The genomes of several plant species contain endogenous geminiviral sequences

To cite this version:
Denis Filloux, Sasha Murrell, Maneerat Koohapitagtam, Michael Golden, Charlotte Julian, et al.. The genomes of several plant species contain endogenous geminiviral sequences. 8. International Geminivirus Symposium, Nov 2016, New Delhi, India. 1 p., 2016. hal-02798133
The genomes of several plant species contain endogenous geminiviral sequences

Endogenous viral sequences are essentially ‘fossil records’ that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements (GRD) and the geminivirus-like elements (EGV) found respectively within the nuclear genomes of several Nicotiana species (Kenton et al. 1995; Bejarano et al. 1996; Ashby et al. 1997; Murad et al. 2004) and various Dioscorea spp. of the Enantiothyliphum clade (Fillox et al., 2015).

- The genomes of many yam (Dioscorea spp.) species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed

New D. alata sequence resources available to further explore yam EGVs
- Draft genome of D. alata now available on GenBank (CZHE00000000)
- Four D. alata BAC clones containing EGVs are now sequenced (CNRVG, INRA, Toulouse, France)

Several other plant species contains EGVs
We recently found using in silico searches that other EGVs are included within complete or draft genomes of various plant species, including apple (Malus domestica), black cottonwood (Populus trichocarpa), several Coffea spp, eggplant (Solanum melongena), lettuce (lactuca sativa), and Tepary bean (Phaseolus acutifolius), which suggests that endogenous geminiviruses may be more common in plant genomes than has previously been appreciated.

References
Cirad-INRA-SupAgro, UMR BOP, Campus International de Montpellier-Bailleul, 34398 Montpellier Cedex 5, France. Email: JMMoulin@cirad.fr
Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4079, South Africa.
Department of Integrative Structural and Computational Biology, the Scipio Research Institute, La Jolla, CA 92037, USA.
Department of Plant Management, Faculty of Natural Resources, Prince of Songkla University, Hat Yai campus, Thailand 90120.
CIRAD, UMR AGRIPHA, Avenue Agropolis, F-34398 Montpellier Cedex 5, France.
Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
DSZ/A Plant Virus Department, Mossevrey, 1112, 28160, Braunschweig, Germany.
Department of Medicine, University of California, San Diego, La Jolla, CA.