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Single cell Biology Jump process

Stochasticity in molecular biology
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Single cell Biology Jump process

Much more accurate measurements

» The bursting event are well characterized
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Single cell Biology Jump process

Much more accurate measurements

» Trajectories can be analyzed on single cells.

42 76 98 112 148

TIME (minutes)

[
SIS
h L

S

50 100 150 200 250
TIME (minutes)

SPOT INTENSITY (arbitrary units) [&*
S

o N B o ®
R R

=

[Golding et al. Cell 2005, Kondev Physics Today 2014]
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Single cell Biology Jump process

Much more accurate measurements
» Bifurcation can be studied on probability distributions.

»
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[Song et al. Plos CB 2010, Mackey et al. JTB 2011, SIAM 2013]
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Single cell Biology Jump process

A typical example linking gene expression to cell fate

The antagonism Gata-1/PU.1 in
heamatopoietic progenitor

Myeloid cells (PU.1)

[Enver et al. Stem Cell 2009]
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Single cell Biology Jump process

A typical example linking gene expression to cell fate

The antagonism Gata-1/PUL,
modeled by ODE
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Single cell Biology Jump process

A typical example linking gene expression to cell fate

Experiment Scallo Scathi

Day 16 Day13 Dayi0 Day8 Day5 Day3 Day0

[Chang et al. Nature Letters 08] [Pina et al. Nature cell bio. 2012]
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Single cell Biology Jump process

We define a pure-jump process (X(t)):>0 on R’ with two different
transitions :

> Bursting at rate A\p(x) and jump distribution xp(y, x)1{, . dy
» Division at rate A\g(x) and jump distribution r4(y, x)1{, < dy

Pathwise construction with the sequence (U, Vj)p>1, of i.i.d
uniform random variable on (0, 1)

> Tp=Tpho1— (1/AN(Xn=1)) In(Up—1), where

A(x) = Ap(x) + Aa(x).

> X, = Fic}(Vi, Xo—1), where Fx(y,x) is the cum. dist. fonct.
associated to

)\b(X) )\d(X)

R ¥ e P V)

> X(t) = Xp—q forall Too1 <t < Tp.

e —



Single cell Biology Jump process

This model is well-defined up to the explosion time,

Too = lim T,

n—oo

A well-known sufficient condition for non-explosion (T = 00) is
given by

1
?;0 No(Xa) + Aa(Xa)

In particular, this is the case for bounded jump rate.
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Single cell Biology Jump process

Another criteria is provided by Lyapounov-fonction strategy (see
[Meyn and Tweedie 93]). Let A be the generator of (X(t))¢>o0,

Af) =260 ( [ () = sty X))
20 [ () = )y )y ).

If there exists ¢ > 0, V a positive measurable function s.t
V(x) — oo when x — 0 and x — oo, V € D(A) and

AV(x) < cV(x), x>0,

then (X(t))t>0 is non-explosif.

ws e



The fonction V(x) = x "1,<1y + x*1y,~q) is suitable if there
exists A, B, 3,6,

> Rp(y,x) = fyoo kp(z,x)dz < c(x/y)?, B> a

> Ra(y,x) = [§ ka(z,x)dz < c(y/x)°, 6 >~
> Ag(x) < AXp(x) + B as x — 0 and

1
Iim0 )\b(x)x5/ y_éﬁb(y,x)dy < 00
X— x

> Ap(x) < Alg(x) + B as x — oo and

X—00

lim )\d(x)xo‘/ y*kd(y, x)dy < oo
1

Remark
“Similar” condition holds for ergodicity.

Remark
Non-explosion + irreductibility 4 Existence of a unique invariant
measure = ergodicity.
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Single cell Biology Jump process

» An analogous study on the set of probability density ([ v = 1).

du(t, x)
ot

— - Aau(t ) + [ Aty rs(x, y)dy
() + [ Ayt yalx,)dy

This defines a semi-group P(t) on L!. We will use
Theorem (Pichor and Rudnicki JM2A 2000)
If P(t)

» is a stochastic semigroup : ||P(t)ull1 = ||u

1’
> is partially integral : there exists to > 0 and p s.t.

/0°° /O"" Px.y)dydx >0 and P(to)u(x) > /OOO p(x,y)u(y) dy

» and possess a unique invariant density,

then P(t) is asymptotically stable.
12|



Single cell Biology Jump process

The Master equation may be rewritten as

du

i —Au+ K(\u), (1)

where

[ wly) u o (x
o) = [ S Vel )y

0 Ad(y)
oy (e a0

If K has a strictly positive fixed point in L!, then P(t) is stochastic
([Mackey et al. SIAM 13]). Note also that any stationary solution
u* of (1) must satisfy the flux condition

[e o]

‘[%manmmw:/ R (%, Y)Aa(y)u* () dy
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Single cell Biology Jump process

We consider the separable case

ox) =~ x>y kalx) = S <y,

where Kp(y) — 0 as y — oo and K(y) — 0 as y — 0. We define

6() = i) ) g0 = [ 20 (1)

Theorem
Suppose that

oo K o0

Cp = / b(x) G(x)e~ @™ dx < oo, / Kp(x)G(x)e~ @M dx < oo
0o A() 0

Then the semigroup {P(t)}+>0 is stochastic and is asymptotically

stable, with
i K b (X )

ta(x) = cp A(x)

wa s

G(X)e—Qb(X)




Single cell Biology Jump process

Kp(x) = /P, Xp(x) = Ap325, Ka(x) = x, Ag(x) = 1.

s



Single cell Biology Jump process

» This theorem can be used to show asymptotic convergence for
“non-trivial” parameters function.

In particular, the growth-division model

5“(8tt’x) N ag(x()ai(t,x) = —Ag(X)u(t,x) + /XOO )\d(y)U(taY)llzﬁE;; dy,

converges for
Ad(x) = axP~1 4 xPH1
g(x) =x’
Kq(x) = x,
for0< <1, 0<a<l, towards
x Ag(y)
ux(x) = Kalx) e s EOR
cg(x)
but )
d
g0

w0 e



Single cell Biology Jump process

Absorbing probabilities/ Mean waiting time : We can also solve
(analytically) the backward equation, Af(x) = A(x).
If

Tuz = inf{t >0, X; > z},
then
Viz(y) = E, [T“,Z]

is solution of
AVu,z(y) =-1, y<z,

Viz(y) =0, y>=z

17,



ology Jump process

Steady-state profile
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- 20 -
15
@ o
£ £
Ha 5
5 2
10
=] =]
@3 Il
0 0
£ £
o ol
0 2 . ¢ s o 2 11 0 5 o 5 20 25 30
x z



19/30

Biology Jump process

Steady-state profile

0.05

One stochastic trajectory, A =10

One stochastic trajectory, A,=100

time




Single cell Biology Jump process

The mean waiting time is non-monotonic with respect to the
bursting property.

Mean waiting time to go up from x=1 to z=10 Mean waiting time to go down from z=10 to x=1
. 1ot

o -
i
bR
i
bR

T —

mean time

A =2, Kg(x) = x, Ap(x) = Ap, Kp(x) = e /b

200 e



Single cell Biology Jump process

The mean waiting time is also affected by the asymmetry of the
division.

_Mean waiting time to go up from x=1 to z=10 Mean waiting time to go down from z=10 to x=1
10° = 10 -

mean,. time
mean time

)\d(X) =2,
Ka(x) = 0.5N (xp, xp(1 — p)) + 0.5N (x(1 — p), xp(1 — p)),
Kp(x) = e/b, bAp =2

2130
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Population model Theory Numerics

We wish to investigate (macroscopic) population models with
nonlinear feedback on the division rate

6ugtl:x) = u(t, x) / Ap(y)u(t, y)es(x, y)dy

= Aa(x, S)u(t, x) + 2/ Aa(y, S)u(t, y)ka(x, y)dy — p(x)u(t, x)

X

with k4 symmetric (total molecular content preserved at division)
the feeback strenght is given by

= /000 Y(x)u(t, x)dx,  P(x) = Loy}

We will restrict to the case of constant division and death rates, so

that
(] o) =) = [ ate e

20



Population model Theory Numerics

If all cells participate to the regulation of the division rate
(xo = 0), we have immediately
Theorem KI() K1)
X X
Let kp(x,y) = — Rty and kd(x,y) = R We assume

cp = / Ko(x) G(x)e" @MW dx < oo, / Kp(x)G(x)e~ @M dx < oo
0o A(¥) 0

and that S — X\4(S) is continuous monotonically decreasing, with
Ad(0) > p and lims_,o0 Ad(S) < u, then, for any initial density ug,
u(t,x) converges as t — oo in L' towards

A ().
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Population model Theory Numerics

In the case xp > 0, we can only prove a persistance result for the
equation

du(t,x)  Og(x)u(t,x) _
ot * ox o
— (S)u(t x) + 2 / Na(S)u(t, y)ra(x, y)dy — pult,x)

Theorem
With g smooth, bounded and bounded away from Q, starting with
a positive uy € L1, we have

0< inf/ u(t,x)dx < sup/ u(t,x)dx < oo
0 0

t>0 >0

i <
0< tlgg S(t) < i;g 5(t) < o

20



Population model Theory Numerics

Démonstration. .
We define v(t,x) := elo(#=2a(S(N)ds (1 ) so that

Av(t,x) n dg(x)v(t,x)

o o = —2Xq(S)v(t,x)+224(S) /:O v(t,y)ka(x,y)dy

We use a coupling strategy to show that

/OO v(t,x)dx > c(1 +¢(t))

0

with €(t) — 0 (at exponential speed). For this, we use the coupling

Af(x,y) = g(x)f'(x) + g(y)f'(v)

1
2SO [ (Fz.y2) ~ Flxy)ete)
1
=2l = MO [ (Floxz.y) = Flxy)ez).
1530



Population model Theory Numerics

Then, [ v(t,x)dx > [ w(t,x)dx where

ow(t,x)  Og(x)w(t,x)
ot * Ox

:—2||Ad||ooW(t7X)+2||Adlloo/ w(t, y)ka(x, y)dy

which converges as t — oo due to hypotheses on g, kq.

2620
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Population model

Numerical results

Theory Numerics

time evolution of the normalized profile

time evolution of the S

Number of cells

0 200 400 600 800 1000
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w=1 Ag(x,5) = 1+0 0 o Ki(x)=x, x0 =1, g(x) =05
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Population model Theory Numerics

The bursting property shifts the Hopf bifurcation : with u =1,
Ad(x,S) = 1+0 1*5 Ka(x) = x, xo0 = 1, Kp(x) = e /b,

Ap(X) = Ap
bAp\A\p 100 10 1 0.1
0.6 + + + +
0.5 - + 4+ +
0.4 - -+ +
0.1 - - -+
Table : +=Asymptotic convergence towards steady state - = oscillation

200



Population model Theory Numerics

The asymmetry at division also shifts the Hopf bifurcation : with
H — 1, )\d(X, 5) = 1_"_01%*5,
kd(-, x) = 0.5N (xp, xp(1 — p)) + 0.5N (x(1 — p), xp(1 — p)),

x=1¢gx)=g

g\p 05 04 02 01 0.01

0.7 - + +  + +
0.6 - - +  + +
0.5 - - - - +
Table : +=Asymptotic convergence towards steady state - = oscillation

B



Population model Theory Numerics

Vielen Dank!
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