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Goodwin's deterministic model

Stochastic gene expression model
Analytical results on a reduced model
Ongoing work 1) Taking into account division
Ongoing work 2) Recovering the burst statistics



Goodwin’s model
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Crick (1958) : Central Dogma.
Jacob, Perrin, Sdnchez, Monod (1960) : Operon.
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Goodwin (1965), Griffith (1968), Othmer (1976), Selgrade (1979)...



Goodwin’s model
The transcription rate function ),

» Inducible Operon : Repressors R interacts with both the
Operator O and the Effector E,

Ky RE,
R E= RE,—,, Ky = s n
+n 1 R.E"
K> OR
R <= OR Ko = ——.
O+ 0] s 2 O R
With QSSA, and if Otot ¢ Rtot:
0 1+ KiE™
M(E) ~ = . 2
1(E) Otot 14 KoRiot + KiE 2
» Repressible Operon : Similar but
n K2 _ ORE,
O+ RE" = ORE,, KZ_O-RE”'
and we get
o 1+ KiE™
M (E) : (3)

T Owe 1+ (Ki+ KoReot)E™'



Goodwin’s model

Bifurcation analysis in ODE

10

induced

bistable

uninduced

» Inducible : Mono-stability
or Bi-stability.

» Repressible : Mono-stability
or limit cycle.

dx
gtl = mlhls) —xl,
X
7: = mba-x),
X3 B .
dt ’}/3 (X2 X3) .
- (4)
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Stochastic model Reduced problem

Eldar and Elowitz (Nature 2010)
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Stochastic model Reduced model With division Inverse problem

'New' Central dogma

o p
OW )\1 xT )\2

ANV
mRNA rotein
ﬁJ]T;Jc(y)q |
OFRA—
DNA

Novick & Weiner (1957), Ko et al. (1990), Ozbudak et al. (2002), Elowitz et al. (2002), Raser & O’Shea (2004)...

;); = G(t))\l(y(t)) - 'le(t) )
d{ = ax(t) —yay(t), (5)
Gop) 2O oy,

Rigney & Schieve (1977), Berg (1978), Peccoud & Ycart (1995), Thattai & Van Oudenaarden (2001)...



Goodwin's deterministic model

Stochastic gene expression model
Analytical results on a reduced model



Stochastic model Reduced model With division Inverse problem

Can we perform a systematic bifurcation theory on such

systems ?

» We are interested in long time behavior.

» We want to know how many modes has the stationary
distribution.

» This requires in practice "analytical’ solution.



A subclass of the 'three-stage’ (DNA, mRNA, Protein) model is
the 1D-bursting model (Storage model)

0e]

LF(x) = =y()f'(x) + A(X)J0 (f(x +y) = f(x))h(x,y)dy (6)

where h is the burst size distribution, §; h(x,y)dy = 1. If

h(x,y) = —%, v\, and v —4 0,

Lf(x) = —y(x)f'(x) + AX) JOO f'(z)v(z)dz (7)

v(x) Jx

Any stationary distribution satisfies SSO Lf(x)u*(x)dx = 0, so that

foo [_ Y(x)u* (x) + v(x) JX Mu*(y)dy] Filgda=0. (8)

0 o v(y)

Hence

00 = e (| jg;dy) (9)



Stochastic model Reduced model With division Inverse problem

Bifurcation analysis in
SDE

v

Inducible :
Uni-modal or
Bi-modal.

v

Repressible :
Uni-modal.

(under technical assumptions...)
u(t,x)dx = P{x(t) € [x,x + dx)}
converges as t — oo (in L') towards u*,

du* X

o= o -aa 5]

u*(x)

X

with b(x) = —V”,(();)) .and y(x) = yx.

The presence of bursting can drastically alter regions of bistabilty

n=4.




Stochastic model Reduced model With division Inverse problem

Stationary distribution (A, v, b) = (u*)




Stochastic model Reduced model With division Inverse problem

From the 3-stage to the bursting model

;;; = G(t)A1(y(t)) —y1x(t),
dit’ = ox(t) —yy(t), (10)
Go0) SO oy

» If the mRNA lifetime si short (71 — ), we can perform an
. . . - AL .
adiabatic reduction (x(t) ~ G(t)5t(y(t))) :

% = G022 (y(t) — pax(t),
(6-0 XD (g "
BU(1)) '




Stochastic model Reduced model With division Inverse problem

% = G(£)222 (y(t)) — may(t), b
6-0 2 (g-1). "

Bly(1)

» If the Gene active periods are short (3 — ), we obtain the
bursting model

Y 20t~ ay(t), (13

where Z = > Z;61, is a jump process, of jump rate a(y(t))
and jump size cumulative distribution of separated form

+ -\ _ _ o i ’Ylﬂ
PU(T) 2 29T =y} = e (= | S (widw).
Remark
For a constitutive gene, b := ):;1%2 is the average number of

proteins produced per Gene activation event.



Stochastic model Reduced model With division Inverse problem

Remark
For the '2-stage’ model (Telegraph),

dx

de
a(x(t)) (14)

(G=0) 2O gy,

B(x(t))

we have (See Boxma et al. 2005)

du* [a(x) B(x)

dx Lyx Ax) —x




Small recap’ on the forward problem (1/2)

» We performed an adiabatic reduction to make the problem
analytical tractable.

» We solved the reduced problem for arbitrary coefficients at
equilibrium.

» We performed an (deterministic-analogous) bifurcation study.

v,=0.1 =1 =10 v,=100




Small recap’ on the forward problem (2/2)

» Careful! The two notions of deterministic bistability and
'stochastic bistability (bimodality) are in fact quiet different

2 ; ; —Deterministic Bistabilty ‘.Bi tability with Bursting Only
12 "\

2 = - 1 !
1)(5 7:1 T xai ' \ s

\ ket | a—\ . \\\“ \u \ \\ \\
05 :S“\‘ ' \N‘ ] \ \\ “\\\\ \\\\\ \

AN a
0

100 200 300 400 500, 600 700 800 900  100C

500 1000 1500 2000 2500 3000 G800 4000 4800 0C
Time

» (mean) Switching time : can quantify the 'stability’ of each

state.



Goodwin's deterministic model

Stochastic gene expression model

Ongoing work 1) Taking into account division



Stochastic model Reduced model With division Inverse problem

Similar results may be obtained for a 'bursting-division' model.

LF(x) = d(x) [ (F(3) — FG0Dnix.y)dy

0

0
A0 [ (Flx-+ ) = F0)h(x )y
For instance, with uniform repartition kernel (k(x, y) = 1/x),
constant division rate d and constant exponential burst size

(h(x,y) = exp(—y/b)),

d N xb? .
e B R R el G B ()

X+b

_bx+1 X



Stochastic model With division

This may be used to predict the long time behavior of a dividing
cell population

scenario 1 scenario 2

A cell tree A cell tree

IiIistogram and analytical solution Irllistogram and analytical solution

0.5 0.5

0 0

-1-05005 1152253354 -1-05005 1152253354



Goodwin's deterministic model
Stochastic gene expression model

Ongoing work 2) Recovering the burst statistics



Stochastic model Reduced model With division Inverse problem

Inverse Problem :(u*) = (X, ~, b)

For a constitutive gene, we can infer the burst rate (in protein
lifetime unit) % and the mean burst size b from the first two
(stationary) moments

b\
o E[X],
~ Var(X)
*TEX]

For an auto-regulated gene, we can inverse the formula for the
stationary pdf :




Stochastic model Reduced model With division Inverse problem

Simulated data

Density reconstruction by Kernel Density Estimation

025
===True solution
===Kernel density estimation
—Histogram
. . . .
14 16 18 20




Stochastic model Reduced model With division Inverse problem

Inferred bursting rate

Recovering Burst rate

10 r
= Estimated rate with the true b
8 = = = True solution
+ Estimated rate with a wrong b
Q
ER A
20 + 3|
5 4 + %
Z + o+
= + +
° 9 :
+ +
o+ +
0 1 1 1 1 1 1 1 1 1 1 il 14 .3 ]

0 1 2 3 4 5 6 7 8 910
protein

p—

1 12 13 14 15



Stochastic model Reduced model With division Inverse problem

Resulting Probability Density Function

Resulting density
03 == == = True solution
KDE
Fit with the true b
Fit with the wrong b
202
w
=]
5
@)
0.1
0 1 1 1 1 1 L 1
S 6 7 8 9 10 11 12 13 14 15

0o 1 2 3 4
protein



Stochastic model Reduced model With division Inverse problem

Single cell data on
. Noise Can Induce Bimodality in Positive
self- regu lati ng gene Transcriptional Feedback Loops Without Bistability
Tsz-Leung To, et al.
Science 327, 1142 (2010);
DOI: 10.1126/science. 1178962

.' ® Dox
YFP
E » Synthetic Tet-Off in budding
Nxtetdl pis3 [xtetQ] |2
=17 yeast.
1xtetO » Feedback modulated by an

external parameter
(doxycycline)

=

yibuans yoeqpeay

10° 10°
YFP reporter [AFU]



Stochastic model Reduced model With division Inverse problem

1) Kernel Density Estimation

YFP Reporter



Stochastic model Reduced model With division Inverse problem

2) Finding the 'best’ mean burst size (KL distance)

KL-Error as a fonction of b

(e
T

N

log,,(error) KL
o

25 -2-15 -1-05 0 05 1 15 2 25
loglo(b)

!
(@)}



Stochastic model Reduced model With division Inverse problem

3) Inferred burst rate

Estimating burst rates
100 Z

50

Burst rate

protein



Stochastic model Reduced model With division Inverse problem

3) Inferred mean burst size

0.065

0.06

0.055

0.05

0.045

Burst size value for the Best fit

Experiment



Reduced model With division Inverse problem

Stochastic model

4) Resulting Probability Density Function

55 Fitting with estimating rates

protein



Small recap’ on the inverse problem

v

With the help of the full solution, we obtained a formula to
find the parameter functions from the stationary density.

» We applied this on simulated and real data.

» The inverse problem is generally ill-posed (cannot find burst
size b and burst rate \ at the same time).

v

Although the resulting pdf does usually 'fit" the data.

v

Work still on progess...



Stochastic model Reduced model With division Inverse problem

Merci de votre attention !
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