y , x) is the cum. dist. fonct.

associated to

K (y , x) =
λb(x)

λb(x) + λd(x)
κb(y , x)1{y>x}+

λd(x)

λb(x) + λd(x)
κd(y , x)1{y<x}.

I X (t) = Xn−1 for all Tn−1 ≤ t < Tn.
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Single cell Population model Biology Jump process

This model is well-defined up to the explosion time,

T∞ = lim
n→∞

Tn

A well-known sufficient condition for non-explosion (T∞ =∞) is
given by ∑

n≥0

1

λb(Xn) + λd(Xn)
=∞.

In particular, this is the case for bounded jump rate.
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Single cell Population model Biology Jump process

Another criteria is provided by Lyapounov-fonction strategy (see
[Meyn and Tweedie 93]). Let A be the generator of (X (t))t≥0,

Af (x) = λb(x)
(∫ ∞

x
(f (y)− f (x))κb(y , x)dy

)
+ λd(x)

(∫ x

0
(f (y)− f (x))κd(y , x)dy

)
.

If there exists c > 0, V a positive measurable function s.t
V (x)→∞ when x → 0 and x →∞, V ∈ D(A) and

AV (x) ≤ cV (x), x > 0,

then (X (t))t≥0 is non-explosif.
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Single cell Population model Biology Jump process

The fonction V (x) = x−γ1{x≤1} + xα1{x>1} is suitable if there
exists A,B, β, δ,

I κb(y , x) =
∫∞
y κb(z , x)dz ≤ c(x/y)β, β > α

I κd(y , x) =
∫ y

0 κd(z , x)dz ≤ c(y/x)δ, δ > γ
I λd(x) < Aλb(x) + B as x → 0 and

lim
x→0

λb(x)xδ
∫ 1

x
y−δκb(y , x)dy <∞

I λb(x) < Aλd(x) + B as x →∞ and

lim
x→∞

λd(x)x−α
∫ x

1
yακd(y , x)dy <∞

Remark
“Similar” condition holds for ergodicity.

Remark
Non-explosion + irreductibility + Existence of a unique invariant
measure ⇒ ergodicity.
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Single cell Population model Biology Jump process

I An analogous study on the set of probability density (
∫
u = 1).

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0

λb(y)u(t, y)κb(x , y)dy

− λd(x)u(t, x) +

∫ ∞

x

λd(y)u(t, y)κd(x , y)dy

This defines a semi-group P(t) on L1. We will use

Theorem (Pichor and Rudnicki JM2A 2000)

If P(t)

I is a stochastic semigroup : ‖P(t)u‖1 = ‖u‖1,
I is partially integral : there exists t0 > 0 and p s.t.∫ ∞

0

∫ ∞

0

p(x , y) dy dx > 0 and P(t0)u(x) ≥
∫ ∞

0

p(x , y)u(y) dy

I and possess a unique invariant density,

then P(t) is asymptotically stable.
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Single cell Population model Biology Jump process

The Master equation may be rewritten as

du

dt
= −λu + K (λu), (1)

where

Kv(x) =

∫ x

0

λb(y)

λb(y) + λd(y)
u(t, y)κb(x , y)dy

+

∫ ∞
x

λd(y)

λb(y) + λd(y)
u(t, y)κd(x , y)dy

If K has a strictly positive fixed point in L1, then P(t) is stochastic
([Mackey et al. SIAM 13]). Note also that any stationary solution
u∗ of (1) must satisfy the flux condition∫ x

0
κb(x , y)λb(y)u∗(y)dy =

∫ ∞
x

κd(x , y)λd(y)u∗(y)dy
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Single cell Population model Biology Jump process

We consider the separable case

κb(x , y) = −K ′
b(x)

Kb(y)
, x > y , κd(x , y) =

K ′
d(x)

Kd(y)
, x < y .

where Kb(y)→ 0 as y →∞ and K (y)→ 0 as y → 0. We define

G (x) =
K ′
d(x)

Kd(x)
− K ′

b(x)

Kb(x)
, Qb(x) =

∫ x

x

λb(y)

λ(y)
G (y)dy .

Theorem
Suppose that

cb :=

∫ ∞
0

Kb(x)

λ(x)
G (x)e−Qb(x)dx <∞,

∫ ∞
0

Kb(x)G (x)e−Qb(x)dx <∞

Then the semigroup {P(t)}t≥0 is stochastic and is asymptotically
stable, with

u∗(x) =
1

cb

Kb(x)

λ(x)
G (x)e−Qb(x)
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Single cell Population model Biology Jump process

du∗

dx
=
[
− λ′(x)

λ(x)
+

K ′b(x)

Kb(x)
+

G ′(x)

G (x)
+
λb(x)

λ(x)
G (x)

]
u∗(x)
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Single cell Population model Biology Jump process

I This theorem can be used to show asymptotic convergence for
“non-trivial” parameters function.

In particular, the growth-division model

∂u(t, x)

∂t
+
∂g(x)u(t, x)

∂x
= −λd(x)u(t, x) +

∫ ∞

x

λd(y)u(t, y)
K ′
d(x)

Kd(y)
dy ,

converges for
λd(x) = αxβ−1 + xβ+1

g(x) = xβ

Kd(x) = x ,

for 0 ≤ β ≤ 1, 0 < α < 1, towards

u∗(x) =
Kd(x)

cg(x)
e
−

∫ x
x̄

λd (y)

g(y)
dy
,

but
λd
g

/∈ L1
0
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Single cell Population model Biology Jump process

Absorbing probabilities/ Mean waiting time : We can also solve
(analytically) the backward equation, Af (x) = A(x).
If

τu,z := inf{t ≥ 0,Xt ≥ z},

then
Vu,z(y) = Ey

[
τu,z
]

is solution of {
AVu,z(y) = −1, y < z ,

Vu,z(y) = 0, y ≥ z .
(2)
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Single cell Population model Biology Jump process
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Single cell Population model Biology Jump process
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Single cell Population model Biology Jump process

The mean waiting time is non-monotonic with respect to the
bursting property.
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Single cell Population model Biology Jump process

The mean waiting time is also affected by the asymmetry of the
division.
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Single cell Population model Theory Numerics

We wish to investigate (macroscopic) population models with
nonlinear feedback on the division rate

∂u(t, x)

∂t
= −λb(x)u(t, x) +

∫ x

0

λb(y)u(t, y)κb(x , y)dy

− λd(x ,S)u(t, x) + 2

∫ ∞

x

λd(y ,S)u(t, y)κd(x , y)dy − µ(x)u(t, x)

with κd symmetric (total molecular content preserved at division)
the feeback strenght is given by

S(t) =

∫ ∞
0

ψ(x)u(t, x)dx , ψ(x) = 1{x≥x0}.

We will restrict to the case of constant division and death rates, so
that

d

dt

(∫ ∞
0

u(t, x)dx
)

= (λ(S)− µ)

∫ ∞
0

u(t, x)dx
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Single cell Population model Theory Numerics

If all cells participate to the regulation of the division rate
(x0 = 0), we have immediately

Theorem
Let κb(x , y) = −K ′

b(x)
Kb(y) , and κd(x , y) =

K ′
d (x)

Kd (y) . We assume

cb :=

∫ ∞
0

Kb(x)

λ(x)
G (x)e−Qb(x)dx <∞,

∫ ∞
0

Kb(x)G (x)e−Qb(x)dx <∞

and that S 7→ λd(S) is continuous monotonically decreasing, with
λd(0) > µ and limS→∞ λd(S) < µ, then, for any initial density u0,
u(t, x) converges as t →∞ in L1 towards

λ−1
d (µ)u∗.
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Single cell Population model Theory Numerics

In the case x0 > 0, we can only prove a persistance result for the
equation

∂u(t, x)

∂t
+
∂g(x)u(t, x)

∂x
=

− λd(S)u(t, x) + 2

∫ ∞

x

λd(S)u(t, y)κd(x , y)dy − µu(t, x)

Theorem
With g smooth, bounded and bounded away from 0, starting with
a positive u0 ∈ L1, we have

0 < inf
t≥0

∫ ∞
0

u(t, x)dx ≤ sup
t≥0

∫ ∞
0

u(t, x)dx <∞

0 < inf
t≥0

S(t) ≤ sup
t≥0

S(t) <∞
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Single cell Population model Theory Numerics

Démonstration.
We define v(t, x) := e

∫ t
0 (µ−λd (S(s)))dsu(t, x), so that

∂v(t, x)

∂t
+
∂g(x)v(t, x)

∂x
= −2λd(S)v(t, x)+2λd(S)

∫ ∞

x

v(t, y)κd(x , y)dy

We use a coupling strategy to show that∫ ∞
x0

v(t, x)dx ≥ c(1 + ε(t))

with ε(t)→ 0 (at exponential speed). For this, we use the coupling

Af (x , y) = g(x)f ′(x) + g(y)f ′(y)

+ 2λd(S(t))
(∫ 1

0
(f (xz , yz)− f (x , y))dz

)
+ 2(‖λd‖∞ − λd(S(t)))

(∫ 1

0
(f (xz , y)− f (x , y))dz

)
.
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Single cell Population model Theory Numerics

Then,
∫∞
x0

v(t, x)dx ≥
∫∞
x0

w(t, x)dx where

∂w(t, x)

∂t
+
∂g(x)w(t, x)

∂x
= −2‖λd‖∞w(t, x)+2‖λd‖∞

∫ ∞

x

w(t, y)κd(x , y)dy

which converges as t →∞ due to hypotheses on g , κd .
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Single cell Population model Theory Numerics

Numerical results
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Single cell Population model Theory Numerics

Numerical results indicate a Hopf bifurcation
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Single cell Population model Theory Numerics

The bursting property shifts the Hopf bifurcation : with µ = 1,
λd(x ,S) ≡ 10

1+0.1∗S , Kd(x) = x , x0 = 1, Kb(x) = e−x/b,
λb(x) ≡ λb

bλb\λb 100 10 1 0.1

0.6 + + + +

0.5 - + + +

0.4 - - + +

0.1 - - - +

Table : +=Asymptotic convergence towards steady state - = oscillation
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Single cell Population model Theory Numerics

The asymmetry at division also shifts the Hopf bifurcation : with
µ = 1, λd(x ,S) ≡ 10

1+0.1∗S ,
κd(·, x) = 0.5N (xp, xp(1− p)) + 0.5N (x(1− p), xp(1− p)),
x0 = 1, g(x) ≡ g

g\p 0.5 0.4 0.2 0.1 0.01

0.7 - + + + +

0.6 - - + + +

0.5 - - - - +

Table : +=Asymptotic convergence towards steady state - = oscillation
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