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Optimal Carbon Sequestration Policies in Leaky Reservoirs

We study in this report a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the physical constants and the economic parameters. In particular, we show that the presence of leaks may lead to situations which do not occur otherwise, including that of non-monotonous price paths for the energy.

Chapter 1

Introduction

This report is devoted to the complete solution of an optimal control model with state constraints, arising in the study of economic tradeoffs between energy consumption and pollution management. More precisely, the question is to determine under which circumstances the deployment of Carbon Capture and Storage (CCS) technology is of any help to an economy faced with the potential damages of a high concentration in the atmosphere. The purpose of this document is to serve as technical reference, and provide the mathematical arguments backing up the construction of the solution, as completely as possible. It features a detailed discussion of how theorems from the literature can be applied, why the solution proposed is consistent with their conditions, and also a parametric discussion of the behavior of these solutions.

This introduction follows with a motivation for the problem we study, and a summary of the technical contribution.

The Economic Relevance of Carbon Storage and Sequestration

The fact that the carbon emissions generated by the use of the fossil fuels could be captured and sequestered is now well documented both empirically and theoretically, and it is now included in the main empirical models of energy uses. Were this option open at a sufficiently low cost for the most potentially polluting primary resource, that is coal, its competitive full cost, including the shadow cost of its pollution power, could be drastically reduced. Indeed, coal is abundant at a low extraction cost and can be transformed into energy ready to use for final users at moderate transformation costs. The main problem concerning its future competitiveness is the cost at which its pollution damaging effects can be abated.

Abating the emissions involves two different types of costs. The first one is a monetary cost: capturing, compressing and transporting the captured into reservoirs involves money outlays. The second one is a shadow cost because this type of garbage has to be stockpiled somewhere. This problem has been tackled in Lafforgue et al. (2008a), Lafforgue et al. (2008b). It is not quite clear that sufficient storage capacities would be available for low capture and storage costs. The reservoir capacities themselves could have to be seen as scarce resources to which some rents should have to be imputed along an optimal or equilibrium path.

Even if sufficiently large reservoirs are available there exists another problem concerning the security of such reservoirs. Most reservoirs are leaking in the long run, a well-known problem in engineering. The fact that captured will eventually return into the atmosphere cannot be ignored when assessing the economic relevance of CCS.

A first investigation of this last problem has been given by Ha-Duong & Keith (2003). Their main conclusion is that "leakage rates on order of magnitude below the discount rate are negligible" (p. 188). Hence leakage is a second order problem as long as the rate of discount is sufficiently high, and probably that other characteristics of the empirical model they use are sufficiently well profiled.

A second batch of investigations has recently been conducted by Gerlagh, Smekens and Van der Zwaan. 1 These papers are mainly empirical papers using and comparing DEMETER and MARKAL models to assess the usefulness of CCS policies. Their results are twofold. First, using CCS policies with leaky reservoirs does not permit to escape a big switch to renewable non polluting primary resources if a 450ppmv atmospheric pollution ceiling has to be enforced. But CCS with leaky reservoirs is smoothing the optimal path. A second point concerns the relative competitiveness of coal: "The large scale application of CCS needed for a significantly lower contribution of renewable would be consistent, in terms of climate change control, with the growing expectation that fossil fuels, and in particular coal, will continue to be a dominant form of energy supply during the twenty-first century" Van der Zwaan & Gerlagh (2009, p. 305). As they point out "The economic implications of potential leakage associated with the large scale development of CCS have so far been researched in a few studies" (ibidem, p. 306). To our knowledge theoretical studies are even fewer. 2The objective of this paper is to try to elucidate some theoretical features of optimal CCS policies with leaky reservoirs and specifically the dynamics of the shadow cost of both carbon stocks and their relation with the mining rent of the nonrenewable resource, determining the long run relative competitiveness of coal and solar energies. The paper has to be seen as mainly exploratory. To conduct the inquiry we adopt the most simple model permitting to isolate the dynamics of captured leakage and atmospheric pollution.

On the one hand, the presence of leaks, producing an additional flow of pollutant, makes the pressure on the atmospheric stock larger than when there is none. This should favor even more the capture to relax the pressure today. On the other hand, for the same reason, it is not necessarily good to sequestrate too much pollution, since this will make economic conditions worse in the future.

The results presented in this paper show how the optimal consumption paths are modified with respect to the benchmark situation where there are no leaks. In particular, it turn out that over some optimal path, the price of energy is not necessarily monotonous. Non-monotonous price paths in the exploitation of nonrenewable resources have been described before: for a first paper in this direction, see for instance [START_REF] Livernois | Price, Scarcity Rent, and a Modified r-Percent Rule for Nonrenewable Resources[END_REF]. In the present situation, the lack of monotonicity results from a combination of a constraint on the present atmospheric stock of pollution, and a lag effect for the sequestered stock of pollution; such an effect has not been reported in the literature, to the best of our knowledge.

Our analysis reveals other interesting features. First of all, not every possible configuration of atmospheric and sequestered stock is acceptable, thus causing a possible viability problem. Other results quantitatively confirm that the presence of leakage does reduce the economic incentive to sequestrate pollution.

Technical Challenges and Contribution

The model we develop conceals several technical features that are seldom encountered in the literature. First of all, il involves three state variables and three controls, with constraints on the three states and constraints on two of the controls. We are nevertheless able to provide a complete parametric description of solutions when one of the state variables is "saturated". Based on this analysis, the understanding of the case where all three state variables are present appears to be within reach; the details are however not developed in this document.

In the course of the solution, we identify the presence of a "hidden" viability or controllability constraint, and a "singular" point in the state space. In the vicinity of the viability constraint and of the singular point, optimal trajectories have an unusual behavior, and some adjoint variables (economically interpreted as shadow prices) may be discontinuous.

Related to this unusual behavior is the unusual fact that the so-called constraint qualification conditions associated to the optimization problem are not satisfied. Also, classical geometric conditions leading to the regularity of the value function (see e.g. [START_REF] Soner | Optimal control with state-space constraints I[END_REF]) do not hold. Indeed, the value function turns out not to be differentiable everywhere in the domain of interest.

We contribute to the understanding of the situation by providing a complete description of trajectories, constructed explicitly using the maximum principle, and not via a numerical approximation of the value function. This detailed construction allows us to provide as well a complete parametric discussion of the form of optimal trajectories. The report is organized as follows. We develop the model, its assumptions and notations in Chapter 2. In particular, in Section 2.2 we state the mathematical optimization program representing the social planner problem, and derive the necessary optimality conditions.

In Chapter 3, we prepare the construction of solutions by studying the behavior of optimal trajectories within phases characterized by a constant status (free or bound) of the different constraints on states and controls. This allows in particular to eliminate several configurations which cannot be optimal.

In Chapter 4, we construct the solutions of the optimization problem in the situation where the stock of polluting carbon energy is assumed to be infinite (that is, the resource is assumed to be renewable) and the capacity of the reservoir is sufficiently large. While not quite relevant empirically, this analysis provides the essential insights in the behavior of solutions and the complexity of the problem. The first part of the chapter enumerates all possible cases, depending on parameters and the position of the state of the system. The second part (from Section 4.5 onward) presents the global picture and performs the parametric discussion, including some limiting cases.

Several appendices with the most technical details complete this description. In particular, Appendix E features a numerical illustration in the Linear-Quadratic case.

Chapter 2

The Model

Model and Assumptions

We consider a global economy in which the energy consumption can be supplied by two primary resources: a nonrenewable polluting source like coal and a clean renewable one like solar plants.

Energy consumption and gross surplus

Let us denote by the instantaneous energy consumption rate of the final users and by the instantaneous gross surplus thus generated. The gross surplus function is assumed to satisfy technical assumptions that will be specified as Assumption 1 on p. 8.

The function , is the inverse demand function and its inverse, the direct demand function, is denoted by . Under Assumption 1, the function is strictly positive and strictly decreasing.

The nonrenewable polluting resource

Let be the stock of coal available at time , be its initial endowment, and be the instantaneous extraction rate:

. The current average transformation cost of coal into useful energy is assumed to be constant and is denoted by . We denote by the nonrenewable energy consumption when its market price is equal to and coal is the only energy supplier:

. Burning coal for producing useful energy implies a flow of pollution emissions proportional to the coal thus burned. Let be the unitary pollution contents of coal so that the gross emission flow amounts to . This gross emission flow can be either freely relaxed into the atmosphere or captured to be stockpiled into underground reservoirs, however at some cost. Let be the average capturing and sequestrating cost of the potential pollution generated by the exploitation of coal. Let us denote by this part of the potential flow which is captured and sequestered. Then the sequestration cost amounts to . The remaining flow of carbon goes directly into the atmosphere.

Pollution stocks and leakage effects

We take two pollution stocks explicitly into account, the atmospheric stock denoted by and the sequestered stock denoted by . As previously stated, the atmospheric stock is first fed by the non-captured pollution emissions, resulting from the use of coal, that is . This atmospheric stock is self-regenerating at some constant proportional rate . 1 However, is also fed by the leaks of the sequestered pollution stock . We assume that leaks are proportional to the stock and denote by the leakage rate. Taking into account both this leakage effect and the above self-regeneration effect, we get the dynamics of the atmospheric stock:

Since the sequestered stock is just fed by the sequestered pollution, we have:

The flows and stocks of energy and pollution are illustrated in Figure 2 We assume that the sequestered stock is limited by a known constant capacity . It is acceptable that be set sufficiently large to be never saturated. In every case, it is assumed that no cost has to be incurred for maintaining the captured stock into reservoirs. 2 The only costs are the above capture costs .

Atmospheric pollution damages

There are two main ways for modeling the atmospheric pollution damages. A most favored way by some economists is to postulate some damage function: the higher is the atmospheric pollution stock , the larger are the current damages at the same time . Generally, this function is assumed to be convex. The other way is to assume that, as long as the atmospheric pollution stock is kept under some critical level , the damages are not so large. However, around the critical level , the damages are strikingly increasing, so that, whatever what could have been gained by following a path generating an overrun at , the damages would counterbalance the gains. 3 We adopt the second way of modeling damages pioneered by [START_REF] Chakravorty | A Hotelling model with a ceiling on the stock of pollution[END_REF], and therefore assume that the loss generated by is negligible provided that be maintained under some level , but ruins the economy once overruns . 4We denote by the maximum coal consumption when the atmospheric pollution stock is at its ceiling , no part of the gross pollution flow is captured ( ) and the stock of sequestered pollution is nil:

We denote by the corresponding energy price assuming that coal is the only energy supplier:

. Clearly there exists an effective constraint on coal consumption if and only if or equivalently and simultaneously the coal initial endowment is sufficiently large.

The renewable clean energy

The other primary resource is a renewable clean energy. Let be its instantaneous consumption rate. We assume that its average cost, denoted by , is constant. We denote by the renewable energy consumption when the renewable one is the only energy supplier:

. The consumption of renewable energy is assumed to be limited by a known constant . It is acceptable that be set larger than .

Both and include all that has to be supported to supply ready-to-use energy to the final users. Hence, once these costs are supported, the two types of energy are perfect substitutes for the final user and we may define the total energy consumption as .

The Social Planner problem

The social planner problem is to maximize the social welfare. The social welfare is the sum of the discounted net current surplus, taking into account the gross surplus and the production or capture costs. We assume that the social rate of discount , is constant throughout time. Accordingly, the social planner faces the following optimization problem:

d (2.2.1)
given the controlled dynamics: 5

(2.2.2) the initial conditions , and the constraints on state variables and controls:

(2.2.3) (2.2.4) (2.2.5) (2.2.6) (2.2.7) (2.2.8)
(2.2.9) for all . Other physically relevant constraints ( , ) are automatically satisfied by the dynamics and are not explicitly taken into account. This follows from the fact that implies 5 An alternate parametrization of the control is in terms of "cleaned carbon" consumption and "dirty carbon" consumption . With these controls instead of and , the dynamics become: and . The constraints on control are then and .

and likewise, implies . A natural constraint on the control is : this constraint is implied by (2.2.8) and (2.2.9), and we do not refer to it explicitly in the remainder.

The maximization in (2.2.1) involves admissible control functions , , , that is, piecewise continuous functions. Pairs of control vectors and state trajectories such that controls are piecewise continuous, trajectories solve the state equation (2.2.2) and both satisfy all constraints (2.2.3)-(2.2.9), will be called admissible pairs.

Assumptions on costs and parameters

The results we obtain are valid under the following composite assumption. 6We assume not only that the cost of the renewable energy is higher than the cost of the nonrenewable one, but furthermore that is higher than . We assume also that as discussed in Section 2.1.4. The function obeys standard assumptions, with the possibility (but not the requirement) that . In summary: These assumptions on the cost parameters of the model are summarized in Figure 2.2, which also recapitulates the notation The following unit system proves useful in calculations and interpretations (see Section 2.3.1 for the missing notation etc. (adjoint variables or shadow prices) and , or etc. (Lagrange multipliers)). The unit refers to "tons of coal equivalent" whereas the unit refers to "tons of pollutant" (the atmospheric ).

Assumption 1.
in in in in in in in in in in in in in in in 2.2.

Literature and particular cases

The model generalizes several previous models of the literature, which can be recovered using particular values of the parameters.

No reservoirs, no capture The model where capture is not possible has been studied in Chakravorty et al. (2006).

When in the present model, then whatever is captured in the stock is immediately leaked into the atmosphere. The model therefore reduces to the case without reservoir and without capture (since capturing is more costly than not capturing). The model without capture also shows up when the capture cost is very large so as to make sequestration economically suboptimal (see Section 4.5.4). Equivalently, the control can be forced to be 0. The difference with is however that the standing stock of sequestered carbon will empty only progressively. If the initial condition is an empty stock, then there is no difference. In both papers, an additional assumption is made: . In the forthcoming analysis, this situation will be called " small", see Section 4.5.1.

No leakage

Main elements for finding the solution of the social planner problem

We shall use the maximum principle in order to identify the solutions to this optimization problem.

In this paragraph, we first state the first-order conditions for the problem, next review the theorems on which we base the solution method.

First order conditions

Let us denote by the current-value Lagrangian of the problem. Introducing , and as adjoint variables, , and as Lagrange multipliers for state constraints, , , and as Lagrange multipliers for control constraints, the Lagrangian writes as:

(2.3.1)
The "classical" first order conditions are then the following. First, optimality of the control yields:

(2. 

Elimination of suboptimal controls

For technical reasons related to the possibility that be infinite, it is convenient to add more constraints to the control problem, knowing that these will be satisfied by any optimal control. Lemma 2.1. Under Assumption 1, any solution to the control problem (2.2.1) with constraints (2.2.2)-(2.2.9) is such that for virtually all .

Proof. Assume that is a control such that for , some nonempty interval. Modify this strategy into: , for , while not changing nor the strategy outside of interval . Since the solution to the differential system (2.2.2) is not changed, this is also an admissible strategy. We show that it yields a larger profit. Indeed, the difference in profits can be written as: . By Assumption 1 and the definition of , this is positive for . As a consequence, is strictly increasing on the interval and for every , . Therefore, and the strategy cannot be optimal.

Sufficient optimality conditions

We will base our solution on the two following results, which provide sufficient conditions for optimality. The difference between these theorems lies in the set of assumptions and the type of optimal trajectories they allow for. While the first one (Theorem 2.1) allows for jumps in the adjoint variables, it needs stronger assumptions than the second one (Theorem 2.2), which concerns continuous adjoint variables, but needs only quasi-concave assumptions on the constraints. In order to use these theorems to solve our problem, we will need to introduce an extra constraint, which turns out not to be . Hence the need for both results. The first statement is that of [START_REF] Seierstad | Optimal Control Theory with Economic Applications[END_REF] This in turn implies that for every admissible trajectory , since by the boundedness assumption on controls, the difference is also bounded.

Our task is therefore to exhibit solutions to the first-order conditions, with bounded controls, which are continuous, or if not continuous, which satisfy the jump condition (2.3.22).

The admissible domain of and

Since

, the model exhibits a viability or controllability problem that we study in this section. Assume that for some reason, over some interval of time. Then the dynamics of and are given by: and Let be some time instant in this interval and let us denote by and the stocks of and at this time: and . Integrating the above system, we obtain for all (in the case ; see Footnote 7 for the case ):

(2.3.23)

(2.3.24)
Eliminating with (2.3.23), we get the family of trajectories in the space:

These curves depend upon and and, structurally, only upon . As a function of , is first increasing and next decreasing whatever and may be. The maximum is attained when , that is, . The family of these curves is illustrated in Figure 2.3. The movement is going from the right to the left through time. Under the line , the flow of leakage is higher than the self-regeneration flow so that the atmospheric stock of pollutant increases, whereas above the line the reverse holds and the atmospheric stock decreases. Among these trajectories, let be the one, the maximum of which is equal to . Let be the value of for which this maximum is attained, and be the (strictly) positive value of for which . Clearly, . Given that the maxima of are located along the line , we get for :

(2.3.25)

Then

It follows that , and it can be verified that for all values of and . 7 For any , the control vector points outwards, and it is easy to see that for any initial position located above the curve , and for any control, the trajectory will necessarily exit the domain . Such a trajectory is not viable. Likewise, if a non-zero control is applied at any point of the curve , then the trajectory will necessarily exit the domain , whatever control is applied later on. 8 Therefore, the set of viable initial states is delimited by the constraint

(2.3.26)
where the function is defined on as:

(2.3.27)

This function is continuous since , decreasing and concave. It is differentiable because . However, the derivative is not differentiable at . Since this viability constraint holds for every admissible trajectory, it is possible to add it to the optimization problem (2.2.1)-(2.2.9) without changing its solution. Doing so, we shall be able to handle the situation where the optimal trajectory lies on the boundary of the domain. This situation cannot be handled by Theorem 2.2 because, as it turns out, the evolution of adjoint variables is not defined by (2.3.9)-( 2 Then the pair is catching-up-optimal for the criterion (2.2.1).

Proof. We check the conditions of Theorem 2.2 using again the correspondence of notations established in Section 2.3.3. In addition, Theorem 2.2 introduces the set Adding the constraint to the problem is possible by virtue of Lemma 2.1, and it excludes the possibility that from the set . Then is not only continuous, but also differentiable on even if is allowed to be infinite. Since is clearly diferentiable, we see that the Hamiltonian is differentiable for every admissible control, so a fortiori at any candidate optimal control as in Condition d) of Theorem 2.2. This condition and Condition a) are therefore satisfied.

Let us now check the remaining conditions of Theorem 2.2. We have already remarked the continuity of and . Condition d) holds as in Theorem 2.1 because the Hamiltonian is not affected by this change in the constraints. It is therefore still is concave and, as observed above, differentiable as a function of . Conditions b), c) and e) hold by construction. Condition f) holds due to the concavity of . Finally, Condition g) holds as for Condition k) of Theorem 2.1 in the proof of Corollary 2.1.

On the lack of necessary conditions

This paragraph discusses our choice to focus on sufficient conditions instead of deducing the solutions from necessary conditions. Indeed, the usual situation in the literature is that the set of first-order conditions listed in Section 2.3.1 are in fact necessary, with the adjoint variables in some precise class of functions (continuous, piecewise continuous, ...). For models without state constraints, results like Theorem 2, Chapter 2, page 85 or Theorem 12, Chapter 3, page 234 in [START_REF] Seierstad | Optimal Control Theory with Economic Applications[END_REF] validate this approach. However, for models with state constraints, this actually requires that these constraints be "qualified" in some sense. If the constraints fail to be qualified, it is not known whether the first-order conditions are actually necessary. This is the case here.

For an illustration of this principle, consider for instance Theorem 9, Chapter 6, page 381 of [START_REF] Seierstad | Optimal Control Theory with Economic Applications[END_REF], with the same notation as in Section 2.3.3. The problem has here seven constraints, but if (with ) and is a candidate state/control pair, only constraints and are active. According to the theorem, the third one must be converted into The constraint qualification condition states then that the following matrix should then have rank 3: However, the rank of is clearly 2. This constraint qualification condition does not hold. The condition of Theorem 8, Chapter 6, page 378 of [START_REF] Seierstad | Optimal Control Theory with Economic Applications[END_REF] fails as well.

Chapter 3

Preliminary results

Introduction to the solution

The central object of our analysis is the "phase", which we define as a piece of optimal path for which the set of active constraints on states or controls is the same at all times. A complete optimal trajectory is necessarily decomposed into a succession of such phases. The method consists then in "gluing" together pieces of trajectory, each one being in some phase.

This chapter is devoted to the individual analysis of the different possible phases. The assembly of pieces of trajectories will be done in Chapter 4 for a simplification of the model. The complete solution for the model presented in Chapter 2 is left for future research.

The combinatorics of the exploration of phases is quite large a priori. Constraints (2.2.3)-(2.2.5) provide 2 situations each, constraints (2.2.6) and (2.2.7) provide 3 of them, and the set of constraints (2.2.8)-(2.2.9) provide 4 distinct situations, for a potential total of 96 phases.

In the core of our analysis, we will choose to disregard the limit on the flow of renewable resource , as well as capacity constraints on the reservoir . 1 This simplification will allow us to concentrate on the importance of the self-regeneration rate , the leakage rate and the capture cost on the shape of optimal extraction paths. Indeed, in Chapter 4 we will provide a complete classification of optimal trajectories, according to the position of with respect to various thresholds defined with the other parameters. In Sections 4.6.1 and 4.6.2, the constraints on and are reintroduced.

Ignoring the constraints and reduces the number of possible phases to 32. We will see however in this chapter that only 9 phases are actually useful in the construction of optimal trajectories.

For this restricted problem, Corollary 2.1 and Corollary 2.2 take the following form. The proof for these variants is easily adapted from the original proofs. Then the pair is catching-up-optimal for the criterion (2.2.1).

Guided by these theoretical results, we look for trajectories which are continuous inside each phase: the only discontinuities which we will consider are related with the change in the status of the constraint : in some situations, will be allowed to jump when this constraint becomes active.

In the different sections of this chapter, we analyze separately the dynamics of each phase. We adopt the following common notation: denotes an arbitrary time instant at which the trajectory is within the phase under study. The corresponding values of the state, adjoint variables and multipliers are denoted with the same superscript as in , , , etc. We express the value of the different relevant trajectories as a function of and these "initial" values. They hold whether is smaller or larger than , as long as both time instants lie in an interval where the system stays in the phase without interruption.

We begin with general observations about the phases which are "interior" with respect to state constraints. In Section 3.2, we characterize the evolution of adjoint variables in such phases. Next, in Section 3.3, we simplify the problem by ruling out certain configurations for the optimal control. Then, we give the details of state and adjoint variable trajectories in the remaining phases. We start with phases located in the interior of the domain, in Section 3.4. Finally, we turn to the boundary, and describe phases such that the atmospheric stock has reached its ceiling (Section 3.5).

The system in the interior

When no state constraint is active, the dynamics of the adjoint variables take a particularly simple form, which yields closed-form expressions.

The interior of the domain, which we will denote by , is defined by the set of strict inequalities:

(3. 

Dynamics of the adjoint variables

We concentrate now on and . Integrating the dynamical system:

under initial conditions at yields:

(3.2.4) (3.2.5)
The pair therefore lies on the curve: When , these formulas must be modified as follows:

Dynamics of ratios

Define the ratio variables:

As above, assume for adjoint variables that the system is in the interior (phases that will be named "A", "B" and "L" later on). For the state variables, assume that no control is applied to the system (phases that will be named "L", "U" or "T" later on). It is straightforward to check that the ratios thus defined satisfy the autonomous, first-order differential equations:

which do not depend on . Integrating leads to the solutions: When , these formulas take the form:

As an application of these formulas, observe that the time necessary for the system to go from a position to depends only on the ratios and . The value of this duration is given by: when , and when . In particular, when , we have and:

Likewise for adjoint variables: the time necessary for the system to go from a position where the ratio is to one where the ratio is is given by: when , and when .

Invariants

Another formulation of the previous results is that the following quantities are invariant over time:

as long as the state remains in Phase L, T or U for the first quantity, or in Phase A, B or L for the second one. As a consequence, the line is invariant, and so is the sign of . If , trajectories starting with go to , and trajectories with go to , as . All trajectories tend to when . If , the converse situation occurs: all trajectories tend to when , and the limit when is with the sign of . The following quantities are also constant on trajectories in the interior of the domain when it is optimal to apply no control (Phase L): Some of these results will be useful for proving that certain trajectories satisfy certain constraints, for instance in Section 4.2.1, or when applying transversality conditions, see Section 3.5.5.

Elimination of impossible phases

When the state of the system is not bound by a constraint, the structure of the cost function allows to eliminate controls that are necessarily suboptimal. This allows to eliminate certain phases from the construction of a solution.

Our first result is a sort of "bang-bang" principle for the capture control in the interior of the domain. . Then the adjoint variables are necessarily constant and equal to However, these functions do not solve the differential system (3.2.2): a contradiction.

In the second case, Equation (3.3.3) provides the identity , and replacing this into (3.3.4) yields:

Then

. Eliminating between these equations, we arrive successively at: , , . We have three linear algebraic equations linking , and . If , this linear system has a unique solution providing three constant functions, all proportional to . But the unique constant solution to (3.2.4)-(3.2.5) is null. This entails , which is not consistent. If , it follows that . But this also implies . We reach a contradiction in every case.

Dynamics in interior phases

Given Lemmas 3.1 and 3.2, the optimal control on an interior piece of trajectory reduces to one of the three alternatives: either , , ,

. We name the first situation Phase "A": it is characterized by the absence of constraints on the state, zero capture and exclusive consumption of nonrenewable energy.

We name the second situation Phase "B": it is characterized by the absence of constraints on the state, total capture of the emissions due to nonrenewable energy.

The third situation is called Phase "L". We analyze the dynamics of the system in these three phases.

Dynamics when capture is nil (Phase A)

Phase A corresponds to the situation where the resource is not exhausted ( ), the ceiling is not reached ( ), and no sequestration occurs ( ). See Appendix A.1 on page 78. Consumption is directly given by the first-order equation (2.3.3):

(3.4.1)
The value of the adjoint variable is known from (3.2.3), and that of from (3.2.4):

The integration of the dynamical system for the state variables gives:

d (3.4.2) d (3.4.3) (3.4.4)

Dynamics when capture is maximal (Phase B)

Phase B corresponds to the situation where the resource is not exhausted ( ), the ceiling is not reached ( ), and maximal sequestration occurs ( ). See Appendix A.2 on page 79.

Consumption is directly given by the first-order equations:

(3.4.5)

The value of is given by (3.2.3) and that of is given by (3.2.5), that is:

The integration of the dynamical system for the state variables gives: 

d ( 3 

Boundary Phases

The boundary of the admissible domain is the frontier of the domain defined in (3.2.1). The part of most interest in the analysis is the curve , itself decomposed into the "ceiling" phase and , and the curve for (see (2.3.27).

The rest of the boundary is made of parts of the lines and . On the former, the dynamics is as in Phase A (Section 3.4.1). On the latter, no optimal trajectory can stay. When over some interval of time, the dynamics (2.2.2) imply that the control is constrained by

(3.5.1)
We analyze the consequences of this relationship in this section, depending on whether is further constrained to be 0 (Sections 3.5.1, 3.5.3, 3.5.5 and 3.5.6), interior ( , Section 3.5.2) or constrained at its maximum ( , Section 3.5.4).

Dynamics in Phase P (constrained atmospheric stock, no capture)

If capture is further constrained to be 0, this actually determines the consumption

(3.5.2)
We call this situation Phase "P", see Appendix A.4 on page 81. In such a phase, the values of the adjoint variables can be directly deduced from the first order conditions (2. Along every optimal path in this phase, the fact that must imply by (2.3.6) that . It is also necessary that .

3.5.2 Dynamics in Phase Q (constrained atmospheric stock, free capture)

Phase Q corresponds to the situation where the resource is not exhausted ( ), the ceiling on atmospheric pollution is reached ( ), and sequestration occurs, but not all emissions are sequestered ( ). It is described in Appendix A.5 on page 82. The use of the first-order conditions and the dynamical system leads to the following derivation. First, the first-order condition for provides the identity:

(3.5.8) Then, differentiating and using the dynamics on , we obtain:

The adjoint variable for is obtained by integrating Equation (2.3.11). The value of is then deduced from (3.5.8). These are: If Condition (3.5.11) is not satisfied, then the vector moves away from on the line . In that case, whatever the value of , we have: . We shall make use of this property in our analysis in Chapter 4.

The dynamics for and are given by: Since the values of consumption and capture are respectively given by: given by (3.5.9).

Dynamics in Phase R (constrained atmospheric stock and renewable energy consumption)

Phase R corresponds to the situation where the resource is not exhausted ( ), the ceiling on atmospheric pollution is reached ( ), no sequestration occurs, but there is mixed consumption of the renewable and nonrenewable resource ( and ). It is described in Appendix A.6 on page 83.

Given the first-order conditions and the ceiling constraint, the consumption of resources is given by: (3.5.17) , we see that the trajectory is the curve:

(3.5.20)

Observe that these curves are increasing and concave in the interval , and their derivative is 0 when . Let us now consider the multiplier: Consequently, assuming that the term between the last parentheses is positive, there exists a finite value at which if, and only if, .

Dynamics in Phase S (constrained atmospheric stock and maximal capture)

Phase S corresponds to the situation where the resource is not exhausted ( ), the atmospheric pollution ceiling is reached ( ), maximal sequestration occurs ( ). This phase is described in Appendix A.7 on page 84.

Since is constant, and therefore from (2.2.2), it is necessary that , that is, . As a consequence, the trajectory is stationary at the point . This implies in turn that and then . The integration of the dynamics of the adjoint variables yields the following expressions: The state trajectory is simply given by:

(3.5.28)

Dynamics in Phase T (exhausted nonrenewable resource)

Phase T is like Phase L (Section 3.4.3), but the state is supposed to be and is therefore on one boundary of . It is described in Appendix A.8 on page 85. In that case, the set of feasible controls is reduced to , because of the constraint . Assuming that the phase is terminal, the transversality conditions ( 2 The second one implies . Replacing in the first one, we have .

Dynamics in Phase U (no consumption of the nonrenewable resource)

A singular situation is encountered in the case where the state of the system is located on the curve , which forms a boundary of the admissible domain when , while at the same time . In that case, the set of feasible controls is reduced to , because of the viability constraint. The difference with Phase L, where and , has no impact on the dynamics. Whatever the value of ( is the optimal one), the trajectory is forced to follow the boundary, according to the state equations of Section 3.4.3, until . The analysis of the dynamics of this phase will take place in Section 4.4.2.4 on page 48.

Chapter 4

Unexhaustible resources

We study in this chapter the model introduced in Chapter 2, in the case where the resource stock is assumed to be infinite, and the constraint on the rate of consumption of clean energy is not limiting:

. We will further concentrate the analysis on the case where the capacity on the stock of sequestered carbon is not limiting either:

. However, in Section 4.6 we explain how to handle the remaining cases.

Formally, the problem is the same as exposed in Section 2.2, except that there is no dynamics of the stock . The system is described by the two variables and . The first-order conditions associated with this new problem are easily obtained from that of the general problem by setting formally .

As mentioned in Chapter 3, we consider that optimal trajectories are decomposed in a succession of phases, characterized by the set of constraints that are active. We shall use the same phase names as in that chapter, and ignore the variable .

Optimal trajectories will be constructed backwards. We shall first identify which phases are possibly terminal, that is, contain the infinite part of the trajectory. Then we shall find which phases can possibly be "glued" to these terminal phases, and so on until an optimal trajectory starting from all possible initial states in the feasible domain has been identified.

Optimal trajectories will be identified with the help of Corollaries 3.1 and 3.2. Several lemmas will successively identify optimal trajectories starting from initial states in locations of the state space. Occasionally, we will identify pieces of trajectories satisfying the first-order conditions: these will be confirmed as optimal trajectories when glued with another piece of trajectory.

Several requirements of Corollaries 3.1 and 3.2 will be satisfied by construction and will not be checked explicitly on each candidate optimal trajectory. For instance, continuity of the state trajectory and of the adjoint variable is implicit. Likewise, it turns out that control trajectories are always bounded, as required. The bulk of proofs will therefore be devoted to checking that the state evolves in the correct domain, and that conditions on Lagrange multipliers are satisfied.

As it turns out, the only possible terminal phases are located on the boundary of the domain. The backwards construction will then involve first phases on the boundary (Phases P, Q, R, S and U in the terminology of Chapter 3), then phases of the interior (Phases A, B and L). Phase T identified in Chapter 3 is not relevant here since it is characterized by . In the course of the analysis, several qualitatively different behaviors will emerge, depending on the value of the parameters of the model. We choose to classify these cases according to the value of . Several critical values for this parameter will be identified along the way, as functions of the other parameters. One of them has already been defined in (3.5.27):

For future reference in this chapter, we also recall some critical values on the variable already encountered in (2.3.25) and (3.5.19): and with the equivalent: This chapter is organized as follows. In Sections 4.1 and 4.2, we look successively at the phases defined in Chapter 3 and we identify which ones are possibly terminal. Since they turn out to be located on the boundary of the valid state space, we study in Section 4.3 the cases where an optimal trajectory may follow this boundary. In Section 4.4, we look at the way optimal trajectories in the interior connect to the boundary. Finally, in Section 4.5, we review the findings by presenting the different solutions to the problem, classified according to the value of the parameter . This analysis applies when and . The remaining cases, extensions of the model and concluding remarks are presented in Section 4.6.

Terminal phases

The first question we address is that of the behavior of the trajectory when . As a consequence of the first-order conditions and the transversality conditions (2.3.16)-(2.3.17), only a few phases are consistent with the infinite part of the trajectory.

In this report, we call "terminal phase" a phase for which there exists an optimal trajectory and some for which the trajectory is within the phase for all . Among terminal phases, some are possibly stationary, in the sense that the trajectories of all variables (state, costate, control etc.) remain constant.

We stick to the convention of Chapter 3 that denotes the arbitrary time instant inside the phase currently under study.

Terminal P phase

In Phase P (see Appendix A.4 on page 81, and Section 3.5.1), , , and . The evolution of is "free", and . The first-order equations provide the value of , see (3.5.3): The properties of these functions are studied in Appendix B. In particular, , so that the formula for above gives a negative value because both terms in its right-hand side are negative. The value of can be written, introducing the constant defined in (3.5.27), as:

(4.1.6)
The previous reasoning applies only to , when the value of is computed. Assume now that , so that for all in the phase. This is the case without capture, which has been studied in [START_REF] Chakravorty | A Hotelling model with a ceiling on the stock of pollution[END_REF]. The transversality condition (2.3.17) is automatically satisfied. In that case, from the solutions obtained in Section 3.5.1, and given that , we obtain: In that case, the function is:

Since the system is motionless, it is expected that the function will be positive, whatever the value of and , since has been arbitrarily chosen within the phase. The only way this can happen is to chose which implies, for all : Finally, the formulas established for , and hold for all . We have identified in passing the point (4.1.9) which represents the values of adjoint variables in the space at the stationary state as well as the limit of these variables, when when the system is in the terminal Phase P. We can now prove the following result. On the other hand, the condition is sufficient for the existence of a such that for all , since in that case .

Conclusion on terminal phases

Summing up the results on terminal phases, we have the following dichotomy:

if : the point is terminal and stationary, if : Phase P is terminal and the point is stationary.

In the next section, we review the other possible phases and show that the cases identified above are actually the only terminal phases, except in the limit case . In the process, we establish properties that will be used to construct complex trajectories.

The case is the most interesting from the point of view of Economics, since it is the one where capture of is optimal in the long run. This is the case studied in (Lafforgue et al. 2008a), (Lafforgue et al. 2008b) in the case : their assumption is that , and this last quantity is precisely when .

Non-terminal Phases

We now show that phases A, B, L, Q, R and U cannot be terminal. Doing so, we obtain some insight on the way these phases may begin or end.

Phases A, B and L

The common feature of these three phases is that the adjoint variables evolve "freely" according to the equations ( 3 

Phase R

In Phase R, , and . The dynamics of this phase can be specialized from the equations of Section 3.5.3.

In particular, we have but also, according to (3.5.18), . Therefore, as , the value of cannot remain positive. Another possibility is that may become negative. In any case, Phase R cannot be terminal.

We can state the following result. The piece of trajectory we identify is not termed as optimal because it is not described for values of after the trajectory has exited Phase R. Lemma 4.5. Under Assumption 1, Phase R is never terminal. The following configuration is a solution to the first-order equations and the system of constraints: Proof. In order to apply Corollary 3.1, we must check the constraint . From (2.3.10), we have . Since , we have .

Phase U

When in Phase U (the state lies on the boundary , ), the sequestered stock evolves as and is strictly decreasing. Therefore, the state eventually reaches

. Obviously, we have: Lemma 4.6. Under Assumption 1, Phase U is never terminal.

Optimal trajectories on the boundary of the domain

In this section, we take the first steps at constructing optimal trajectories by connecting individual phases together. As a result of the analysis of Section 4.1, we know that whatever the value of , all optimal trajectories eventually end up on one boundary of the domain , namely, the curve defined in (2.3.27) as: if if

For convenience, we refer to it as "the" boundary in the following.

It is therefore reasonable to suppose that some optimal trajectories will follow this boundary until the final state. This solution strategy turns out to work for and we make this assumption in this section. The case will be addressed in Section 4.4.3. The computation of optimal trajectories can be decomposed in two sub-problems: A) computing the optimal trajectory on the curve , and B) computing the optimal way to join this curve. We address the first sub-problem in Section 4.3.1: we show how boundary phases P, Q, R and U can be glued together; we synthetize the findings in Section 4.3.2. The second sub-problem will be addressed in Section 4.4, where we show how trajectories coming from the inside of the domain can connect to the boundary.

The following convention is adopted throughout: when a function of time (state, adjoint variable, Lagrange multiplier) refers to a generic trajectory in Phase , it will be denoted as .

Junction between phases on the boundary

The possible phases for states on the boundary are phases P, Q and R for and Phase U for . Connection between Phase U and other phases occurs when .

Phases Q/P

Assume that a trajectory begins at time in state and in Phase Q, then enters Phase P at time , then stays in that phase forever. Denote . In Phase Q, the equations of the state and adjoint variables are given in Section 4.2.2. In Phase P, they are given in Section 4.1.1. Continuity for the state writes as:

d (4.3.1)
We try to construct a trajectory such that the adjoint variables and are continuous at . For , these functions are given by formulas for Phase Q, and for , they are given by formulas for terminal Phase P. Therefore: equating (4.2.4) and (4.1.11) on the one hand, and (4.2.5) and (4.1.12) on the other hand (after the appropriate change of variable in the formulas for Phase P), then using the functions and which have been defined in equations (4.1.4) and (4.1.5) on p. 32, we obtain the continuity equations: The unknown quantities in these equations are: , and . We have to discuss under which conditions there exists a solution to this system.

We first determine . Eliminating the factor of between Equations (4.3.2) and (4.3.3), we obtain the equality: This is actually equivalent to require that the function given by Equation ( 4 Under the condition (4.3.5), the term inside brackets is positive (Lemma B.3). Then the function is negative and increasing, and it is bounded on the interval : its limit when is . This limit is the point introduced in Section 3.5. Proof. The only constraint not checked yet is . From (2.3.10), . We have observed that is negative and increasing. This difference is therefore always positive.

The result is not explicit on the exact range of values of for which the trajectory starts in Phase Q. We come back to this point in Section 4.3.1.3.

Phases R/P

Assume the system is in Phase R at time , with initial position , and that it passes from Phase R to Phase P at time and location which will be determined soon. When in Phase R, the evolution of state and adjoint variables is given by (see ( Concluding this paragraph, we observe that controls are discontinuous at time . Indeed, we have, from the values of control in phases Q and R, and the fact that :

On the other hand, the current-value Hamiltonian is continuous at time , which we check now. Since the trajectory is such that , the value of is identically 0. Next, we have . Also, the total energy consumption is continuous at with value . Then,

Synthesis on the boundary , large

At this point, we have a complete description of optimal trajectories starting from initial points on the boundary . The situation of phases is summarized in Figure 4.1 (page 44). This figure depicts the optimal consumption , and capture as a state feedback. As a function of time, is decreasing (or constant if

) so that the evolution occurs from right to left. Capture is represented as in order to make an easier comparison with its maximum value .

The different cases are detailed as follows. The trajectory of interest is starting at and . In all situations, the optimal trajectory is in Phase U (see Section 3.5.6) as long as . What happens next depends on . 

Case

. In this situation, the sequence of phases is reduced to (Lemma 4.9 on page 43). The paths , and are continuous except for a discontinuity at (i.e. when

). The function is also discontinuous at that point.

Case

. In this particular situation, the sequence of phases is , but all points in phase Q are stationary (Lemma 4.4 on page 37). The paths , and are continuous except for a discontinuity at . The function is also discontinuous at that point. The function is a straight line as a function of .

Junction with the boundary

The previous section has addressed pieces of optimal trajectories included in the boundary . We now study how optimal trajectories located inside the domain join this boundary. It turns out that, depending on the value of the parameters, two types of junctions take place. One is a "regular" junction, with continuity of state and adjoint variables: we will show in Section 4.4.2 that it takes place with the boundary phases called P, Q, R and U. The second one is a junction at the particular location , with a discontinuity in the adjoint variable . We call these junctions "singular" and analyze them in Section 4.4.3.

We start the analysis with the introduction in Section 4.4.1 of useful properties of adjoint variables, and a very convenient graphical representation. Trajectories of are represented as blue lines. They all reach their minimal value on the green line of equation , which is the locus of points where . When above this curve, increases, and it decreases below. In all cases, is decreasing. The zones corresponding to Phases A and B are delimited by the red line . Phase A is below the line, Phase B is above it. The zone corresponding to Phase L is represented in blue. It is separated from Phase A by the line (corresponding to ) and from Phase B by the line (corresponding to ). Inside this blue zone, the value of as given by first-order conditions of Phase A or Phase B is less than . As a consequence of Lemma 3.2, this means that , that is, Phase L, is optimal. 1 Dashed lines and correspond to values of the control equal to , in Phase A and Phase B respectively. The yellow zone represents values where the optimal control is , whatever the phase. In the zone outside it, .

Evolution of adjoint variables

1 In terms of "cleaned" and "dirty" carbon consumption (see Footnote 5 of Chapter 2 on page 7), the blue zone corresponds to the consumption of only renewable energy ( ), the zone labeled "A" (below the red line and to the right of the blue zone) corresponds to only dirty carbon consumption ( ) and the zone labeled "B" corresponds to only cleaned carbon consumption ( ). Mixed consumption is possible only when costate variables move on the boundary of these zones. These correspond, respectively, to the stationary Phase S (Lemma 4.2), and to the limiting values in terminal Phase P when (see (4.1.9) on page 33). Finally, point has been introduced in (3.5.12). It is shown in Lemma 4.4 that this point corresponds to a stationary solution in the specific case . In every case, it is a repulsive point for the dynamics of in Phase Q: in this phase the adjoint variables move on the red line away from point . See the discussion of Section 3.5.2 on page 25. Observe that the elements in black and red on Figure 4.2 depend only on cost parameters ( , , , ) and , whereas blue and green elements depend only on , and . This separation is not perfect though, because is determined by the cost function and the special consumption value , which itself is defined with , and .
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Depending on values of the parameters, the green line may enter the blue zone Phase L either by its horizontal boundary, or by its vertical one. In the first case, the corner of the Phase L zone is below the line, which translates as: where has been defined in (3.5.22). This is the situation represented in Figure 4.2, see also Figure 4.5. The other situation is represented in Figure 4.3 on page 51.

Regular junctions

For some values of , optimal trajectories in the interior can be in Phase A and join continuously (both for state and adjoint variables) the boundary. We review these cases in this section. In all of them, imposing the continuity of at the junction point is sufficient for obtaining a solution.

Junction with Phase P

Lemma 4.10. Assume that Assumption 1 holds, that convex and that . Then the following trajectory is optimal. The trajectory is in Phase A, characterized by , ,

and , given by Equations (3.2.4) and (3.2.5), for , where solves the equation . Then the trajectory continues in Phase P as described in Lemma 4.1.

Such trajectories are illustrated for instance in Figures 4.11 and 4.12 on page 61.

Proof. Since the trajectory described here is continuous, with piecewise continuously differentiable and , we will apply Corollary 3.1. It is necessary to check that the constraints and are satisfied on the trajectory. Observe that in both Phases A and P, . It is therefore a continuous function on the trajectory. In Phase P, so that . Since is decreasing in Phase A, so is and we have for all : . Likewise, in both phases A and P, and it is positive in Phase P, hence at time . A straightforward variation analysis based on observations in Section 3.2.1 reveals that the general behavior of is as follows. Starting from , starts from then increases, then decreases, goes through 0 and tends to when . Therefore, it is necessarily positive on the interval since it is positive at the end of the interval.

Observe also that when in Phase A, we have , which justifies the idea that there are initial values , , such that ( given by (4.4.1)) has actually a solution. Since in Phase A we have and is decreasing, is decreasing as well. Its value at is . Then we can write (remember that ):

Since is also decreasing in Phase A, it is always larger than . Then all three terms in this expression are positive. They all vanish at , which means that : the trajectory joins the ceiling tangentially. See also Section D.1 in the Appendix, page 98. The set of initial positions of trajectories which satisfy Lemma 4.10 is limited by the particular trajectory which joins point (when ) or point (when ).

Junction with Phase Q

The geometric position of also allows to construct consistent continuous trajectories where Phase A joins Phase Q. Lemma 4.11. Assume that Assumption 1 holds, that convex and that . Then the following trajectory is optimal. The trajectory is in Phase A (see its equations in Lemma 4.10) for , where solves the equation . Then the trajectory continues in Phase Q as described in Lemma 4.4 (if ), or Lemmas 4.7 and 4.9 (if ).

Such trajectories are illustrated for instance in Figure 4.8 page 57, Figure 4.12 page 61 or Figure 4.17 page 64.

Proof. The proof is similar to that of Lemma 4.10, with the difference that instead of being positive. One concludes nevertheless that and are both positive.

Junction with Phase R

It is also possible to construct consistent continuous trajectories where Phase A joins Phase R.

Lemma 4.12. Assume that Assumption 1 holds, that convex and that . Then the following trajectory is optimal. The trajectory is in Phase A (see its equations in Lemma 4.10) for , where solves the equation . Then the trajectory continues in Phase R as described in Lemma 4.8 or Lemma 4.9.

Such trajectories are illustrated for instance in Figure 4.17, page 64 or Figure 4.20, page 66.

Proof. In Phase R, is constant and , given by Equation (4.3.14), is increasing. According to Lemmas 4.8 and 4.9, the trajectory in Phase R finishes either in Phase Q of in Phase P, with the continuity of and , and therefore of . This function either vanishes at or is positive at . It is decreasing, therefore it is positive in Phase R (see an illustration in Figure 4.16 or Figure 4.19). The same reasoning as for the proof of Lemma 4.10 can be applied, to conclude that and are both positive.

The following observation will be useful later on: for all in Phase R, and in particular for , , where . This is a consequence of the explicit formulas we have obtained for , in (4.3.11) when , or (4.3.14) when .

Junction with Phase U

It is also possible to construct consistent continuous trajectories which are in Phase A, then hit the curve , then follow this curve in Phase U. We have two ways to prove that such a trajectory is optimal: one with the constraint explicitly taken into account, one without it. Several features are common to both cases.

In both situations, suppose that an optimal trajectory follows the curve during the time interval . At time , the value of is . At time , a trajectory coming from the interior in Phase A hits the curve . Considering for instance the related finite-horizon problem (see Section C.1.2.2 on page 94) allows to "guess" that (4.4.2)

In addition, the dynamics of provide the duration , which is the time it takes for the trajectory to reach starting at . Also, since , ( adjoint variables end up at point . During their evolution before time , these trajectories may actually be in one of three possible phases, according to the sign of (Phases A or B), and to whether the consumption is larger or smaller than (Phase L). Again, two cases must be distinguished: whether or . We investigate the first situation in Section 4.4.3.1, and the second one in Section 4.4.3.2.
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Junctions passing through point

The situation of adjoint variables when is represented in Figure 4.3. It is assumed that a family of trajectories of terminate at some time with the same value of , represented as a horizontal dashed line.

As observed in Section 4.4.1, in the situation where , the green line enters the Phase L zone by intersecting its vertical boundary. In that case, whenever the point is in Phase B, is increasing. Figure 4.3 displays a particular value which is such that when , the trajectory of goes precisely through the corner of Phase L. Two types of trajectories are possible: either and Phase A is followed by Phase B (tagged as (AB) in the figure), or and the phases are A, then L, then B (tagged as (ALB)). In the limiting case , Phase L is just "touched" at a single point in time. These observations can be used to prove the following result. Lemma 4.14. Assume that Assumption 1 holds, that convex and that . Let be an arbitrary time instant. Let be the value of when the optimal trajectory described in Lemma 4.9 starts from point . Then for every , there exists an optimal trajectory in the interior of Domain which ends up at at time , and such that .

Proof. Once again, we use Corollary 3.1 by constructing adjoint variable functions continuous and continuous except at , with a jump in the positive direction at . The phase this trajectory is in depends on the value of as explained in Section 4.4.1. This guarantees the consistency of multiplier . The consistency of multipliers and can be deduced from the graphical configuration of Figure 4. 

Description and classification of optimal trajectories

We are now in position to describe the optimal trajectories in the different cases. First of all, compiling the optimality results stated in Lemmas 4.1-4.15, we see that several threshold values for have been identified:

These are respectively defined by (3.5.27) (see also Section 4.1), by the solution of (4.3.16), and in (4.3.6).

The three thresholds define four intervals for . We call these situations respectively: " small", " medium-inf", " medium-sup" and " large". Some qualitative features of the optimal trajectories are summarized in the following We describe these four cases next, with the help of diagrams in the state space and in the space of adjoint variables . See Section 4.4.1 on page 45 for the general description of such diagrams. In addition, we make the convention that, for some phases and , point on a state space diagram generally mark where the state moves from Phase to Phase .

They correspond to points on the corresponding adjoint variable diagram: these represent the location of the adjoint variables when the state is . Point represents the location of the adjoint variables when the state trajectory passes through or stays at this point.

Small ( )

When , the situation is represented in Figure 4.7 on page 57 (for the evolution of over time), Figure 4.8 (for the evolution of over time) and Figure 4.9 on page 58 for the correspondence between the evolution of , and that of consumption.2 See also Figure 4.10 for the particular case . The results relevant to these figures are Lemma 4.2 (p. 34) and Lemma 4.15 (p. 52) and the discussion following it.

The figures display four "typical" optimal trajectories, labeled from (I) to (IV). Figure 4.7 shows in addition the different elements already described in Figure 4.2 (Section 4.4.1). Figure 4.8 shows also, as a dashed red line, the locus of states where there is a transition from Phase A to Phase B.

The typical situation can be summarized as follows:

Phase A A trajectory starting with small enough will follow a state and an adjoint path as the ones labeled with I in Figures 4.7 and 4.8. The adjoint path and the consumption/capture path is represented in Figure 4.9. Capture is 0, and will increase and decrease, until hits the ceiling. Both and are decreasing in this phase. At some point in time, simultaneously, and . The trajectory enters Phase Q.

Phase Q Next, the trajectory stays at the ceiling in Phase Q: capture occurs according to Equation (4.2.3):

. Since increases towards , the gap between and decreases over time. It is not possible for the optimal trajectory to stay on the boundary until , as explained in Section 4.5.5.2, page 67. There exists therefore a point (labeled in Phase B A trajectory with initial position close enough to but not too close to the curve will be in Phase B. In this phase, capture is maximum, and the dynamics of is given by . Suppose for instance that . Then initially, is increasing and is decreasing, until . Then is increasing again. The adjoint variable is decreasing then increasing, and so is the consumption . There happens a time at which becomes null then negative, and decreases. The trajectory ends up at point in Phase S. See also Phase L If the initial state is close to the curve , then consumption of the nonrenewable resource, as it would be in Phase B, falls below . Equivalently, falls below . In that case, the trajectory is in Phase L, which is typically inserted between two periods in Phase B. This situation is not represented in Figure 4.9. In , points and coincide and are located outside the zone labeled as "L" (Figure 4.10). When , the point enters this zone, and it lies inside it when . In that case, it becomes geometrically possible for the point to move on the line to a position where . However, it does not do so as long as . Indeed, the value of is defined in Section 4.3.2 on p. 43 as the value of such that point is located both on the line and the boundary . Figures 4. 11 and4.12 exhibit four trajectories, labeled as (I) to (IV). These trajectories go, respectively through phases A/P, A/Q/P, A/S/Q/P where Phase S is limited to a passage through point , and phases A/B/S/Q/P. The possibilities A/B/L/B/S/Q/P and A/L/B/S/Q/P also exist (as explained in Section 4.4.3.2) but are not represented. We now describe these curves.

A typical trajectory starting with a moderate value of (labeled as (II)) has the following features.

Phase A It starts in the interior of the domain in Phase A. The evolution of is that of the "free" trajectories (3.2.4)-(3.2.5). While always decreases, decreases, then increases again.

Phase Q If the initial value of is large enough, the value of , which is negative in Phase A, eventually vanishes. At that moment, the value of hits the ceiling . The trajectory then continues in Phase Q: atmospheric stock at the ceiling, with some capture .

In Figure 4.11, the point representing the adjoint variables moves on the red line which represents . It moves upwards because since the point is located above the green line which represents .

Eventually, the value of vanishes and the trajectory enters Phase P.

Phase P Phase P is terminal: the states moves asymptotically to point ; the adjoint variables move to the point materialized as . At that location, we have simultaneously and , corresponding to a consumption of (see also Figure 4.1).

The dashed line which passes through and in Figure 4.11 is the trajectory of the adjoint variables in Phase P, which is actually independent of . It need not be a straight line in general, but it is indeed so in the "linear-quadratic" case developed in Appendix E.

A trajectory which starts with smaller values of (labeled as (I) on the figures) will follow Phase A in the interior of the domain, but will enter directly Phase P. At the contact point with the boundary , the trajectory is tangent, as explained in Appendix D and Section 4.4.2.1. On the other hand, a trajectory starting with a large value of (labeled as (IV) on the figures) will get close to the boundary and has the following features.

Phase A It starts in the interior of the domain in Phase A as before. However, either reaches the critical value or reaches the critical value . In the first event, the trajectory enters Phase L; in the second event, it enters directly Phase B.

Phase L Consumption

falls below the level . Consistent with Lemma 3.2 on page 23, it becomes optimal to set and consume . The state variables evolve along "free" trajectories, as well as adjoint variables. Eventually, becomes positive and increases to become equal to . At that moment, the trajectory enters Phase B.

Phase B Capture is maximal. This piece of trajectory ends up at point with a value of corresponding to a consumption . The value of however depends on the trajectory. The smaller it is, the closer the trajectory gets to the limit .

Phases Q and P From the point , the trajectory enters Phase Q. There is a discontinuity in the value of (represented as a thin line in Figure 4.11) so that , which is negative in Phase B, becomes null in Phase Q. The evolution is similar to the situation described previously. Eventually, the value of vanishes and the trajectory enters terminal Phase P.

One particular trajectory (labeled as (III) on the figures) joins with the boundary precisely at point . On this trajectory, the adjoint variables are continuous.

Medium-sup ( )

The situation is represented in Figure 4.16 for adjoint variables and Figure 4.17 for state variables.

In that case, the point is located on the boundary of the zone L, which corresponds to the fact that a Phase R appears on the boundary . In Figure 4.16, a point appears. Relevant results are Lemmas 4.1, 4.9, 4.10, 4.11, 4.12 and 4.13. In that case, the scenario above is modified as follows, for initial values of large enough: Phases Q and P It becomes optimal to use capture. As decreases, capture decreases also and eventually vanishes: the trajectory enters terminal Phase P at point .

P ) S ) λ Z λ S γ = 0 c x -p ζ c s + c x -c y ζ c s + c x -p ζ λS = 0 (I) (II) (III) (IV) L A B Figure 4.11: Evolution of , case S m 0 0 Z S M A P Z S Q S QP S B (III) (IV) (II) (I) L U Z < Z s = 0 y = 0 Z < Z s = ζx y = 0 y = ỹ x = 0, s = 0 Z = Z(S) Z = Z s = 0 y = 0 x = 0, s = 0 Z = Z ζx > s > 0 y = 0 y = ỹ Z < Z(S) ( 
See Figure 4.15 for the boundary case . In this last case, the points (which is also ) and coincide. Phase R just vanishes.

Large ( )

When , Phase Q disappears completely, as well as Phase B. Actually, capture is so expensive in this case that at all times. The model is equivalent to one where capture is not possible at all.

The situation is represented in Figures 4.19 (for the evolution of over time) and 4.20 (for the evolution of over time). See also Figure 4.18 for the boundary case . Relevant results are Lemmas 4.1, 4.8, 4.10, 4.12 and 4.13. The description of a typical trajectory is quite similar to the case ("medium-sup "), except that there is no Phase Q. When in Phase R, as decreases from to , consumption increases from 0 to while decreases from to 0, their sum being always . The trajectory then continues in Phase P as before.

Trajectories starting from smaller values of will have a succession of phases A/R/P or just A/P.

Direct arguments for the case

This section gathers additional observations on the case where is small. This is the case where Phase S is the terminal phase, and we develop in Section 4.5.5.1 an elementary argument for this (elementary in the sense that it does not use adjoint variables). It is also the situation where optimal trajectories may leave the boundary , and we develop an argument for this in Sections 4.5.5.2 and 4.5.5.3.

Z < Z s = 0 y = 0 Z = Z s = 0 y = 0 x = 0, s = 0 y = ỹ Z = Z ζx > s > 0 y = 0 Z = Z x + y = ỹ s = 0 (III) (IV) (II) (I) S UR S QP R Q P Z Z 0 0 S m S M S A S RQ U Z = Z(S)

An interpretation of threshold through a perturbation analysis

An interpretation of the value derives from a local perturbation of trajectories close to the point , as follows. Consider the reference situation where , , and (see Section 4.1.2). Assume that on the time interval , the consumption is modified into (constant over time) and the capture computed so that the constraint still holds. Then since , we must have:

As a consequence, we have is constant on the interval, and . On interval , capture is restored to the nominal level , and consumption is such that : it is therefore As a consequence, on the interval, and . On the interval , the difference in the sum of discounted net surplus between both trajectories is On the other hand, assuming that is also small, If the reference trajectory is optimal, then must be positive. Asymptotically when and tend to 0, this means:

d d c x -c y ζ λ Z λ S c x -p ζ λS = 0 λS < 0 γ = 0 Line (λ (P ) Z , λ (P ) S ) λS > 0 c s + c x -c y ζ A L B P ∞ P RP P AU P UR Figure 4.19: Evolution of , case S m 0 0 Z S M P Z S R S ỹ U A Z = Z s = 0 y = 0 x = 0, s = 0 Z = Z s = 0 x + y = ỹ y = ỹ S RP S UR Z = Z(Z) Z < Z(S) s = 0 y = 0
The value of has been chosen positive, and the value of must be positive also: otherwise the trajectory would not be admissible. We conclude that necessarily, .

Non-optimality of joining Phase Q and Phase S: a necessity argument

In this paragraph, we develop the argument that no optimal trajectory consists in Phase Q joining Phase S. We have seen that Phase S can be terminal only if . Moreover, we know that if , every point with is stationary, so that Phase Q cannot be followed by Phase S. We therefore assume that . The argument is based on the fact that when the adjoint variables of optimal trajectories have jumps, the sign of these jumps is related to the constraints that become binding or cease to be so. A relevant result is (4.19) in Sethi & Thompson (2000, p. 107), which provides necessary conditions for an optimal trajectory. This theorem applies to pure state constraints (we use the notation of Section 2.1 instead of that of [START_REF] Sethi | Optimal Control Theory[END_REF]), with "as many times continuously differentiable as necessary". It states that there must exist a vector of costate variables and a positive function such that in particular, at each entry or contact time of an optimal trajectory with the constraint , the the "jump condition" (see (2.3.18)) is:

We can apply the theorem to the constraint which is . Consider an optimal trajectory with initial condition at some arbitrary time , with . Let be such that . Since the constraint is then there exits such that: The value of state is the same for all trajectories.

Optimal trajectory on the ceiling. Finding the optimal control when the constraint is enforced is the topic of Appendix C.1.3 on page 95. The value of an optimal trajectory is given by (cf. The difficulty is that the value is expressed as a function of and we need it as a function of . The relationship between both variables is not explicit: we will need to approximately express as a function of when is close to . We first expand as a Taylor series at . Differentiating, we get successively: Since , and , these derivatives evaluate at to:

The Taylor expansion of writes then as:

(4.5.8)

Using again the fact that , a Taylor expansion for is:

(4.5.9) Substituting (4.5.9) into (4.5.8), we get: At this point, we have verified that the proposed trajectory is feasible: it stays in the domain of constraints, and the control associated to it is valid. Moreover, it starts in state at time and ends up in state at time . We now turn to the evaluation of the value of this trajectory. It is (cf. (4.5.6)):

where and d

Computing the Taylor expansion of turns out to be cumbersome, because an expansion to order 5 is necessary. We use a different approach, after a small preparation aimed at shortening later computations. Let us introduce the function such that:

Note that . Replacing in the expression for , we obtain successively, d d d (4.5.12)

In the last expression, we have used the fact that , which implies . Integrating by parts, we have: , we obtain:

This expansion is the one announced in (4.5.5) with the term made more precise.

Final comments. Some observations resulting from the analysis:

1. The time each trajectory takes to reach the final state is expressed as a function of . When the ceiling is followed, we have , whereas for the constructed trajectory, . This last trajectory takes therefore more time to reach the final state, during which slightly more utility is accrued. 3. We have selected the relationship between and as , being guided by the analysis of Phase B in Appendix D.2.2. Alternately, one may choose a general relationship , and conclude that the optimal choice of parameters is and as above.

Extensions and concluding remarks

We conclude this analysis with several comments related to particular values, limiting cases or extensions of the results.

Finite storage capacity

If the sequestered stock is assumed to have a maximal capacity , additional phases appear when . Assume that so that sequestration is effectively possible. We briefly sketch the construction of solutions in this case, under the condition . When , optimal trajectories are obtained by simply restricting the trajectories previously obtained to . Indeed, it turns out that is monotonously decreasing on every optimal trajectory. (bottom) in presence of a limit on sequestered stock and , . In every situation where was found to be optimal, it is still now with the choice . When , together with was found to be optimal (Phase L or Phase U), then it has to be replaced with and we must set which is indeed positive. But then along such optimal trajectories, instead of . Therefore, when "gluing" pieces of trajectories, we must substitute to . For instance, in Figure 4.3 representing adjoint variables, the zone "L" must now be defined by and .

Finally, there is the situation of Phase R, where and was found to be optimal. If , we must have and the situation is the same as described in Section 3.5.3, with . Since is determined by (3.5.18), the constraint imposes now

If , then we have with, by Equation (3.5.18), . For , which amounts to say:

, we see that so that . Accordingly, on diagrams representing the the evolution of (see the generic Figure 4.2 on page 46 and its specialization in different cases), the line must be translated down (assuming logically that the cost is positive) since its equation is now . The geometric locations , and are therefore changed, providing respectively the new stationary values for Phase S, Phase P and Phase Q:

The discussion of the different parametric cases then goes along the same lines as when . In particular, the value of which separates the case where Phase S is terminal and where it is not, is determined by the condition (see Figure 4.10 on page 59). We obtain now:

Complements on capture costs

Assumption 1 includes the assumption that . The case is also interesting from the Economics standpoint, in the sense that it allows to concentrate on the impact of the externality provoked by the leakage of sequestered . Analyzing the case is also relevant, be it for the sake of completeness.

When

, Lemma 3.1 does not apply. It was concluded that, when , the fact that implies . Consumption of resources must then be and . The will result in the representative agent finding this stationary trajectory optimal as well.

Returning to the social planner's problem, this suggests that the solution computed in Lemma 4.2 is not the unique solution to the problem. Any solution with a costate variable satisfying should also work. The value of is not uniquely defined in this situation. By extension, when considering a trajectory that starts in a different state but ends up in state , the value of when the terminal state has been reached, is not uniquely defined either. We can use as terminal value for the value it takes just before entering the terminal state, thereby avoiding a jump in this function. It is possible to check the Hamilton-Jacobi-Bellman identity from (E.2.10), as well as the identity from (E.2.10) and (E.2.5). Also, it is verified that .
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 21 Figure 2.1: Flows and stocks of energy and pollution
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 22 Figure 2.2: Assumptions on marginal costs

  The case models the situation where reservoirs do not leak. This model is studied in Lafforgue et al. (2008a), which actually considers the case of multiple reservoirs with different sequestration costs. Each reservoir has a finite capacity. The flow of clean energy is never binding, which is equivalent to assuming that . In Lafforgue et al. (2008b), only one reservoir is considered, it has a finite capacity , and in addition the maximally available flow of clean energy is possibly binding.
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 23 Figure 2.3: Admissible pairs

  3.2)-(2.3.4) and the dynamical system (2.3.10)-(2.3.11)

( 3 .

 3 5.9) (3.5.10) Finally, we also have the following expressions for : Let us focus on the trajectory of the adjoint variable vector . If it happens that (3.5.11) then both quantities are constant and the system (3.5.9)-(3.5.10) is stationary at point (3.5.12)

  necessary that . The dynamics of adjoint variables are integrated explicitly as: d It follows that: Consider an initial condition at time , such that . The dynamics of Phase R imply that: d Eliminating the variable as:

  in turn provides the value of the multiplier: from the first-order condition (3.5.25) we obtain (3.5.26) where we have defined the particular value for : (3.5.27) The value of is constant over time. It is positive if and only if .

( 4 . 1 . 1 )

 411 In this last expression, both terms are negative. The second one tends to 0

Lemma
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 4 Figure 4.1: Phases on the boundary for : optimal controls as state feedback

Figure 4 .

 4 Figure 4.2 represents the phase diagram of adjoint variables governed by equations (3.2.2), together with several particular values, curves, zones and locations.Trajectories of are represented as blue lines. They all reach their minimal value on the green line of equation , which is the locus of points where . When above this curve, increases, and it decreases below. In all cases, is decreasing. The zones corresponding to Phases A and B are delimited by the red line . Phase A is below the line, Phase B is above it. The zone corresponding to Phase L is represented in blue. It is separated from Phase A by the line (corresponding to ) and from Phase B by the line (corresponding to ). Inside this blue zone, the value of as given by first-order conditions of Phase A or Phase B is less than . As a consequence of Lemma 3.2, this means that , that is, Phase L, is optimal. 1 Dashed lines and correspond to values of the control equal to , in Phase A and Phase B respectively. The yellow zone represents values where the optimal control is , whatever the phase. In the zone outside it, .
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 4242 Figure 4.2: Trajectories of adjoint variables through phases A, B and L
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 43 Figure 4.3: Trajectories of adjoint variables through phases A, B and L,
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 4 Figure 4.4: Trajectories of state and control in Phase B just before joining Phase S: over time (top); in the state space (bottom)

Figure 4 . 6 :

 46 Figure 4.6: Trajectories of the state through phases L, B and S

Figure 4 .

 4 8) where the trajectory leaves the boundary and enters Phase B. This particular trajectory is labeled as (II) and represented as a continuous blue line in Figures 4.7 and 4.8.

Figure 4 .

 4 4 on page 53. Some trajectories, as the one labeled (III) in the figures, follow a sequence of phases A/B/S. They do not reach the ceiling before the final phase . The red line in Figure 4.8 is the separatrix of Phase A and Phase B.

Figure 4 .

 4 7, it corresponds to trajectories of the adjoint variable entering the zone colored in light blue. During this Phase L, and .Some trajectories, as the one labeled (IV) in the figures, follow a sequence of phases L/B/S.Phase S All trajectories terminate at the point , where they stay forever. The values of , as well as , and are constant in that phase: they are given in Section 4.1.2. These terminal values correspond to the point marked as in Figure4.7.
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 4 Figure 4.7: Evolution of , case
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 4 Figure 4.12: Evolution of , case
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 4 Figure 4.14: Evolution of , case
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 44 Figure 4.17: Evolution of , case
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 4 Figure 4.20: Evolution of , case

( 4 .

 4 5.10) The value of is obtained from (C.1.13) and (C.1.14) as:

  vein, we have the following property, which we shall use later: d d (4.5.14)Replacing in (4.5.12), we obtain the new expression:d dWe now proceed with the expansion of the integrals in this expression as , (4.5.14) in the derivation. Gathering the different parts and replacing with and with

2 .

 2 Using the function is also possible in the analysis of Phase Q trajectories. Introducing it in (4.5.7), we write successively, with (4.5.13), d d d A Taylor expansion of the integral leads to (4.5.4).

Figure 4 .

 4 Figure 4.21: Trajectories of (top) and (bottom) in presence of a limit on sequestered stock

Figure 4 .

 4 Figure 4.22 represents the new situation in the case "large", to be compared with Figure 4.1.The value of the total energy consumption has also been represented: this value is not bounded below by anymore, but instead by . The situation for other values of follows. Observe that the threshold values and identified in the analysis are changed also.
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 4 Figure 4.22: Optimal control as a state feedback of , in the case where a limit exists, and in the case

A. 2

 2 Phase B (free extraction of the NRR; maximal sequestration)

  , Theorem 11, p. 385).Applied to our problem, these theorems provide respectively Corollary 2.1 below and Corollary 2.2 in Section 2.3.4. In order to state them, we first give the detail of the correspondence between the notations of the theorem and that of our problem.

	h) for each Proof. We shall check the conditions of Theorem 2.1, using the correspondence of notation detailed and ,
	above. Using Lemma 2.1, it is possible to choose the set	of Theorem 2.1 as
	. It is a convex set. We have a state ( The pair is admissible, by assumption. In addition, we define the vector (2.3.18) ) and a control ( ). The cost function is
	functions	and	and the dynamics are specified by (2.2.2). The constraints . By assumptions on and , is piecewise continuous
	are enumerated as (omitting the argument and piecewise continuously differentiable, and is piecewise-continuous. We now check ):	to .
	i) for each a): given the definition of , continuity and differentiability are satisfied from Assumption 1. and , ,
	j) for each Then we have	and	,		, and		if	,
	k) and for all admissible These correspond, respectively, to constraints (2.2.6) and (2.2.7) ( and ), (2.2.8) and (2.2.9) , ,
	then the pair ( and ), (2.2.5), (2.2.3), and (2.2.4). We have is catching-up-optimal. priori on the behavior of the state trajectory as By Assumption 1, and thanks to the fact that The constraints have some specific features: they are all linear, and they depend either on and . There are no constraints a . In other words, we take on the set , these derivatives exist . and are continuous; is linear hence ; this is the case also for constraints , ; The second statement is that of Seierstad & Sydsaeter (1977, Theorems 6 and 10), where the notation " " replaces the original notation " ". control variables, or state variables, but not both. As a consequence, partial derivatives are constant, some being null. Also, the constraints expressed in (2.3.18) and requirement of b): the constraints , are also linear, hence ; Theorem 2.1 (Seierstad & Sydsaeter (1987), Theorem 11). Consider the infinite-horizon optimal control problem: d where the state vector belongs to , the control vector Theorem 2.2 (Seierstad & Sydsaeter (1977), Theorems 6 and 10). Consider the infinite-horizon Theorem 2.1 involve disjoint sets of parameters : those can therefore be chosen independently. Concretely, evaluating (2.3.18) we obtain the simpler requirement: for c): the constraints are all linear, hence concave, hence quasi-concave; (that is, for optimal control problem: ), d): the inequality of this requirement is satisfied with equality, since Equations (2.3.2)-(2.3.4) d are equivalent to the assumption ; belongs to some fixed convex set , and with initial conditions . Assume that admissible trajectories where the state vector belongs to , the control vector belongs to , and (2.3.19) e): is also satisfied by assumption, since Equations (2.3.9)-(2.3.11) are equivalent to the as-
	must satisfy the vector of constraints: with initial conditions . Assume that admissible trajectories must satisfy the vector of Each state variable appears in exactly one of the constraints , sumption ; and , which leads to: constraints: f): the Hamiltonian of the problem is given by the two first lines in the Lagrangian (2.3.1). It
	is a linear, hence concave, function of the state		(although not strictly concave),
	as well as the terminal conditions as well as the terminal conditions Assume that: Equivalently, since and a concave function of the control according to requirement , , , thanks to the concavity of the function . in Assumption 1. The Hamiltonian is therefore a concave function of ;
	a) , are continuous on the set g): is satisfied, consequence of conditions (2.3.5)-(2.3.14);	, where	(2.3.20)
	and no condition for Assume that: . If there exists an admissible pair h): by assumption, and are continuous, hence (2.3.18) (or the equivalent (2.3.19)) holds . , together with a continuous and piecewise con-On the other hand, requirement boils down to: for by choosing . By assumption (2.3.22) on the jumps of , it is sufficient
	a) , and continuous. tinuously differentiable vector function for have derivatives w.r.t. and , and that these derivatives are , and a piecewise-continuous function such that, defining to choose in order to have and comply (2.3.21) with (2.3.18);
	b) and this is satisfied with equality, choosing is for , i): is satisfied with equality by setting	,	,	. (see the preliminary discussion);
	c) If there exists an admissible pair is a quasi-concave function of wise continuously differentiable vector function , for all and , together with a piecewise continuous and piece-. with jump points , a piecewise-continuous function and vectors , , in such that, defining the following conditions hold for all where and j): is satisfied trivially for by the choice made in . Likewise for by picking Corollary 2.1. Assume there exist: . Given the choices of in , and the assumption on jump instants which are continuous: b) , a vector of continuous functions specifies that the constraint is always bound after the jump, we indeed have and , a bounded vector function , satisfying equations (2.2.2)-(2.2.9), since ;
	c) k): since the state variables , a vector function uously differentiable, and tions (2.3.15)-(2.3.17) imply respectively , and are bounded by the system of constraints, Condi-such that and are continuous and contin-piecewise continuously differentiable, a piecewise-continuous
	d) for virtually all , and all d) the Hamiltonian is concave in vector function for all , (2.3.9)-(2.3.11) for virtually every , and conditions (2.3.15)-(2.3.17), , , and differentiable at , satisfying equations (2.3.2)-(2.3.14) , , e) and if , for all , a sequence of time instants , where and , such that
	e) for virtually all , f) is a quasi-concave function of is continuous except at the , and , and differentiable at ,	for all	,
	f) the Hamiltonian is a concave function of g) and for all admissible ,		, for all ,	,	(2.3.22)
	g) for all and then the pair Then the pair	, is catching-up-optimal. and is catching-up-optimal for the criterion (2.2.1). if ,

  We discuss further this situation in Section 4.6.4. Next, we rule out the possibility that both the renewable resource and the nonrenewable resource be used at the same time.

	We observe that in the case	, the reasoning above leads to the conclusion that
	if . Lemma 3.2. Assume that and if . Consider a piece of optimal trajectory located in the interior
	of the domain . Then either	or	but not both.
	Proof. Again, the first-order conditions are necessary. Assume by contradiction that	and
		. Then	and the first-order conditions (2.3.2)-(2.3.4) reduce to:	and
						(3.3.3)
						(3.3.4)
	According to Lemma 3.1 (which is applicable since	and	), either	and	,
	or	and	. In the first case, differentiating Equation (3.3.4) gives	or
	equivalently with (3.2.2):		
	Lemma 3.1. Assume that	. Consider a piece of optimal trajectory located in the interior of
	the domain , such that	. Then for every time instant , either	, or	.
	Proof. By definition of the interior of the domain, no state constraints applies and the first-order
	conditions are necessary, see Section 2.3.5. Assume by contradiction that	. Then
	by (2.3.5) and (2.3.6), we have	. Then, (2.3.2) reduces to:
						(3.3.1)
	Differentiating, we must have, over some time interval,	. Using (2.3.10) and (2.3.11),
	this implies in turn that		
						(3.3.2)
	because	. Replacing in (3.3.1), we find that necessarily,	. If	, this is
	not possible since	. If	, the adjoint variables are necessarily constant and equal to:
	However, these functions do not solve the differential system (3.2.2), unless	. This is excluded
	by assumption, hence the contradiction.	

table ,

 , 

					according to the intervals where	lies. For
	instance, when	goes from 0 to infinity: Phase S is replaced by Phase P when	goes through
	. Phases Q and L disappear and are replaced by Phase R when	goes through	. Finally,
	Phase Q disappears when	goes beyond	.	
	Range of		0		
	Limit point				
	Continuity of		n		n	y	y
	Simultaneous use of and	n		n	possible	possible
	Use of inside the domain	n		n	possible	possible
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	Bibliography		
	The value of	is expressed from (4.3.7) and the value of	in (E.2.3) as:
				(E.3.1)
	Next, the value of	is, using (E.1.3),
				(E.3.2)
	As a particular value, we can evaluate	, see Figure 4.1. We have:
	where we have used the value of	obtained in (E.2.3). This is of course consistent with the
	general relationship which prevails in Phase P:	. Next, the dynamics of	are
	integrated with (4.3.1) as:	
			d
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c.f. Van der Zwaan (2005), Van der Zwaan & Gerlagh (2009) and Van der Zwaan & Smekens (2009).

The contributions of Lontzek & Rickels (2008) et Rickels & Lontzek (2012) are relevant in the context of an underwater sequestration. The study of Augeraud-Veron & Leandri (2013) specifically focuses on the time lag aspect of the sequestration.

This self-regeneration effect may be seen as some kind of leakage of the atmosphere reservoir towards some other natural reservoirs not explicitly modeled in the present setting. For models taking explicitly into account such questions, see for example[START_REF] Lontzek | Carbon Capture and Storage & the Optimal Path of the Carbon Tax[END_REF] or[START_REF] Lontzek | Carbon Capture and Storage & the Optimal Path of the Carbon Tax[END_REF].

This assumption is relaxed in Section 4.6.3.

Some authors use simultaneously both approaches.

As pointed out by Amigues et al. (2011), taking into account both small and catastrophic damages does not change the main qualitative characteristics of optimal paths.

The standard of the literature is to place assumptions separately on and on other parameters. This results in unnecessarily strong assumptions like Inada's .

Observe that even if the capacity of reservoirs were assumed to be unlimited, this would not mean that all the pollution could be captured and stored. Indeed, because of leakage and the resulting viability constraint identified in Section

2.3.4, only a maximum capacity can possibly be used. Disregarding the constraint consists in assuming that .

These assumptions on the control are also in the definition of Phase T and Phase U to be described in Sec-

tions 3.5.5 and 3.5.6, in which the state lies on the boundary of the domain .

The evolution of adjoint variables is depicted through their opposite values and which have interpretation in Economics as shadow prices.
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Remark: Actually, we can show that is increasing under the additional condition that is convex. Indeed, according to (4.1.13), we have:

We know that . On the other hand, it is shown in the proof of Lemma B.2 (page 88) that if is convex, then Therefore, is negative. As a consequence, is positive.

Terminal S phase

The assumptions made in Phase S are that: , and . According to the results of Section 3.5.4, the value of is constant as well, , and . Then, . This implies . Since here is assumed to be infinite, the values of the adjoint variables in (3.5.23) and (3.5.24) have to be replaced with:

The value of is still as in (3.5 We also know that . Thanks to Grönwall's lemma, we deduce that for all , and that is increasing. This implies in turn that is decreasing. Since it is positive at , it is positive for all . We now have the elements to prove the following result. Lemma 4.13. Assume that Assumption 1 holds, that convex and that . Let be an arbitrary time instant. Then for every , there exists an optimal trajectory with , , which runs as follows.

The trajectory is in Phase A (see its equations in Lemma 4.10) for , where solves the equation .

Then the trajectory continues in Phase U, with for all , and given by the solution to the differential equation (4.4.4) with boundary condition at .

Then the trajectory continues in Phase R and Phase P, or Phases R, Q, P, as described in Lemma 4.8 or Lemma 4.9 respectively.

Proof. In order to use Corollary 3.2, we construct a trajectory with continuous functions and . Fix some arbitrary with , . Continuous trajectories for and are provided for by Lemma 4.8 or Lemma 4.9, depending on the value of . In particular, from the analysis of Phase R (Section 4.2.3), we know the property that . Then, defining for as the solution of (4.4.4) with the boundary condition at provides a continuous function over the interval . We have checked in the computation above that and are both positive for all , and therefore for all . When , the trajectory is in Phase A, with adjoint variables continuous at . The proof that , , and are consistent is as in Lemma 4.10. The existence of a time at which is implied by the fact that , with and : since , trajectories in Phase A (taken backwards) necessarily exit the domain in finite time.

Solution without an additional constraint. We consider here the framework of Corollary 2.1, so that the unique state constraint explicitly enforced is . The dynamics of the adjoint variables are then that of Phase L, see Section 3.4.3. Accordingly, we have the following relationship between adjoint variables at the beginning and at the end of the phase: Two boundary conditions are enforced if we mean to use Corollary 3.1: is continuous at and is continuous at because at this point, no state constraint becomes active or ceases to be so. The value is "guessed" to be as in (4.4.2). Accordingly:

This last equation allows to express the value of in function of which is known from Lemma 4.8 or Lemma 4.9:

Next, we check the first-order conditions (2.3.2)-(2.3.3) over the time interval , Condition (2.3.4) having been checked in the preliminaries. We clearly have , so that , in accordance with (2.3.5). Finally, from (2.3.2), we have and indeed, since is increasing on interval and as shown above, we have in accordance with (2.3.6). In summary, we have constructed a trajectory as described in Lemma 4.13, with the difference that is not continuous but has a jump at time of magnitude Such a jump is compatible with condition (2. 

Singular junctions

The location of the boundary has a particular status. For one thing, we have seen in Lemma 4.2 (page 34) that there exist stationary optimal trajectories staying at that point: what we have called Phase S. This situation happens if and only if . We have identified in Section 2.3.5 that first-order conditions may not be necessary in this situation. When , the location ) is not stationary anymore, but may retain its "non-standard" character. This singular character lies in the fact that may have jumps at the time when state is attained, say, at time . This feature can be "guessed" using the finite-horizon arguments developed in Appendix C.1. When the "final" state of such an optimization problem is constrained to be , is necessarily continuous, but is not determined by sufficient conditions. There is however a lower bound on it.

In order to prove the optimality of such trajectories, we shall indeed invoke Corollary 3.1. Accordingly, we shall construct trajectories where the adjoint variable is continuous and where may have one jump at time . According to (3.1.1), such jumps may occur only upwards, that is, where is determined by the remainder of the trajectory. When setting to all possible values in the interval , we obtain a family of trajectories. For all of them, the state variables end up at point in Phase B, and the There remains to prove that the state trajectory is consistent. The argument is that both and are decreasing along these trajectories, which we prove by considering, backwards, the successive phases possible. First of all, we observe that . Indeed, it can be gathered from the proofs of Lemma 4.1, Lemma 4.7, Lemma 4.8 and Lemma 4.9 that the function is increasing for the optimal trajectory lying on the boundary for . But its limit when is (see the definition of in (4.1.9)). This value is smaller than when . The statement on is therefore proved. . Finally, is also negative for . The piece of trajectory in Phase B may be preceded by a piece in Phase L or Phase A. In both phases, is decreasing. Therefore it is always larger than . Also in both phases, . This is necessarily negative if . We have therefore proved the claim that and decrease over all optimal trajectories ending at . They are therefore consistent as long as . The condition determines the starting date and location of the optimal trajectory. Such a date necessarily exists, following the argument used in the proof of Lemma 4.13, whether trajectories exit (backwards) the domain when in Phase A or Phase B.

Junction with Phase S

For values of less than the threshold , the final phase is Phase S, stationary at point (Lemma 4.2 on page 34). The principle, used in Section 4.3, that optimal trajectories follow the boundary until the final phase, does not hold anymore. It turns out that optimal trajectory may leave the boundary and return to it.

The difficulty for proving the consistency of candidate optimal trajectories is here that optimal trajectories of the state happen to "turn around" the final point instead of reaching it in a straight, monotonous way. In particular, trajectories that start at a point will leave the line and later return to it. We discuss in Section 4.5.5.2 (p. 67) why going directly to while maintaining is not optimal. In addition to this odd behavior, the trajectories join the final point very smoothly, with order 2 or order 3 junctions. This makes the local analysis unusually involved.

The typical situation is depicted in Figure 4.4 (top), which represents an evolution of the system supposed to be in Phase B. The three curves represented are , and . These three functions take the same value at time where the point is reached. In the state space , the evolution is as in Figure 4.4 (bottom). According to the diagram, going backwards under these dynamics, the state possibly exits the domain . Such a trajectory cannot be entirely consistent. Indeed, depending on the value of , the phase is limited by one of the events: (a) ; (b) ; (c) ; (d) . We address these possibilities below. The proof that the general scheme of Figure 4.4 is correct, at least for a set of trajectories "close" to the point , is to be found in Appendix D.2.2, p. 101. The following lemma explains the form of optimal trajectories for the case , just before they reach the point . The statement refers to the values of adjoint variables in Phase S and the jump conditions which are in this case: Lemma 4.15. Assume that Assumption 1 holds and that . Let be an arbitrary time instant. Then there exists a positive constant such that for all , the following trajectories are optimal: This second inequality is satisfied when (see the definition of of below). The constant can be chosen such that this is the case for all . For the first inequality, it is easily shown that the function is increasing. Therefore, the instant at which is an increasing function of . Since the value of is strictly positive in Phase S (see Lemma 4.2 on page 34), the value of can never approach 0. Hence, the value of can be chosen so that, for all , for .

Informally, we now describe what happens on optimal trajectories before they enter Phase B, or when is outside the range specified in Lemma 4.15. The complete picture is shown in Figure 4.7 on page 57.

On Figure 4.5, we have represented the general situation for adjoint variables. As mentioned in Section 4. 4 In this section, we provide an argument for the non-optimality of a trajectory following the ceiling , through the comparison of trajectories. Specifically, we evaluate the value of a trajectory constrained to stay on , starting from some and ending in , and optimal within this set of constraints. Next, we evaluate the value of a specifically constructed trajectory, also starting from and ending in , but which behaves much like trajectories in Phase B, without being necessarily optimal. When is close to , we arrive at the following asymptotic expansions: (4.5.4) (4.5.5) where and . Since is asymptotically smaller than when , it follows that there exists a range of values for such that . Indeed, from the expressions above, we have, as ,

The term in brackets is necessarily strictly positive on some interval for . For initial values of in this interval, the trajectory in Phase Q is outperformed by the special trajectory "(C)".

Preliminary: value of a trajectory. All trajectories considered in this paragraph start from some state at time , and eventually reach the state at time . The value of this trajectory is then: d We have introduced the notation . By assumption on , . Since by assumption, we have . On the other hand, from (4.5.9), we can solve "approximately" this equation for as a function of . We obtain, remembering that and since :

When replaced in (4.5.10), we obtain after simplification:

Summing up, we have proved the expansion (4.5.4) with the constant which is strictly negative as announced.

A trajectory leaving the ceiling. We now construct and analyze a specific trajectory generated by a control as in Phase B, that is, where . Throughout the computations, we repeatedly use the identity . We start with the choice of and we successively deduce and . We begin with defining:

a negative time value since . Then, define, for , (4.5.11)

Clearly, . On the interval , . Since is of order , the function is positive on the interval when is sufficiently small. According to the dynamics of , we must have It is readily verified that and . Next, the dynamics on provide the value of the control : Since and is of order , it follows that the term in parentheses can be made as small as needed by a proper choice of . Therefore, for sufficiently close to 0, the function is positive for and the control is admissible.

Stationary states. Assuming that and are constant, and solving the system of equations , we obtain in general the constant consumption and capture: Therefore, if such a phase exists, we must have a constant consumption:

As in Phase B, the first-order conditions imply , then

Accordingly, with the notation , the value of is constant at:

As previously, since is constant, we must have:

The constraints and are satisfied as long as is in the interval defined by:

Connection with other phases. When , the phase where cannot be terminal. It must therefore be connected with other phases.

Obviously, the optimal trajectories we have described in the case are still optimal if they lie entirely in the domain . Consider the case : these trajectories are represented on Figures 4.8 and 4.7 on page 57. We focus on trajectories in Phase B that end up at point at some time instant . Those are parametrized by the value . Consider some value . To it corresponds a consumption , a price and a value . Pick a value , and follow backwards the corresponding trajectory. There exists a time such that . Then, if is not too large, there exists some for which . Since , the trajectory is such that : it is therefore tangent to the line . It is possible to glue the piece of trajectory with with the trajectory in Phase B at this point. Going backwards in time, the trajectory of adjoint variables moves on the line until it reaches the line . At this point the first-order conditions cease to be satisfied, and the trajectory with cannot be prolongated. The situation is represented in Figure 4.21. Some trajectories (not represented) are the same as in the case : those located inside the "loop" and those located above the loop but to the left of . Trajectories located below the loop are different from those of the case . When is too large, such a diagram is not feasible because: either the condition cannot be met while the point is in Phase B; or else because the condition cannot be met. The limiting situation will be when an optimal trajectory has a vertical tangent ( ) while at the same time passing from Phase A to Phase B. See the trajectory numbered as (III) in Figure 4.8. This defines a limiting value . For all values of , the optimal trajectories are just the same as when .

Bounded clean energy production capacity

If there is a bound on the consumption of renewable energy, and if , then some optimal trajectories are modified. Denote . Since is decreasing by Assumption 1, we have . The first-order equations related to are now (2.3.4), (2.3.7) and (2.3.8): value of is not determined by first-order equations. However, whatever its value, the dynamics (2.2.2) imply that As a consequence, the state of the system must exit the interior of domain in finite time. Assuming that the boundary is hit where , the system must continue in Phase Q, still with , until it reaches where it must stop, at some time , in Phase S. However, such a trajectory has a value equal to: and it is outperformed by any trajectory with a constant consumption . It cannot be optimal, and the initial assumption that must be wrong. The bang-bang principle of Lemma 3.1 applies also when .

Let us now turn to the case where . The synthesis of Section 4.5. 

Comparison with non-leaky reservoirs

The situation where is the one studied in Lafforgue et al. (2008a) and Lafforgue et al. (2008b). This situation is not a special case of the analysis above (which requires ) but can be analyzed directly.

It turns out that in this case, , which is economically interpreted as units of carbon storage being "free". Then there are three cases for . Observe that when and it does not depend on anymore.

: there no capture, , is constant, ;

: consumption is , capture is , ;

: there is full capture , with consumption , .

When comparing with the situation where , we see that both points and go to infinity. Phases R, S and U vanish. There is no possibility of having simultaneously trajectories with and without capture, nor of having consumption of the renewable resource.

The point also goes to infinity, so that the possibility is not possible anymore. The state is a terminal state when , as shown in (Lafforgue et al. 2008b) (see also Section 4.6.1). 

Appendix A

Synthetic description of the different phases

Properties of auxiliary functions and

The functions and are defined in (4.1.4) and ( 4 Proof.

Denote with the left-hand side of the equation. According to the bound (B.0.3), we have If the right-hand side of this inequality is strictly larger than , then the statement is proved. This sufficient condition writes as:

This last inequality indeed holds since by assumption, and the right-hand side is positive for .

We first show that the function is decreasing. As a consequence, there is at most one solution to Equation (B.0.7) for .

If is convex, then is increasing. Then we have:

Given Equation (B.0.1) for , we have for all ,

On the other hand, we have Therefore, is decreasing. The solutions to (B.0.7) are the zeroes of .

The uniqueness remains to be proved. When , the left-hand side of (4.3.4) is whereas the right-hand side is . There will necessarily be a solution in the interval if the left-hand side evaluated at , that is, , is smaller than the right-hand side evaluated at the same point, that is, . This condition is exactly . We have therefore existence and uniqueness in this case. Appendix C

Auxiliary problems

We gather in this appendix several "auxiliary" problems which provide complementary arguments in different parts of our analysis. In Section C.1, we develop the finite-horizon approach, which is related with the backwards solution of infinite-horizon problems, and therefore provides an alternate source of results. In particular, we examine in Section C.1.3 the problem of optimizing the consumption while being constrained to stay at the pollution ceiling . In Section C.2, we discuss the representative agent's optimization problem, and we use the results to argue that there are more solutions to the problem than those identified in Chapter 4.

C.1 Finite-horizon problems

The fact that final phases can be identified opens the way to a finite-horizon approach to determine the optimal trajectories. From initial points located on the boundary , the optimal trajectory and the value function are known. There remains to determine the optimal junction point starting from an initial state located in the interior. Neither the "final" state nor the final time are known a priori.

We investigate this possibility here. We state in Section C.1.1 a sufficiency theorem related to this situation. We do this essentially for completeness since we do not exploit it. However, we do exploit in Section C.1.2 some of the conditions in order to "guess" the properties of optimal trajectories in various situations.

C.1.1 Sufficient conditions for free finite-horizon problems

As said above, another way to find optimal trajectories of our problem in specific situations, is to use a finite-horizon approach. The following result gives appropriate sufficient condition for optimality in this context. The statement is that of Seierstad In problems, such as ours, where:

and where constraints do not depend on time, Condition of Theorem C.1 takes often the following form in the literature:

where . We shall use this form in the next section to identify the value of adjoint variables at .

C.1.2 The problem in finite horizon

Since all optimal trajectories eventually end up staying on the boundary of the domain , a possible approach to the construction of optimal trajectories is to solve a finite-horizon problem with scrap value, constrained terminal state and free terminal time.

The problem is formulated as: The set of conditions turns out to solve this equation, independently of the values of and . Assuming the continuity of controls, we see that this set of controls correspond to Phase B since . Inside Phase B, the value of the consumption is given by: . The continuity of controls is then equivalent to the continuity of . The value of remains undetermined, except that it must satisfy some inequality as in Corollary 3.1.

C.1.3 Optimization on the ceiling

We derive here the optimal control when the constraint is enforced. This analysis is used in Section 4.5.5.3 (page 68) to discuss that such trajectories cannot be optimal when . Since this situation corresponds to what we have called Phase Q, this solution can be obtained from Section 3.5.2, but we quickly re-derive it here.

Imposing to the problem of this chapter reduces it to the following optimal control problem. Since , we have , then . The scrap value is given by (C.1.10). The reduced problem can therefore be stated as:

given the controlled dynamics , the constraints on controls and , and the terminal condition . The former constraint on control , , becomes here a constraint on the state:

. This constraint is superseded by the terminal constraint for and is therefore omitted.

Naming the adjoint variable for state , the Lagrangian for the problem writes as:

The first-order equations are:

In addition, the optimality condition (C.1.2) for the terminal time is, taking into account the fact that , This equation is clearly satisfied with and . We actually expect the solution to be such that and , hence . Solving the equations under this assumption and the terminal condition , we arrive at:

where is the value defined, e.g., on page 68.

C.2 The representative agent's problem

Following the decentralization principle, the socially optimal trajectory obtained by the regulator can be implemented by imposing taxes on the representative agent. We discuss here this implementation, in the case analyzed in most of Chapter 4: infinite stock of carbon, absence of limits on sequestered stock or on renewable energy consumption . Accordingly, consider the problem of the representative agent, which faces a unitary tax on consumption and a unitary tax on sequestration (this "tax" may actually be negative, resulting in an incentive). Both taxes are possibly depending on time. The representative agent is not constrained by the value of the stocks or . It must therefore solve:

given the constraints on controls: and . There is no state variable nor dynamics to consider in this problem.

Modifying the analysis of Section 2.3.1, we find the first-order conditions:

where we have used , and as Lagrange multipliers for the constraints on controls. Identifying these with the first-order conditions for the regulator's problem (2.3.2)-(2.3.4), we find the value that should be given to the taxes: where and are the adjoint variables for the socially optimal trajectory. If these values are used, then the socially optimal control also solves the representative agent's optimization problem, and the respective Lagrange multipliers , , and , , coincide. This choice is not the unique possibility however. Assume instead that Replacing these values in the representative agent's first-order conditions and rearranging, we have:

As a consequence, as long as , the socially optimal trajectory is still a solution to the agent's problem, using the remaining multipliers and . Since we must have , the constraint on the function is just:

. Consider now the particular situation where the initial state of the system is , in the case where . The socially optimal trajectory for this situation is identified in Lemma 4.2 on page 34: this trajectory is stationary. In particular, and

According to the observation above, any choice of taxes with Appendix D

Local analysis of trajectories at junction points

This section contains a local analysis of optimal curves when they connect to the boundary ; this part is useful to assess the global consistency of the family of optimal curves. The following analysis gives indications on several features of the state trajectory and the consumption when the system is in Phase A (Section D.1) or Phase B (Section D.2), at particular at junction points. We obtain in particular the direction of variation of , and , as well as geometric properties such as tangency of trajectories with the line .

D.1 Phase A

We are interested in the variations of and in the local expansions of state variables at junction points, when the system is in Phase A. The state and adjoint trajectories are solution to: and . Obviously, is always decreasing. It follows from these equations that ... and ... Finally, from the specific form of , we have:

By assumption, and are decreasing: . There is no assumption on the sign of . The analysis shows that so that and . Finally, but the sign of is not determined a priori. In the LQ case (see Appendix E), and .

D.1.1 Junction with .

Assume that the trajectory hits the state at time . Then we have the Taylor expansion for :

When the junction occurs in Phase P with continuity of , we have from (4.1.1):

or equivalently, (see for instance Figure 4.1, top, on page 44). Replacing in the development, we get:

We have seen above that in general, so that in fact, . On the other hand, the development for is just:

The conclusion is: at the junction of phases , the trajectory is tangent to the line , coming from below and from the right.

When the junction occurs in Phase R, we have from (4.2.6), or equivalently

The development can be expressed as:

Then, the trajectory hits the ceiling at an angle of direction . At the triple point of phases A, R and P, we have and this direction is tangent to the line , in accordance with the junction in phase P, see above. At any other point , this angle is sharp.

When junction occurs in Phase Q, then according to (4.2.3) we have: . Replacing in the development of , we get:

and again, the trajectory hits the line with an angle of direction . As the junction point moves from to , this angle moves continuously between the tangent to to the same angle as in Phase R.

D.1.2 Junction on the curve .

When an optimal trajectory joins the boundary curve at some point , its tangent vector is . The tangent vector to the boundary itself is, since the curve is a "free" trajectory:

. The tangent vector of the optimal trajectory is therefore pointing "outwards" as required.

When the junction point is close to , the tangent vector tends to , This is the same limit as in Phase R: according to what was said above, the tangent vector in Phase R close to has the direction: (see page 31). There is therefore continuity of directions at that point.

D.2 Phase B

We are interested here in the sign of and in asymptotic expansions of and when in Phase B. We start with generic formulas, then specialize them when a junction with line takes place. In Section D. We conclude that the sign of is the same as the sign of , but the latter can be + or -in Phase B. A more precise analysis in function of is necessary.

D.2.1 Junction with .

The analysis which follows suggests that only two possibilities occur for a junction in phase B: 

If

, which happens when , then the trajectory is tangent to the line and approaches it from below and from the right. In the case , it approaches it from above, and this is not consistent. In the first case, eliminating the time variable gives (remembering that ):

so that the trajectory is, asymptotically,

D.2.2 Local analysis around

This section is devoted to a proof that the general scheme of Figure 4.4 page 53 is correct, at least for a set of trajectories "close" to the point . The result is stated as Lemma D.1 next. As a corollary, we state in Lemma 4.15 (page 52) that some optimal trajectories consist in a Phase B followed by the Phase S.

This lemma describes a property of the dynamical system of Phase B around particular initial values. It does not depend on costs. The fact that it describes optimal trajectories holds however only for . The critical value is central in the analysis.

Lemma D. Proof. The proof consists in computing Taylor expansions of the three different functions , and around , while at the same time considering . In a second phase, the value of is linked appropriately to the time parameter in the expansion.

We start with , the formula of which is given in (3.2.5). Using the boundary conditions, and the fact that , we have:

where we have used the shorthand notation . The function in this expansion is bounded by , for some constant , uniformly for in any compact containing 0. Next, consider the expansion of :

Again, the " " term is uniform for in a compact, assuming that admits a bounded third derivative. The expansion for is derived from that of , through the integral formula (3. . From the variation of , this implies in turn that .

We argue now that for all , so that the variation of is as claimed in Table D.1. Assume by contradiction that for some , and consider the largest of such values. Then for all in the interval . Then, since , and since on the interval, according to the variation of , we conclude that over the interval. We reach a contradiction with the fact that at both extremities. Finally, according again to Lemma D.2, there exists a such that . Similarly as above, this implies the existence of a unique such that . Clearly, is increasing on the interval so that . This implies in turn: on the one hand that , and on the other hand that there exists such that and . This concludes the proof that the variation of is as in Table D 

Appendix E

The Linear-Quadratic case

In this section, we develop explicit formulas for the case where is quadratic, in the situation where is infinite. The relationship between critical parameter values becomes clear in this case. A numerical example is developed using these formulas. The values given to the model parameters are as follows:

E.1 Relationships between parameters

E.6 Numerical Example

(E.6.1)

The utility function is given as in (E.1.2) with and . For these values, we have . We are therefore indeed in the " small situation". Other special values are: , , and . Trajectories starting with a large value of run from left to right, then (for some of them) experience the change of phase, from Phase A to Phase B. At this point, a sharp decrease occurs, both for the value and for the consumption. The trajectory eventually approaches the limit of the domain . There, consumption of the nonrenewable resource drops to 0. The optimal trajectory then stays close to the boundary until it reaches the terminal state . Trajectories starting with a small initial stay in Phase A with a relatively constant consumption until the ceiling is hit. They then follow the ceiling, but eventually leave it (the location is approximately to enter the loop described in Section 4.4.3.2. Along this loop, the value and the consumption first sharply decrease, then increase again.