Optimal carbon sequestration policies in leaky reservoirs
Alain Jean-Marie, Michel Moreaux, Mabel Tidball

To cite this version:
Alain Jean-Marie, Michel Moreaux, Mabel Tidball. Optimal carbon sequestration policies in leaky reservoirs. 2014. hal-02798335

HAL Id: hal-02798335
https://hal.inrae.fr/hal-02798335
Preprint submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Optimal Carbon Sequestration Policies in Leaky Reservoirs

Alain Jean-Marie12 \hspace{1cm} Michel Moreaux34 \hspace{1cm} Mabel Tidball52

August 22, 2014

1INRIA and UMR LIRMM, 161 Rue Ada, 34095 Montpellier Cedex 5, France
2Part of this work was performed while this author was visiting GERAD, Montreal.
3Toulouse School of Economics, IDEI and LERNA, 21 allée de Brienne, 31 000 Toulouse, France
4Part of this work was performed while this author was on a one-year academic leave with Inria.
5INRA and UMR LAMETA, 2 place P. Viala, 34060 Montpellier Cedex 1, France
Abstract

We study in this report a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We formulate the social planner problem as an optimal control program and we describe the optimal consumption paths as a function of the initial conditions, the physical constants and the economic parameters. In particular, we show that the presence of leaks may lead to situations which do not occur otherwise, including that of non-monotonous price paths for the energy.

Acknowledgments

The authors wish to acknowledge the fruitful interactions with the attendees of different venues where preliminary versions of this work were presented:

- Journées Économie et Environnement, Montpellier, France, 9 December 2010
- EAERE 2011, Rome, Italy, 1 July 2011
- Seminario ANEODA/Instituto de Matemáticas, Universidad de Valladolid, Valladolid, Spain, 29 February 2012
- Workshop: Energy, Pollution and Environmental Policy, GREQAM, Marseille, France, 15 March 2012
- Seminar of the Fondation HEC/Chaire théorie des jeux et gestion/GERAD Montréal, 1 May 2012
- Optimization Days, Montréal, Canada, 8 May 2012
- 12th Vienese Workshop on Optimal Control, Dynamic Games and Non-Linear Dynamics Vienna, Austria, 31 May 2012
- ANR CLEANER Workshop, Annecy, France, 1 February 2013
Chapter 1

Introduction

This report is devoted to the complete solution of an optimal control model with state constraints, arising in the study of economic tradeoffs between energy consumption and pollution management. More precisely, the question is to determine under which circumstances the deployment of Carbon Capture and Storage (CCS) technology is of any help to an economy faced with the potential damages of a high CO_2 concentration in the atmosphere.

The purpose of this document is to serve as technical reference, and provide the mathematical arguments backing up the construction of the solution, as completely as possible. It features a detailed discussion of how theorems from the literature can be applied, why the solution proposed is consistent with their conditions, and also a parametric discussion of the behavior of these solutions.

This introduction follows with a motivation for the problem we study, and a summary of the technical contribution.

1.1 The Economic Relevance of Carbon Storage and Sequestration

The fact that the carbon emissions generated by the use of the fossil fuels could be captured and sequestered is now well documented both empirically and theoretically, and it is now included in the main empirical models of energy uses. Were this option open at a sufficiently low cost for the most potentially polluting primary resource, that is coal, its competitive full cost, including the shadow cost of its pollution power, could be drastically reduced. Indeed, coal is abundant at a low extraction cost and can be transformed into energy ready to use for final users at moderate transformation costs. The main problem concerning its future competitiveness is the cost at which its pollution damaging effects can be abated.

Abating the emissions involves two different types of costs. The first one is a monetary cost: capturing, compressing and transporting the captured CO_2 into reservoirs involves money outlays. The second one is a shadow cost because this type of garbage has to be stockpiled somewhere. This problem has been tackled in Lafforgue et al. (2008a), Lafforgue et al. (2008b). It is not quite clear that sufficient storage capacities would be available for low CO_2 capture and storage costs. The reservoir capacities themselves could have to be seen as scarce resources to which some rents should have to be imputed along an optimal or equilibrium path.

Even if sufficiently large reservoirs are available there exists another problem concerning the security of such reservoirs. Most reservoirs are leaking in the long run, a well-known problem in engineering. The fact that captured CO_2 will eventually return into the atmosphere cannot be ignored when assessing the economic relevance of CCS.

A first investigation of this last problem has been given by Ha-Duong & Keith (2003). Their main conclusion is that “leakage rates on order of magnitude below the discount rate are negligible” (p. 188). Hence leakage is a second order problem as long as the rate of discount is sufficiently
high, and probably that other characteristics of the empirical model they use are sufficiently well profiled.

A second batch of investigations has recently been conducted by Gerlagh, Smekens and Van der Zwaan.¹ These papers are mainly empirical papers using and comparing DEMETER and MARKAL models to assess the usefulness of CCS policies. Their results are twofold. First, using CCS policies with leaky reservoirs does not permit to escape a big switch to renewable non polluting primary resources if a 450ppmv atmospheric pollution ceiling has to be enforced. But CCS with leaky reservoirs is smoothing the optimal path. A second point concerns the relative competitiveness of coal: “The large scale application of CCS needed for a significantly lower contribution of renewable would be consistent, in terms of climate change control, with the growing expectation that fossil fuels, and in particular coal, will continue to be a dominant form of energy supply during the twenty-first century” Van der Zwaan & Gerlagh (2009, p. 305). As they point out “The economic implications of potential CO₂ leakage associated with the large scale development of CCS have so far been researched in a few studies” (ibidem, p. 306). To our knowledge theoretical studies are even fewer.²

The objective of this paper is to try to elucidate some theoretical features of optimal CCS policies with leaky reservoirs and specifically the dynamics of the shadow cost of both carbon stocks and their relation with the mining rent of the nonrenewable resource, determining the long run relative competitiveness of coal and solar energies. The paper has to be seen as mainly exploratory. To conduct the inquiry we adopt the most simple model permitting to isolate the dynamics of captured CO₂ leakage and atmospheric pollution.

On the one hand, the presence of leaks, producing an additional flow of pollutant, makes the pressure on the atmospheric stock larger than when there is none. This should favor even more the capture to relax the pressure today. On the other hand, for the same reason, it is not necessarily good to sequestrate too much pollution, since this will make economic conditions worse in the future.

The results presented in this paper show how the optimal consumption paths are modified with respect to the benchmark situation where there are no leaks. In particular, it turn out that over some optimal path, the price of energy is not necessarily monotonous. Non-monotonous price paths in the exploitation of nonrenewable resources have been described before: for a first paper in this direction, see for instance Livernois & Martin (2001). In the present situation, the lack of monotonicity results from a combination of a constraint on the present atmospheric stock of pollution, and a lag effect for the sequestered stock of pollution; such an effect has not been reported in the literature, to the best of our knowledge.

Our analysis reveals other interesting features. First of all, not every possible configuration of atmospheric and sequestered stock is acceptable, thus causing a possible viability problem. Other results quantitatively confirm that the presence of leakage does reduce the economic incentive to sequestrate pollution.

1.2 Technical Challenges and Contribution

The model we develop conceals several technical features that are seldom encountered in the literature. First of all, il involves three state variables and three controls, with constraints on the three states and constraints on two of the controls. We are nevertheless able to provide a complete parametric description of solutions when one of the state variables is “saturated”. Based on this analysis, the understanding of the case where all three state variables are present appears to be within reach; the details are however not developed in this document.

In the course of the solution, we identify the presence of a “hidden” viability or controllability constraint, and a “singular” point in the state space. In the vicinity of the viability constraint and

of the singular point, optimal trajectories have an unusual behavior, and some adjoint variables (economically interpreted as shadow prices) may be discontinuous.

Related to this unusual behavior is the unusual fact that the so-called constraint qualification conditions associated to the optimization problem are not satisfied. Also, classical geometric conditions leading to the regularity of the value function (see e.g. Soner (1986)) do not hold. Indeed, the value function turns out not to be differentiable everywhere in the domain of interest.

We contribute to the understanding of the situation by providing a complete description of trajectories, constructed explicitly using the maximum principle, and not via a numerical approximation of the value function. This detailed construction allows us to provide as well a complete parametric discussion of the form of optimal trajectories.

The report is organized as follows. We develop the model, its assumptions and notations in Chapter 2. In particular, in Section 2.2 we state the mathematical optimization program representing the social planner problem, and derive the necessary optimality conditions.

In Chapter 3, we prepare the construction of solutions by studying the behavior of optimal trajectories within phases characterized by a constant status (free or bound) of the different constraints on states and controls. This allows in particular to eliminate several configurations which cannot be optimal.

In Chapter 4, we construct the solutions of the optimization problem in the situation where the stock of polluting carbon energy is assumed to be infinite (that is, the resource is assumed to be renewable) and the capacity of the reservoir is sufficiently large. While not quite relevant empirically, this analysis provides the essential insights in the behavior of solutions and the complexity of the problem. The first part of the chapter enumerates all possible cases, depending on parameters and the position of the state of the system. The second part (from Section 4.5 onward) presents the global picture and performs the parametric discussion, including some limiting cases.

Several appendices with the most technical details complete this description. In particular, Appendix E features a numerical illustration in the Linear-Quadratic case.
Chapter 2

The Model

2.1 Model and Assumptions

We consider a global economy in which the energy consumption can be supplied by two primary resources: a nonrenewable polluting source like coal and a clean renewable one like solar plants.

2.1.1 Energy consumption and gross surplus

Let us denote by q the instantaneous energy consumption rate of the final users and by $u(q)$ the instantaneous gross surplus thus generated. The gross surplus function is assumed to satisfy technical assumptions that will be specified as Assumption 1 on p. 8.

The function $u'(q)$, is the inverse demand function and its inverse, the direct demand function, is denoted by $q'(p)$. Under Assumption 1, the function $q'(p)$ is strictly positive and strictly decreasing.

2.1.2 The nonrenewable polluting resource

Let $X(t)$ be the stock of coal available at time t, $X^0 = X(0)$ be its initial endowment, and $x(t)$ be the instantaneous extraction rate: $\dot{X}(t) = -x(t)$. The current average transformation cost of coal into useful energy is assumed to be constant and is denoted by c_x. We denote by \bar{z} the nonrenewable energy consumption when its market price is equal to c_x and coal is the only energy supplier: $u'(\bar{z}) = c_x$.

Burning coal for producing useful energy implies a flow of pollution emissions proportional to the coal thus burned. Let ζ be the unitary pollution contents of coal so that the gross emission flow amounts to $\zeta x(t)$. This gross emission flow can be either freely relaxed into the atmosphere or captured to be stockpiled into underground reservoirs, however at some cost. Let c_s be the average capturing and sequestrating cost of the potential pollution generated by the exploitation of coal. Let us denote by $s(t)$ this part of the potential flow $\zeta x(t)$ which is captured and sequestered. Then the sequestration cost amounts to $c_s s(t)$. The remaining flow of carbon $\zeta x(t) - s(t) \geq 0$ goes directly into the atmosphere.

2.1.3 Pollution stocks and leakage effects

We take two pollution stocks explicitly into account, the atmospheric stock denoted by $Z(t)$ and the sequestered stock denoted by $S(t)$. As previously stated, the atmospheric stock Z is first fed by the non-captured pollution emissions, resulting from the use of coal, that is $\zeta x(t) - s(t)$. This atmospheric stock is self-regenerating at some constant proportional rate α.\footnote{This self-regeneration effect may be seen as some kind of leakage of the atmosphere reservoir towards some other natural reservoirs not explicitly modeled in the present setting. For models taking explicitly into account such questions, see for example Lontzek and Rickels (2008) or Rickels and Lontzek (2008).} However, Z is also fed by the leaks of the sequestered pollution stock S. We assume that leaks are proportional to
the stock and denote by β the leakage rate. Taking into account both this leakage effect and the above self-regeneration effect, we get the dynamics of the atmospheric stock:

$$\dot{Z}(t) = \zeta x(t) - s(t) + \beta S(t) - \alpha Z(t).$$

Since the sequestered stock is just fed by the sequestered pollution, we have:

$$\dot{S}(t) = s(t) - \beta S(t).$$

The flows and stocks of energy and pollution are illustrated in Figure 2.1.

![Diagram](image)

Figure 2.1: Flows and stocks of energy and pollution

We assume that the sequestered stock is limited by a known constant capacity \mathcal{S}. It is acceptable that \mathcal{S} be set sufficiently large to be never saturated. In every case, it is assumed that no cost has to be incurred for maintaining the captured stock \mathcal{S} into reservoirs.\(^2\) The only costs are the above capture costs $c_S s(t)$.

2.1.4 Atmospheric pollution damages

There are two main ways for modeling the atmospheric pollution damages. A most favored way by some economists is to postulate some damage function: the higher is the atmospheric pollution stock $Z(t)$, the larger are the current damages at the same time t. Generally, this function is assumed to be convex. The other way is to assume that, as long as the atmospheric pollution stock is kept under some critical level \overline{Z}, the damages are not so large. However, around the critical level \overline{Z}, the damages are strikingly increasing, so that, whatever what could have been gained by following a path generating an overrun at \overline{Z}, the damages would counterbalance the gains.\(^3\) We adopt the second way of modeling damages pioneered by Chakravorty et al. (2006), and therefore assume that the loss generated by Z is negligible provided that Z be maintained under some level \overline{Z}, but ruins the economy once $Z(t)$ overruns \overline{Z}.\(^4\)

\(^2\)This assumption is relaxed in Section 4.6.3.

\(^3\)Some authors use simultaneously both approaches.

\(^4\)As pointed out by Amigues et al. (2011), taking into account both small and catastrophic damages does not change the main qualitative characteristics of optimal paths.
We denote by \(\bar{Z} \) the maximum coal consumption when the atmospheric pollution stock is at its ceiling \(Z \), no part of the gross pollution flow \(\zeta x \) is captured \((s = 0)\) and the stock of sequestered pollution is nil:
\[
\dot{Z} = 0 = \zeta \bar{x} - \alpha \bar{Z} \quad \iff \quad \bar{x} = \frac{\alpha}{\zeta} \bar{Z}.
\]

We denote by \(\bar{p} \) the corresponding energy price assuming that coal is the only energy supplier: \(\bar{p} = u'(\bar{Z}) \).

Clearly there exists an effective constraint on coal consumption if and only if \(\bar{p} > c_x \) or equivalently \(\bar{x} < \bar{x} \) and simultaneously the coal initial endowment \(X^0 \) is sufficiently large.

2.1.5 The renewable clean energy

The other primary resource is a renewable clean energy. Let \(y(t) \) be its instantaneous consumption rate. We assume that its average cost, denoted by \(c_y \), is constant. We denote by \(\bar{y} \) the renewable energy consumption when the renewable one is the only energy supplier: \(u'(\bar{y}) = c_y \). The consumption of renewable energy is assumed to be limited by a known constant \(\bar{y} \). It is acceptable that \(\bar{p} \) be set larger than \(\bar{y} \).

Both \(c_x \) and \(c_y \) include all that has to be supported to supply ready-to-use energy to the final users. Hence, once these costs are supported, the two types of energy are perfect substitutes for the final user and we may define the total energy consumption as \(q = x + y \).

2.2 The Social Planner problem

The social planner problem is to maximize the social welfare. The social welfare \(\mathcal{W} \) is the sum of the discounted net current surplus, taking into account the gross surplus \(u(q) \) and the production or capture costs. We assume that the social rate of discount \(\rho > 0 \), is constant throughout time.

Accordingly, the social planner faces the following optimization problem:

\[
\max_{s(t), x(t), \bar{x}(t)} \int_0^\infty [u(x(t) + y(t)) - c_ks(t) - c_\bar{x}x(t) - c_yy(t)] e^{-\rho t} dt \quad (2.2.1)
\]

given the controlled dynamics:\(^5\)

\[
\begin{align*}
\dot{X} &= -x \\
\dot{Z} &= -\alpha Z + \beta S + \zeta x - s \\
\dot{S} &= -\beta S + s,
\end{align*}
\]

the initial conditions \((X(0), Z(0), S(0)) = (X^0, Z^0, S^0)\), and the constraints on state variables and controls:

\[
\begin{align*}
Z(t) &\leq \bar{Z} \quad (2.2.3) \\
S(t) &\leq \bar{S} \quad (2.2.4) \\
X(t) &\geq 0 \quad (2.2.5) \\
y(t) &\geq 0 \quad (2.2.6) \\
y(t) &\leq \bar{y} \quad (2.2.7) \\
s(t) &\geq 0 \quad (2.2.8) \\
s(t) &\leq \zeta \bar{c} \quad (2.2.9)
\end{align*}
\]

for all \(t \). Other physically relevant constraints \((S \geq 0, Z \geq 0)\) are automatically satisfied by the dynamics and are not explicitly taken into account. This follows from the fact that \(Z = 0 \) implies

\(^5\)An alternate parametrization of the control is in terms of “cleaned carbon” consumption \(x_c = s/\zeta \) and “dirty carbon” consumption \(x_df = x - s/\zeta \). With these controls instead of \(x \) and \(s \), the dynamics become: \(\dot{Z} = -\alpha Z + \beta S + \zeta x_df \) and \(\dot{S} = -\beta S + \zeta x_c \). The constraints on control are then \(x_c \geq 0 \) and \(x_df \geq 0 \).
\[\dot{z} = \beta s + \zeta r - s \geq 0 \] and likewise, \(S = 0 \) implies \(\dot{S} \geq 0 \). A natural constraint on the control is \(x(t) \geq 0 \). This constraint is implied by (2.2.8) and (2.2.9), and we do not refer to it explicitly in the remainder.

The maximization in (2.2.1) involves admissible control functions \(s(\cdot), x(\cdot), y(\cdot) \), that is, piecewise continuous functions. Pairs of control vectors and state trajectories such that controls are piecewise continuous, trajectories solve the state equation (2.2.2) and both satisfy all constraints (2.2.3)–(2.2.9), will be called admissible pairs.

2.2.1 Assumptions on costs and parameters

The results we obtain are valid under the following composite assumption.\(^6\)

We assume not only that the cost of the renewable energy is higher than the cost of the nonrenewable one, but furthermore that \(c_x \) is higher than \(\bar{p} \). We assume also that \(c_x \leq \bar{p} \) as discussed in Section 2.1.4. The function \(u(\cdot) \) obeys standard assumptions, with the possibility (but not the requirement) that \(u'(0) = +\infty \). In summary:

Assumption 1. The function \(u : [0, \infty) \to \mathbb{R} \) is a function of class \(C^2 \), strictly increasing and strictly concave. It is assumed that \(c_y > 0 \), and

\[
\lim_{x \to \infty} u'(x) < c_x < \bar{p} < c_y < u'(0),
\]

or equivalently, \(0 < \bar{y} < \bar{p} < \bar{x} \). Other parameters are such that: \(\alpha > 0, \beta > 0, \rho > 0 \) and \(\zeta > 0 \).

These assumptions on the cost parameters of the model are summarized in Figure 2.2, which also recapitulates the notation

\[
\bar{x} = \frac{\alpha \zeta}{\zeta}, \quad \bar{y} = q^d(c_y), \quad \bar{z} = q^d(c_x), \quad \bar{p} = u'(\bar{x}).
\]

The following unit system proves useful in calculations and interpretations (see Section 2.3.1 for the missing notation \(\lambda_X \) etc. (adjoint variables or shadow prices) and \(\nu_S, \nu_P \) or \(\gamma_S \) etc. (Lagrange multipliers)). The unit \(T_C \) refers to “tons of coal equivalent” whereas the unit \(T_p \) refers to “tons of pollutant” (the atmospheric \(CO_2 \)).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha, \beta, \rho)</td>
<td>(T^{-1})</td>
</tr>
<tr>
<td>(X)</td>
<td>(T_C)</td>
</tr>
<tr>
<td>(\lambda_X)</td>
<td>$/(T_C)</td>
</tr>
<tr>
<td>(x(\cdot), y(\cdot))</td>
<td>$/(T_C)</td>
</tr>
<tr>
<td>(u(\cdot))</td>
<td>$/(T_p)</td>
</tr>
<tr>
<td>(q^d(\cdot))</td>
<td>$/(T_C)</td>
</tr>
<tr>
<td>(\gamma_S, \gamma_P)</td>
<td>$/(T_P)</td>
</tr>
</tbody>
</table>

2.2.2 Literature and particular cases

The model generalizes several previous models of the literature, which can be recovered using particular values of the parameters.

No reservoirs, no capture The model where capture is not possible has been studied in Chakravorty et al. (2006).

When \(\beta \to \infty \) in the present model, then whatever is captured in the stock is immediately leaked into the atmosphere. The model therefore reduces to the case without reservoir and without capture (since capturing is more costly than not capturing).

\(^6\)The standard of the literature is to place assumptions separately on \(u(\cdot) \) and on other parameters. This results in unnecessarily strong assumptions like Inada’s \(u'(0) = \infty \).
The model without capture also shows up when the capture cost c_y is very large so as to make sequestration economically suboptimal (see Section 4.5.4). Equivalently, the control s can be forced to be 0. The difference with $\beta = \infty$ is however that the standing stock of sequestered carbon will empty only progressively. If the initial condition is an empty stock, then there is no difference.

No leakage The case $\beta = 0$ models the situation where reservoirs do not leak.

This model is studied in Lafforgue et al. (2008a), which actually considers the case of multiple reservoirs with different sequestration costs. Each reservoir has a finite capacity. The flow of clean energy γ is never binding, which is equivalent to assuming that $\gamma \geq \tilde{\gamma}$.

In Lafforgue et al. (2008b), only one reservoir is considered, it has a finite capacity \overline{S}, and in addition the maximally available flow of clean energy γ is possibly binding.

In both papers, an additional assumption is made: $c_y < (c_x - \overline{p})/\xi$. In the forthcoming analysis, this situation will be called “c_y small”, see Section 4.5.1.

2.3 Main elements for finding the solution of the social planner problem

We shall use the maximum principle in order to identify the solutions to this optimization problem. In this paragraph, we first state the first-order conditions for the problem, next review the theorems on which we base the solution method.

2.3.1 First order conditions

Let us denote by L the current-value Lagrangian of the problem. Introducing λ_X, λ_Z and λ_S as adjoint variables, ν_Z, ν_S and ν_X as Lagrange multipliers for state constraints, γ_S, γ_S, γ_Y and γ_Y as Lagrange multipliers for control constraints, the Lagrangian writes as:

$$
L(y, x, s, X, Z, S) = u(x + y) - c_y s - c_y x - c_y y + \lambda_X[-y] + \lambda_Z[-\alpha Z + \beta S + \zeta x - s] + \lambda_S[-\beta S + s] + \nu_Z[Z - Z] + \nu_S[S - S] + \nu_X X
$$

![Figure 2.2: Assumptions on marginal costs](image-url)
\begin{align*}
+ \gamma_s s + \gamma_{sx} (\zeta x - s) + \gamma_y y + \gamma_y (\bar{y} - y).
\end{align*}

The “classical” first order conditions are then the following. First, optimality of the control yields:

\begin{align*}
\frac{\partial L}{\partial s} = 0 & \iff c_s + \lambda_Z = \lambda_s + \gamma_s - \gamma_{sx} \\
\frac{\partial L}{\partial x} = 0 & \iff u'(x + y) = c_x + \lambda_Z - \zeta x - \zeta_{sx} \\
\frac{\partial L}{\partial y} = 0 & \iff u'(x + y) = c_y - \gamma_y + \gamma_y,
\end{align*}

(2.3.2) (2.3.3) (2.3.4)

Together with the constraints and slackness conditions:

\begin{align*}
\gamma_{sx} \geq 0, \quad \zeta x - s \geq 0 & \quad \text{and} \quad \gamma_{sx} [\zeta x - s] = 0 \\
\gamma_s \geq 0, \quad s \geq 0 & \quad \text{and} \quad \gamma_s s = 0 \\
\gamma_y \geq 0, \quad y \geq 0 & \quad \text{and} \quad \gamma_y y = 0 \\
\gamma_{y} \geq 0, \quad \bar{y} - y \geq 0 & \quad \text{and} \quad \gamma_{y} [\bar{y} - y] = 0.
\end{align*}

(2.3.5) (2.3.6) (2.3.7) (2.3.8)

Next, the dynamics of the adjoint variables are

\begin{align*}
\dot{\lambda}_X = \rho \lambda_X - \frac{\partial L}{\partial X} & \iff \dot{\lambda}_X = \rho \lambda_X - \nu_X \\
\dot{\lambda}_Z = \rho \lambda_Z - \frac{\partial L}{\partial Z} & \iff \dot{\lambda}_Z = (\rho + \alpha) \lambda_Z + \nu_Z \\
\dot{\lambda}_S = \rho \lambda_S - \frac{\partial L}{\partial S} & \iff \dot{\lambda}_S = (\rho + \beta) \lambda_S - \beta \lambda_Z + \nu_S,
\end{align*}

(2.3.9) (2.3.10) (2.3.11)

with the constraints:

\begin{align*}
\nu_X \geq 0, \quad X \geq 0 & \quad \text{and} \quad \nu_X X = 0 \\
\nu_Z \geq 0, \quad Z - Z \geq 0 & \quad \text{and} \quad \nu_Z [Z - Z] = 0 \\
\nu_S \geq 0, \quad S - S \geq 0 & \quad \text{and} \quad \nu_S [S - S] = 0.
\end{align*}

(2.3.12) (2.3.13) (2.3.14)

Finally, we have the transversality conditions:

\begin{align*}
\lim_{t \to \infty} e^{-\rho t} \lambda_X X &= 0 \\
\lim_{t \to \infty} e^{-\rho t} \lambda_Z Z &= 0 \\
\lim_{t \to \infty} e^{-\rho t} \lambda_S S &= 0.
\end{align*}

(2.3.15) (2.3.16) (2.3.17)

2.3.2 Elimination of suboptimal controls

For technical reasons related to the possibility that \(u'(0)\) be infinite, it is convenient to add more constraints to the control problem, knowing that these will be satisfied by any optimal control.

Lemma 2.1. Under Assumption 1, any solution to the control problem (2.2.1) with constraints (2.2.2)–(2.2.9) is such that \(x(t) + y(t) \geq \bar{y}\) for virtually all \(t\).

Proof. Assume that \((y, x, s)\) is a control such that \(x(t) + y(t) < \bar{y}\) for \(t \in I\), some nonempty interval. Modify this strategy into: \(x^*(t) = x(t), \ y^*(t) = \bar{y} - x(t)\) for \(t \in I\), while not changing \(s(t)\) nor the strategy outside of interval \(I\). Since the solution to the differential system (2.2.2) is not changed, this is also an admissible strategy. We show that it yields a larger profit. Indeed, the difference in profits can be written as:

\[J - J^* = \int_I [(u(x(t) + y(t)) - c_y (x(t) + y(t))) - (u(\bar{y}) - c_y \bar{y})] e^{-\rho t} dt. \]
The function $y \mapsto v(y) = u(y) - c_y$ has derivative $v'(y) = u'(y) - c_y$. By Assumption 1 and the definition of \tilde{y}, this is positive for $0 < y < \tilde{y}$. As a consequence, $v(\cdot)$ is strictly increasing on the interval $[0, \tilde{y}]$ and for every t, $v(x(t)) + y(t)) < v(\tilde{y})$. Therefore, $J - J^* < 0$ and the strategy (y, x, s) cannot be optimal.

2.3.3 Sufficient optimality conditions

We will base our solution on the two following results, which provide sufficient conditions for optimality. The difference between these theorems lies in the set of assumptions and the type of optimal trajectories they allow for. While the first one (Theorem 2.1) allows for jumps in the adjoint variables, it needs stronger C^2 assumptions than the second one (Theorem 2.2), which concerns continuous adjoint variables, but needs only quasi-concave assumptions on the constraints. In order to use these theorems to solve our problem, we will need to introduce an extra constraint, which turns out not to be C^2. Hence the need for both results.

The first statement is that of Seierstad & Sydsæter (1987, Theorem 11, p. 385).

Theorem 2.1 (Seierstad & Sydsæter (1987), Theorem 11). Consider the infinite-horizon optimal control problem:

$$\max_{u(\cdot)} \int_0^\infty f_0(x(t), u(t), t) dt$$

where the state vector $x(\cdot)$ belongs to \mathbb{R}^n, the control vector $u(\cdot)$ belongs to some fixed convex set $U \subseteq \mathbb{R}^r$, and $\dot{x} = f(x, u, t)$ with initial conditions $x(0) = x^0$. Assume that admissible trajectories must satisfy the vector of s constraints:

$$g_j(x(t), u(t), t) \geq 0, j = 1, \ldots, s', \quad g_j(x(t), u(t), t) = \tilde{g}_j(x(t), t) \geq 0, j = s' + 1, \ldots, s,$$

as well as the terminal conditions

$$\liminf_{t \to \infty} x_i(t) = x^1_i, i = 1, \ldots, \ell, \quad \liminf_{t \to \infty} x_i(t) \geq x^1_i, i = \ell + 1, \ldots, m,$$

and no condition for $i = m + 1, \ldots, n$.

Assume that:

a) f_0, f and g_j for $j = 1, \ldots, s'$ have derivatives w.r.t. x and u, and that these derivatives are continuous.

b) \tilde{g}_j is C^2 for $j = s' + 1, \ldots, s$.

c) g_j is a quasi-concave function of (x, u), for all t and $j = 1, \ldots, s$.

If there exists an admissible pair $(x^*(t), u^*(t))$, together with a piecewise continuous and piecewise continuously differentiable vector function $p(t)$ with jump points $0 < \tau_1 < \cdots < \tau_N$, a piecewise-continuous function $q(t)$ and $2N$ vectors β_k^-, β_k^+, $k = 1, \ldots, N$ in \mathbb{R}^s such that, defining

$$H(x, u, p, t) := f_0(x, u, t) + p \cdot f(x, u, t)$$

$$L(x, u, p, q, t) := H(x, u, p, t) + q \cdot g(x, u, t),$$

d) for virtually all t, and all $u \in U$, $\frac{\partial L}{\partial u}(x^*(t), u^*(t), p(t), q(t), t) \cdot (u - u^*) \leq 0$.

e) for virtually all t, $\dot{p}(t) = -\frac{\partial L}{\partial x}(x^*(t), u^*(t), p(t), q(t), t)$.

f) the Hamiltonian is a concave function of (x, u), for all t.

g) for all t and $j = 1, \ldots, s$, $g_j(t) \geq 0$ and $= 0$ if $g_j(x^*(t), u^*(t), t) > 0$, respectively.
h) for each \(i = 1, \ldots, n \) and \(k = 1, \ldots, N \),
\[
p_i(\tau_k^+) - p_i(\tau_k^-) = \sum_{j=1}^n \beta_{kj}^+ \frac{\partial g_j}{\partial x_i} (\mathbf{x}^*(\tau_k), \mathbf{u}^*(\tau_k^+), \tau_k) + \beta_{kj}^- \frac{\partial g_j}{\partial x_i} (\mathbf{x}^*(\tau_k), \mathbf{u}^*(\tau_k^-), \tau_k),
\]

i) for each \(k = 1, \ldots, N \) and \(\mathbf{u} \in U \),
\[
\beta_{kj}^+ \frac{\partial g_j}{\partial \mathbf{u}} (\mathbf{x}^*(\tau_k), \mathbf{u}^*(\tau_k^+), \tau_k) \cdot (\mathbf{u} - \mathbf{u}^*(\tau_k^+)) \leq 0,
\]

j) for each \(j = 1, \ldots, s \) and \(k = 1, \ldots, N \), \(\beta_{kj}^+ \geq 0 \), and \(= 0 \) if \(g_j(\mathbf{x}^*(\tau_k), \mathbf{u}^*(\tau_k^+), \tau_k) > 0 \),

k) and for all admissible \(\mathbf{x}(t) \), \(\lim_{t \to -\infty} \inf \mathbf{p}(t) \cdot (\mathbf{x}(t) - \mathbf{x}^*(t)) \geq 0 \),

then the pair \((\mathbf{x}^*(t), \mathbf{u}(t))\) is catching-up-optimal.

The second statement is that of Seierstad & Sydsæter (1977, Theorems 6 and 10), where the notation “\(\beta_j^+ \)” replaces the original notation “\(h_j \)”.

Theorem 2.2 (Seierstad & Sydsæter (1977), Theorems 6 and 10). Consider the infinite-horizon optimal control problem:
\[
\max_{\mathbf{u}(\cdot)} \int_0^\infty f_0(\mathbf{x}(t), \mathbf{u}(t), t) dt
\]

where the state vector \(\mathbf{x}(\cdot) \) belongs to \(\mathbb{R}^n \), the control vector \(\mathbf{u}(\cdot) \) belongs to \(\mathbb{R}^s \), and \(\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}, t) \) with initial conditions \(\mathbf{x}(0) = \mathbf{x}_0 \). Assume that admissible trajectories must satisfy the vector of \(s \) constraints:
\[
g_j(\mathbf{x}(t), \mathbf{u}(t), t) \geq 0, j = 1, \ldots, s
\]
as well as the terminal conditions \(\lim_{t \to -\infty} \mathbf{x}_i(t) = \mathbf{x}_i^1, i = 1, \ldots, n \).

Assume that:

a) \(f_0, f \) are continuous on the set \(\{(\mathbf{x}, \mathbf{u}, t) \mid ((\mathbf{x}, \mathbf{u}) \in A(t) \} \), where \(A(t) = \{(\mathbf{x}, \mathbf{u}) : g_j(\mathbf{x}, \mathbf{u}, t) \geq 0, j = 1, \ldots, s \} \).

If there exists an admissible pair \((\mathbf{x}^*(t), \mathbf{u}^*(t))\), together with a continuous and piecewise continuously differentiable vector function \(\mathbf{p}(t) \), and a piecewise-continuous function \(\mathbf{q}(t) \) such that, defining
\[
H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t) := f_0(\mathbf{x}, \mathbf{u}, t) + \mathbf{p} \cdot f(\mathbf{x}, \mathbf{u}, t)
\]
\[
L(\mathbf{x}, \mathbf{u}, \mathbf{p}, \mathbf{q}, t) := H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t) + \mathbf{q} \cdot g(\mathbf{x}, \mathbf{u}, t),
\]

the following conditions hold for all \(t \) where \(\mathbf{q}(t) \) and \(\mathbf{u}(t) \) are continuous:

b) \(\frac{\partial L}{\partial \mathbf{u}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t), \mathbf{q}(t), t) = 0 \),

c) \(\dot{\mathbf{p}}(t) = -\frac{\partial L}{\partial \mathbf{x}} (\mathbf{x}^*(t), \mathbf{u}^*(t), \mathbf{p}(t), \mathbf{q}(t), t) \),

d) the Hamiltonian is concave in \((\mathbf{x}, \mathbf{u})\), and differentiable at \((\mathbf{x}^*(t), \mathbf{u}^*(t))\),

e) \(q_i(t) \geq 0 \) and \(= 0 \) if \(g_j(\mathbf{x}^*(t), \mathbf{u}^*(t), t) > 0 \), for all \(j = 1, \ldots, s \),

f) \(g_j \) is a quasi-concave function of \((\mathbf{x}, \mathbf{u})\), and differentiable at \((\mathbf{x}^*(t), \mathbf{u}^*(t))\) for all \(j = 1, \ldots, s \),

g) and for all admissible \(\mathbf{x}(t) \), \(\lim_{t \to -\infty} \inf \mathbf{p}(t) \cdot (\mathbf{x}(t) - \mathbf{x}^*(t)) \geq 0 \),

then the pair \((\mathbf{x}^*(t), \mathbf{u}(t))\) is catching-up-optimal.
Applied to our problem, these theorems provide respectively Corollary 2.1 below and Corollary 2.2 in Section 2.3.4. In order to state them, we first give the detail of the correspondence between the notations of the theorem and that of our problem.

We have a state $x = (X, Z, S)$ ($n = 3$) and a control $u = (y, x, s)$ ($r = 3$). The cost function is $f_0 = e^{-\omega t}(u(x+y) - c_0y - c_2x - c_3y)$ and the dynamics f are specified by (2.2.2). The constraints are enumerated as (omitting the argument (X, Z, S, y, x, s, t)):

$$g_1 = y, \quad g_2 = \bar{y} - y, \quad g_3 = s, \quad g_4 = \zeta x - s,$$

$$g_5 = X, \quad g_6 = Z - S, \quad g_7 = S - S.$$

These correspond, respectively, to constraints (2.2.6) and (2.2.7) (g_1 and g_2), (2.2.8) and (2.2.9) (g_3 and g_4), (2.2.5), (2.2.3), and (2.2.4). We have $\ell = 4$ and $s = 7$. There are no constraints a priori on the behavior of the state trajectory as $t \to \infty$. In other words, we take $\ell = m = 0$.

The constraints have some specific features: they are all linear, and they depend either on control variables, or state variables, but not both. As a consequence, partial derivatives are constant, some being null. Also, the constraints expressed in (2.3.18) and requirement $i)$ of Theorem 2.1 involve disjoint sets of parameters β_{kj}^+: those can therefore be chosen independently.

Concretely, evaluating (2.3.18) we obtain the simpler requirement: for $i = 1, 2, 3$ (that is, for $x_i = X, Z, S$),

$$p_i(\tau_k^-) - p_i(\tau_k^+) = \sum_{j=1}^7 (\beta_{kj}^+ + \beta_{kj}^-) \frac{\partial q}{\partial x_i},$$

(2.3.19)

Each state variable appears in exactly one of the constraints g_5, g_6 and g_7, which leads to:

$$p_1(\tau_k^-) - p_1(\tau_k^+) = (\beta_{k5}^+ + \beta_{k5}^-), \quad p_2(\tau_k^-) - p_2(\tau_k^+) = -(\beta_{k6}^+ + \beta_{k6}^-), \quad p_3(\tau_k^-) - p_3(\tau_k^+) = -(\beta_{k7}^+ + \beta_{k7}^-).$$

Equivalently, since $\beta_{kj}^+ \geq 0$ according to requirement $j)$,

$$p_1(\tau_k^-) - p_1(\tau_k^+) \geq 0, \quad p_2(\tau_k^-) - p_2(\tau_k^+) \leq 0, \quad p_3(\tau_k^-) - p_3(\tau_k^+) \leq 0.$$

(2.3.20)

On the other hand, requirement $i)$ boils down to:

$$\beta_{kj}^+ \cdot \frac{\partial q}{\partial u} \cdot (u - u^*(\tau_k^+)) = \sum_{j=1}^4 \beta_{kj}^+ \frac{\partial q}{\partial u} (u - u^*(\tau_k^+)) \leq 0,$$

(2.3.21)

and this is satisfied with equality, choosing $\beta_{kj}^+ = 0$, $j = 1, \ldots, 4$.

Corollary 2.1. Assume there exist:

- a vector of continuous functions $x^*(t) = (X, Z, S)(t)$, a bounded vector function $u(t) = (y(t), x(t), s(t))$, satisfying equations (2.2.2)–(2.2.9),

- a vector function $\lambda(t) = (\lambda_X, \lambda_Z, \lambda_S)(t)$ such that λ_X and λ_S are continuous and continuously differentiable, and λ_Z piecewise continuously differentiable, a piecewise-continuous vector function $\gamma(t) = (\gamma_y, \gamma_s, \gamma_X, \gamma_Z, \gamma_S, \gamma_X)(t)$, satisfying equations (2.3.2)–(2.3.14) for all t, (2.3.9)–(2.3.11) for virtually every t, and conditions (2.3.15)–(2.3.17),

- a sequence of time instants $0 < \tau_1 < \cdots < \tau_N$, where $Z(\tau_k^-) < Z$ and $Z(\tau_k^+) = Z$, such that λ_Z is continuous except at the τ_k, and

$$\lambda_Z(\tau_k^-) - \lambda_Z(\tau_k^+) \leq 0.$$

(2.3.22)

Then the pair $(x^*(t), u(t))$ is catching-up-optimal for the criterion (2.2.1).
Proof. We shall check the conditions of Theorem 2.1, using the correspondence of notation detailed above. Using Lemma 2.1, it is possible to choose the set U of Theorem 2.1 as $U = \{(y, x, s) \in \mathbb{R}_+^3 \mid x + y \geq \bar{y}\}$. It is a convex set.

The pair $(X, Z, S, (y, x, s))$ is admissible, by assumption. In addition, we define the vector functions $p(t) = e^{-\rho t} \lambda(t)$ and $q = e^{-\rho t} \gamma(t)$. By assumptions on λ and γ, p is piecewise continuous and piecewise continuously differentiable, and q is piecewise-continuous. We now check $a)$ to $k).

a): given the definition of f_0, continuity and differentiability are satisfied from Assumption 1.

Then we have
\[
\frac{\partial f_0}{\partial y} = e^{-\rho t}(u'(x + y) - c_y), \quad \frac{\partial f_0}{\partial x} = e^{-\rho t}(u'(x + y) - c_x), \quad \frac{\partial f_0}{\partial s} = e^{-\rho t}(-c_s).
\]

By Assumption 1, and thanks to the fact that $x + y > 0$ on the set U, these derivatives exist and are continuous; f is linear hence C^∞; this is the case also for constraints $g_j; j = 1, \ldots, 4$.

b): the constraints $g_j; j = 5, 6, 7$ are also linear, hence C^∞;

c): the constraints are all linear, hence concave, hence quasi-concave;

d): the inequality of this requirement is satisfied with equality, since Equations (2.3.2)–(2.3.4) are equivalent to the assumption $\partial L / \partial u = 0$;

e): is also satisfied by assumption, since Equations (2.3.9)–(2.3.11) are equivalent to the assumption $p = -\partial L / \partial x$;

f): the Hamiltonian of the problem is given by the two first lines in the Lagrangian (2.3.1). It is a linear, hence concave, function of the state (x, z, s) (although not strictly concave), and a concave function of the control (y, x, s), thanks to the concavity of the function $u(\cdot)$ in Assumption 1. The Hamiltonian is therefore a concave function of (x, u);

g): is satisfied, consequence of conditions (2.3.5)–(2.3.14);

h): by assumption, λ_X and λ_S are continuous, hence (2.3.18) (or the equivalent (2.3.19)) holds for $i = 1, 3$ by choosing $\beta_{h,i}^+ = 0$. By assumption (2.2.22) on the jumps of λ_Z, it is sufficient to choose $\beta_{h,i}^- = -e^{-\rho \tau}(\lambda_Z(\tau^-_k) - \lambda_Z(\tau^+_k))$, $\beta_{k,i}^- = 0$ in order to have $\beta_{h,i}^+ \geq 0$ and comply with (2.3.18);

i): is satisfied with equality by setting $\beta_{h,i}^+ = 0, j = 1, \ldots, 4$ (see the preliminary discussion);

j): is satisfied trivially for $j = 1, \ldots, 4$ by the choice made in $i).$ Likewise for $j = 5, 6, 7$ by picking $\beta_{h,7}^+ = 0$. Given the choices of $\beta_{h,6}^+$ in $h)$, and the assumption on jump instants τ_k which specifies that the constraint is always bound after the jump, we indeed have $\beta_{h,i}^+ \geq 0$ and $\beta_{k,i}^- = 0$ since $Z(\tau^+_k) < Z$;

k): since the state variables X, Z and S are bounded by the system of constraints, Conditions (2.3.15)–(2.3.17) imply respectively
\[
\lim_{t \to \infty} e^{-\rho t} \lambda_X(t) = \lim_{t \to \infty} p_1(t) = 0, \quad \lim_{t \to \infty} p_2(t) = 0, \quad \lim_{t \to \infty} p_3(t) = 0.
\]

This in turn implies that $\lim_{t \to \infty} p(t) \cdot (x(t) - x^*(t)) = 0$ for every admissible trajectory x since the boundedness assumption on controls, the difference $x(t) - x^*(t)$ is also bounded.

Our task is therefore to exhibit solutions to the first-order conditions, with bounded controls, which are continuous, or if not continuous, which satisfy the jump condition (2.3.22).
2.3.4 The admissible domain of \(S \) and \(Z \)

Since \(\beta > 0 \), the model exhibits a viability or controllability problem that we study in this section.

Assume that for some reason, \(x(t) = s(t) = 0 \) over some interval of time. Then the dynamics of \(S \) and \(Z \) are given by:

\[
\begin{align*}
\dot{S}(t) &= -\beta S(t) \\
\dot{Z}(t) &= \beta S(t) - \alpha Z(t).
\end{align*}
\]

Let \(t_0 \) be some time instant in this interval and let us denote by \(S^0 \) and \(Z^0 \) the stocks of \(S \) and \(Z \) at this time: \(S^0 \equiv S(t_0) \) and \(Z^0 \equiv Z(t_0) \). Integrating the above system, we obtain for all \(t \) (in the case \(\alpha \neq \beta \); see Footnote 7 for the case \(\alpha = \beta \)):

\[
\begin{align*}
S(t) &= S^0 e^{-\beta (t-t_0)} \\
Z(t) &= Z^0 e^{-\alpha (t-t_0)} - S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\alpha (t-t_0)} - e^{-\beta (t-t_0)}\right).
\end{align*}
\]

Eliminating \(t \) with (2.3.23), we get the family of trajectories in the \((S, Z)\) space:

\[
Z(S; S^0, Z^0) = \left(\frac{S}{S^0}\right)^{\alpha/\beta} \left(Z^0 - \frac{\beta}{\alpha - \beta} S^0\right) + \frac{\beta}{\alpha - \beta} S.
\]

These curves depend upon \(\alpha \) and \(\beta \) and, structurally, only upon \(\alpha/\beta \). As a function of \(S, Z \) is first increasing and next decreasing whatever \(\alpha > 0 \) and \(\beta > 0 \) may be. The maximum is attained when \(\dot{Z} = 0 \), that is, \(Z = \beta S/\alpha \). The family of these curves is illustrated in Figure 2.3. The movement is going from the right to the left through time. Under the line \(Z = \beta S/\alpha \), the flow of leakage \(\beta S \) is higher than the self-regeneration flow \(\alpha Z \) so that the atmospheric stock of pollutant increases, whereas above the line the reverse holds and the atmospheric stock decreases.

![Figure 2.3: Admissible \((S, Z)\) pairs](image)

Among these trajectories, let \(Z_M(S) \) be the one, the maximum of which is equal to \(\overline{Z} \). Let \(S_m \) be the value of \(S \) for which this maximum is attained, and \(S_M \) be the (strictly) positive value of \(S \) for which \(Z_M(S) = 0 \). Clearly, \(S_M > S_m \). Given that the maxima of \(Z(s) \) are located along the line \(Z = (\alpha/\beta)S \), we get for \(Z = \overline{Z} \):

\[
S_m = \frac{\alpha}{\beta} \overline{Z}.
\]

Then

\[
Z_M(S) = Z(S; S_m, \overline{Z}) = \frac{\beta}{\alpha - \beta} \left(S - \overline{Z} \left(\frac{S}{S_m}\right)^{\alpha/\beta} \right).
\]
It follows that \(S_M = \overline{Z}(\alpha/\beta)^n/(\alpha-\beta) \), and it can be verified that \(S_M > S_m \) for all values of \(\alpha \) and \(\beta \).\(^7\)

For any \(S \in (S_m, S_M) \), the control vector \((s, \zeta x - s)\) points outwards, and it is easy to see that for any initial position located above the curve \(Z = Z_M(S) \), and for any control, the trajectory will necessarily exit the domain \(\{ Z \leq \overline{Z} \} \). Such a trajectory is not viable. Likewise, if a non-zero control is applied at any point of the curve \((S, Z_M(S))\), then the trajectory will necessarily exit the domain \(\{ Z \leq \overline{Z} \} \), whatever control is applied later on.\(^8\)

Therefore, the set of viable initial states \((S^0, Z^0)\) is delimited by the constraint

\[
Z \leq \overline{Z}(S) \tag{2.3.26}
\]

where the function \(\overline{Z} \) is defined on \([0, S_M] \) as:

\[
\overline{Z}(S) = \begin{cases}
Z_M(S), & 0 \leq S \leq S_m \\
Z_M(S_m), & S_m \leq S \leq S_M.
\end{cases} \tag{2.3.27}
\]

This function is continuous since \(Z_M(S_m) = \overline{Z} \), decreasing and concave. It is differentiable because \(Z'_M(S_m) = 0 \). However, the derivative \(\overline{Z}'(S) \) is not differentiable at \(S = S_m \).

Since this viability constraint holds for every admissible trajectory, it is possible to add it to the optimization problem \((2.2.1) - (2.2.9)\) without changing its solution. Doing so, we shall be able to handle the situation where the optimal trajectory lies on the boundary of the domain. This situation cannot be handled by Theorem 2.2 because, as it turns out, the evolution of adjoint variables is not defined by \((2.3.9) - (2.3.11)\).

Replacing the constraint \((2.2.3)\) by the more general \((2.3.26)\), rewritten as

\[
\overline{Z}(S) - Z \geq 0 \tag{2.3.28}
\]

entails the following modifications: In the Lagrangian \((2.3.1)\), the term \(\nu Z[\overline{Z} - Z] \) must be replaced with \(\nu Z[\overline{Z}(S) - Z] \). Condition \((2.3.13)\) then becomes

\[
\nu Z \geq 0, \quad \overline{Z}(S) - Z \geq 0 \text{ and } \nu Z[\overline{Z}(S) - Z] = 0, \tag{2.3.29}
\]

and Equation \((2.3.11)\) must be replaced with

\[
\dot{\lambda}_S = \rho \lambda_S - \frac{\partial L}{\partial S} \iff \dot{\lambda}_S = (\rho + \beta) \lambda_S - \beta \lambda_Z + \nu S - \nu Z \overline{Z}'(S). \tag{2.3.30}
\]

In the correspondence established with the notation of Theorem 2.2, we have to set

\[
p_0 = \overline{Z}(S) - Z.
\]

This constraint is not linear anymore. It is continuous, differentiable, but not \(C^2 \) because the derivative is not continuous at \(S = S_m \). It is not possible to apply Theorem 2.1 to this variant of the problem. When applied to state variable \(x_3 = S \), Condition \((2.3.19)\) yields now

\[
p_3(t = \tau_k) - p_3(t = \tau_k^+) = \overline{Z}'(S(\tau_k))(\beta_{k5}^+ + \beta_{k6}^-) - (\beta_{k7}^+ + \beta_{k8}^-)
\]

but since \(\overline{Z}'(\cdot) \leq 0 \), this still means \(p_3(t = \tau_k^-) - p_3(t = \tau_k^+) \leq 0 \). We aim at solutions where \(p_3 \) is continuous (equivalently, \(\lambda_S \) continuous) anyway.

Theorem 2.2 and Lemma 2.1 yield then the following corollary.

\(^7\) These formulas must be modified in the limit case \(\alpha = \beta \). In that case, we have \(\overline{Z} = S_m \), then

\[
Z(t) = Z_0 e^{-\alpha(t-\ell)} + S_0 e^{-\alpha(t-\ell)} e^{-\alpha(t-\ell)} \quad s(t) = s_0 e^{-\alpha(t-\ell)} \quad \text{and} \quad Z_M(S) = S - S \log \frac{S}{S_m}.
\]

The value where this function vanishes is \(S_M = S_0 S_m \).

\(^8\) This problem obviously occurs only if \(S > S_m \).
Corollary 2.2. Assume there exist:

- a vector of continuous functions \(\mathbf{x}^*(t) = (X, Z, S)(t) \), a bounded vector function \(\mathbf{u}(t) = (y, x, s)(t) \), satisfying equations (2.2.2), (2.3.28), (2.2.4)–(2.2.9), and \(x(t) + y(t) \geq \bar{y} \) for all \(t \),
- a vector function \(\lambda(t) = (\lambda_X, \lambda_Z, \lambda_S)(t) \) which is continuous and continuously differentiable, a piecewise-continuous vector function \(\gamma(t) = (\gamma_X, \gamma_y, \gamma_s)(t) \), satisfying equations (2.3.2)–(2.3.12), (2.3.29), (2.3.14)–(2.3.10) and (2.3.30) for all \(t \) where \(\mathbf{u}(t) \) and \(\gamma(t) \) are continuous, and conditions (2.3.15)–(2.3.17).

Then the pair \((\mathbf{x}^*(t), \mathbf{u}(t)) \) is catching-up-optimal for the criterion (2.2.1).

Proof. We check the conditions of Theorem 2.2 using again the correspondence of notations established in Section 2.3.3. In addition, Theorem 2.2 introduces the set

\[
A(t) = \{ (x, u) : g_0(x, u, t) \geq 0, j = 1, \ldots, s \} = \{ (X, Z, S, y, x, s) : Z \leq \bar{Z}, S \leq \bar{S}, X \geq 0, 0 \leq y \leq \bar{y}, 0 \leq s \leq \zeta x + y \geq \bar{y} \} .
\]

Adding the constraint \(x + y \geq \bar{y} \) to the problem is possible by virtue of Lemma 2.1, and it excludes the possibility that \(x + y = 0 \) from the set \(A(t) \). Then \(f_0 \) is not only continuous, but also differentiable on \(A(t) \) even if \(f(0) \) is allowed to be infinite. Since \(f \) is clearly differentiable, we see that the Hamiltonian is differentiable for every admissible control, so a fortiori at any candidate optimal control \((\mathbf{x}^*(t), \mathbf{u}^*(t)) \) as in Condition d) of Theorem 2.2. This condition and Condition a) are therefore satisfied.

Let us now check the remaining conditions of Theorem 2.2. We have already remarked the continuity of \(f_0 \) and \(f \). Condition d) holds as in Theorem 2.1 f) because the Hamiltonian is not affected by this change in the constraints. It is therefore still is concave and, as observed above, differentiable as a function of \((X, Z, S, y, x, s) \).

Conditions b), c) and e) hold by construction. Condition f) holds due to the concavity of \(\bar{Z}(S) \). Finally, Condition g) holds as for Condition k) of Theorem 2.1 in the proof of Corollary 2.1. \(\square \)

2.3.5 On the lack of necessary conditions

This paragraph discusses our choice to focus on sufficient conditions instead of deducing the solutions from necessary conditions.

Indeed, the usual situation in the literature is that the set of first-order conditions listed in Section 2.3.1 are in fact necessary, with the adjoint variables in some precise class of functions (continuous, piecewise continuous, ...). For models without state constraints, results like Theorem 2, Chapter 2, page 85 or Theorem 12, Chapter 3, page 234 in Seierstad & Sydsæter (1987) validate this approach. However, for models with state constraints, this actually requires that these constraints be “qualified” in some sense. If the constraints fail to be qualified, it is not known whether the first-order conditions are actually necessary. This is the case here.

For an illustration of this principle, consider for instance Theorem 9, Chapter 6, page 381 of Seierstad & Sydsæter (1987), with the same notation as in Section 2.3.3. The problem has here seven constraints, but if \((X(t), S(t), Z(t)) = (X(t), S_m, Z) \) (with \(X(t) > 0 \)) and \((y(t), x(t), s(t)) = (0, \bar{x}, \bar{x}) \) is a candidate state/control pair, only constraints

\[
g_1 = y, \quad g_4 = \zeta x - s, \quad \text{and} \quad g_6 = Z - Z
\]

are active. According to the theorem, the third one must be converted into

\[
l_0(y, x, s, X, S, Z) = \frac{\partial g_6}{\partial X}(x) + \frac{\partial g_6}{\partial S}(\beta S + s) + \frac{\partial g_6}{\partial Z}(\alpha Z + \beta S + \zeta x - s) = \alpha Z - \beta S - \zeta x + s .
\]
The constraint qualification condition states then that the following matrix $M(t)$ should then have rank 3:

$$M(t) = \begin{bmatrix}
\frac{\partial g_1}{\partial y} & \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial s} \\
\frac{\partial g_2}{\partial y} & \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial s} \\
\frac{\partial h_6}{\partial y} & \frac{\partial h_6}{\partial x} & \frac{\partial h_6}{\partial s}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \zeta & -1 \\
0 & -\zeta & 1
\end{bmatrix}.$$

However, the rank of $M(t)$ is clearly 2. This constraint qualification condition does not hold. The condition of Theorem 8, Chapter 6, page 378 of Seierstad & Sydsæter (1987) fails as well.
Chapter 3

Preliminary results

3.1 Introduction to the solution

The central object of our analysis is the “phase”, which we define as a piece of optimal path for which the set of active constraints on states or controls is the same at all times. A complete optimal trajectory is necessarily decomposed into a succession of such phases. The method consists then in “gluing” together pieces of trajectory, each one being in some phase.

This chapter is devoted to the individual analysis of the different possible phases. The assembly of pieces of trajectories will be done in Chapter 4 for a simplification of the model. The complete solution for the model presented in Chapter 2 is left for future research.

The combinatorics of the exploration of phases is quite large a priori. Constraints (2.2.3)–(2.2.5) provide 2 situations each, constraints (2.2.6) and (2.2.7) provide 3 of them, and the set of constraints (2.2.8)–(2.2.9) provide 4 distinct situations, for a potential total of 96 phases.

In the core of our analysis, we will choose to disregard the limit \(\overline{y} \) on the flow of renewable resource \(y \), as well as capacity constraints \(S \) on the reservoir \(S \).\(^1\) This simplification will allow us to concentrate on the importance of the self-regeneration rate \(\alpha \), the leakage rate \(\beta \) and the capture cost \(c_g \) on the shape of optimal extraction paths. Indeed, in Chapter 4 we will provide a complete classification of optimal trajectories, according to the position of \(c_g \) with respect to various thresholds defined with the other parameters. In Sections 4.6.1 and 4.6.2, the constraints on \(S \) and \(y \) are reintroduced.

Ignoring the constraints \(\overline{y} \) and \(S \) reduces the number of possible phases to 32. We will see however in this chapter that only 9 phases are actually useful in the construction of optimal trajectories.

For this restricted problem, Corollary 2.1 and Corollary 2.2 take the following form. The proof for these variants is easily adapted from the original proofs.

Corollary 3.1. Assume there exist:

- a vector of continuous functions \(\mathbf{x}(t) = (X, Z, S)(t) \), a bounded vector function \(\mathbf{u}(t) = (y, x, s)(t) \), satisfying equations (2.2.2), (2.2.3), (2.2.5), (2.2.6), (2.2.8) and (2.2.9),

- a vector function \(\lambda(t) = (\lambda_X, \lambda_Z, \lambda_S)(t) \) such that \(\lambda_X \) and \(\lambda_S \) are continuous and continuously differentiable, and \(\lambda_Z \) piecewise continuously differentiable, a piecewise-continuous vector function \(\gamma(t) = (\gamma_X, \gamma_Z)(t), satisfying equations (2.3.2)–(2.3.13) for all \(t \) (with \(\gamma_y = 0 \)), (2.3.9)–(2.3.11) for virtually every \(t \) (with \(\gamma_S = 0 \)), and conditions (2.3.15)–(2.3.17),

\(^1\)Observe that even if the capacity of reservoirs were assumed to be unlimited, this would not mean that all the pollution could be captured and stored. Indeed, because of leakage and the resulting viability constraint identified in Section 2.3.4, only a maximum capacity \(S_M \) can possibly be used. Disregarding the constraint \(S \) consists in assuming that \(S \geq S_M \).
• a sequence of time instants $0 < \tau_1 < \ldots < \tau_N$, where $Z(\tau_k^-) < \bar{Z}$ and $Z(\tau_k^+) = \bar{Z}$, such that
 \[\lambda_Z is continuous except at the τ_k, and \]
 \[\lambda_Z(\tau_k^-) - \lambda_Z(\tau_k^+) \leq 0. \]
 \hfill (3.1.1)

Then the pair $(x^*(t), u(t))$ is catching-up-optimal for the criterion (2.2.1).

Corollary 3.2. Assume there exist:

- a vector of continuous functions $x^*(t) = (X, Z, S)(t)$, a bounded vector function $u(t) = (\nu_X, x, s)(t)$, satisfying equations (2.2.2), (2.3.28), (2.2.5), (2.2.6), (2.2.8) and (2.2.9),
- a vector function $\lambda(t) = (\lambda_X, \lambda_Z, \lambda_S)(t)$ which is continuous and continuously differentiable, a piecewise-continuous vector function $\gamma(t) = (\gamma^X, \gamma^Z, \gamma_S, \nu_Z, \nu_X)(t)$, satisfying equations (2.3.2)–(2.3.12) (with $\tau_y = 0$), (2.3.29), (2.3.9)–(2.3.11) (with $\lambda_S = 0$) and (2.3.30) for all t where $u(t)$ and $\gamma(t)$ are continuous, and conditions (2.3.15)–(2.3.17).

Then the pair $(x^*(t), u(t))$ is catching-up-optimal for the criterion (2.2.1).

Guided by these theoretical results, we look for trajectories which are continuous inside each phase: the only discontinuities which we will consider are related with the change in the status of the constraint $Z = \bar{Z}$: in some situations, λ_Z will be allowed to jump when this constraint becomes active.

In the different sections of this chapter, we analyze separately the dynamics of each phase. We adopt the following common notation: θ^0 denotes an arbitrary time instant at which the trajectory is within the phase under study. The corresponding values of the state, adjoint variables and multipliers are denoted with the same superscript as in $X^0, S^0, Z^0, \lambda^0_X, \lambda^0_Z, \lambda^0_S$ etc. We express the value of the different relevant trajectories as a function of t and these “initial” values. They hold whether t is smaller or larger than θ^0, as long as both time instants lie in an interval where the system stays in the phase without interruption.

We begin with general observations about the phases which are “interior” with respect to state constraints. In Section 3.2, we characterize the evolution of adjoint variables in such phases. Next, in Section 3.3, we simplify the problem by ruling out certain configurations for the optimal control. Then, we give the details of state and adjoint variable trajectories in the remaining phases. We start with phases located in the interior of the domain, in Section 3.4. Finally, we turn to the boundary, and describe phases such that the atmospheric stock has reached its ceiling (Section 3.5).

3.2 The system in the interior

When no state constraint is active, the dynamics of the adjoint variables take a particularly simple form, which yields closed-form expressions.

The interior of the domain, which we will denote by D, is defined by the set of strict inequalities:

\[D = \left\{ (X, S, Z) \in \mathbb{R}^3 \mid 0 < X(t), \ 0 < S(t) \ 0 < Z(t) < \bar{Z}(S(t)) \right\}, \]

\hfill (3.2.1)

where the function \bar{Z} has been defined in (2.3.27). At time instants where the state lies in D, the Lagrange multipliers ν_X, ν_S and ν_Z vanish because of (2.3.12)–(2.3.14), and the dynamics of adjoint variables (2.3.9)–(2.3.11) reduce to

\[
\begin{align*}
\dot{\lambda}_X &= \rho \lambda_X \\
\dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z \\
\dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z.
\end{align*}
\]
 \hfill (3.2.2)

The first of these equations holds whenever $X > 0$. It follows that for every t and every θ^0 in any period where $X > 0$,

\[\lambda_X(t) = \lambda_X^0 e^{\rho(t - \theta^0)}. \]
 \hfill (3.2.3)
3.2.1 Dynamics of the adjoint variables

We concentrate now on \(\lambda_S \) and \(\lambda_Z \). Integrating the dynamical system:

\[
\begin{align*}
\lambda_Z &= (\rho + \alpha) \lambda_Z \\
\lambda_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z \\
\end{align*}
\]

under initial conditions at \(t^0 \) yields:

\[
\begin{align*}
\lambda_Z(t) &= \lambda_Z^0 e^{(\rho + \alpha)(t-t^0)} \\
\lambda_S(t) &= \lambda_S^0 e^{(\rho + \beta)(t-t^0)} - \frac{\beta}{\alpha - \beta} \lambda_Z^0 \left(e^{(\rho + \alpha)(t-t^0)} - e^{(\rho + \beta)(t-t^0)} \right) \\
\end{align*}
\]

(3.2.4) (3.2.5)

The pair \((\lambda_S(t), \lambda_Z(t))\) therefore lies on the curve:

\[
\lambda_S = \lambda_S^0 \left(\frac{\lambda_Z}{\lambda^0_Z} \right)^{\frac{\beta + \alpha}{\alpha - \beta}} - \frac{\beta}{\alpha - \beta} \left(\lambda_Z - \lambda_Z^0 \left(\frac{\lambda_Z}{\lambda^0_Z} \right)^{\frac{\beta + \alpha}{\alpha - \beta}} \right). \\
\]

When \(\alpha = \beta \), these formulas must be modified as follows:

\[
\begin{align*}
\lambda_S(t) &= (\lambda_S^0 + \alpha(t-t^0) \lambda_Z^0) e^{(\rho + \alpha)(t-t^0)} \\
\lambda_S &= \frac{\lambda_Z}{\lambda^0_Z} \left(\lambda_S^0 - \lambda_Z^0 \frac{\alpha}{\rho + \alpha} \log \left(\frac{\lambda_Z}{\lambda^0_Z} \right) \right). \\
\end{align*}
\]

3.2.2 Dynamics of ratios

Define the ratio variables:

\[
r(t) := \frac{Z(t)}{S(t)} \\
\lambda(t) := \frac{\lambda_S(t)}{\lambda_Z(t)}. \\
\]

As above, assume for adjoint variables that the system is in the interior (phases that will be named “A”, “B” and “L” later on). For the state variables, assume that no control is applied to the system (phases that will be named “L”, “U” or “T” later on). It is straightforward to check that the ratios thus defined satisfy the autonomous, first-order differential equations:

\[
\dot{r} = (\beta - \alpha) r + \beta \\
\dot{\lambda} = (\beta - \alpha) \lambda_\lambda - \beta, \\
\]

which do not depend on \(\rho \). Integrating leads to the solutions:

\[
\begin{align*}
r(t) &= \left(r(t_0) + \frac{\beta}{\beta - \alpha} \right) e^{(\beta - \alpha)(t-t_0)} - \frac{\beta}{\beta - \alpha} \\
\lambda(t) &= \left(\lambda(t_0) - \frac{\beta}{\beta - \alpha} \right) e^{(\beta - \alpha)(t-t_0)} + \frac{\beta}{\beta - \alpha}. \\
\end{align*}
\]

When \(\alpha = \beta \), these formulas take the form:

\[
\begin{align*}
r(t) &= r(\rho) + \alpha(t-t^0) \\
\lambda(t) &= \lambda(\rho) - \alpha(t-t^0). \\
\end{align*}
\]

As an application of these formulas, observe that the time necessary for the system to go from a position \((S^0, Z^0)\) to \((S^1, Z^1)\) depends only on the ratios \(\rho^0 = Z^0/S^0 \) and \(\rho^1 = Z^1/S^1 \). The value of this duration is given by:

\[
t_1 - t_0 = \frac{1}{\beta - \alpha} \log \left(\frac{\beta}{\beta - \alpha} \right) = \frac{1}{\beta - \alpha} \log \left(\frac{(\beta - \alpha) r^1 + \beta}{(\beta - \alpha) r^0 + \beta} \right), \\
\]

when \(\alpha \neq \beta \), and \(t_1 - t_0 = (r^1 - r^0)/\alpha \) when \(\alpha = \beta \). In particular, when \(Z(t_0) = 0 \), we have \(r^0 = 0 \) and:

\[
t_1 - t_0 = \frac{1}{\beta - \alpha} \log \left(\frac{\beta - \alpha}{\beta} \right) r^1 + 1 \right). \\
\]
Likewise for adjoint variables: the time necessary for the system to go from a position where the ratio is $r_\lambda^* = \lambda_S^*/\lambda_Z^*$ to one where the ratio is $r_\lambda = \lambda_S^*/\lambda_Z^*$ is given by:

$$t_1 - t_0 = \frac{1}{\beta - \alpha} \log \left(\frac{(\beta - \alpha)r_\lambda - \beta}{(\beta - \alpha)r_\lambda^* - \beta} \right),$$

when $\alpha \neq \beta$, and $t_1 - t_0 = -(r_\lambda - r_\lambda^*)/\alpha$ when $\alpha = \beta$.

3.2.3 Invariants

Another formulation of the previous results is that the following quantities are invariant over time:

$$\left(\frac{Z(t)}{S(t)} + \frac{\beta}{\beta - \alpha} \right) e^{-(\beta - \alpha)t}, \quad \left(\frac{\lambda_S(t)}{\lambda_Z(t)} - \frac{\beta}{\beta - \alpha} \right) e^{-(\beta - \alpha)t},$$

as long as the state remains in Phase L, T or U for the first quantity, or in Phase A, B or L for the second one. As a consequence, the line $\{r_\lambda = \beta/(\beta - \alpha)\} = \{((\beta - \alpha)\lambda_S = \beta\lambda_Z\}$ is invariant, and so is the sign of $r_\lambda - \beta/(\beta - \alpha)$. If $\beta > \alpha$, trajectories starting with $r_\lambda(t^0) > \beta/(\beta - \alpha)$ go to $+\infty$, and trajectories with $r_\lambda(t^0) < \beta/(\beta - \alpha)$ go to $-\infty$, as $t \to +\infty$. All trajectories tend to $\beta/(\beta - \alpha) > 0$ when $t \to -\infty$. If $\beta < \alpha$, the converse situation occurs: all trajectories tend to $\beta/(\beta - \alpha) < 0$ when $t \to +\infty$, and the limit when $t \to -\infty$ is $\pm \infty$ with the sign of $r_\lambda(t^0) - \beta/(\beta - \alpha)$.

The following quantities are also constant on trajectories in the interior of the domain D when it is optimal to apply no control (Phase L):

$$\left(S(t)\lambda_S(t) + Z(t)\lambda_Z(t) \right) e^{-\beta t}$$

$$\left(-(\beta S(t)\lambda_S(t) + (-\alpha Z(t) + \beta S(t))\lambda_Z(t) \right) e^{-\beta t}.$$

Some of these results will be useful for proving that certain trajectories satisfy certain constraints, for instance in Section 4.2.1, or when applying transversality conditions, see Section 3.5.5.

3.3 Elimination of impossible phases

When the state of the system is not bound by a constraint, the structure of the cost function allows to eliminate controls that are necessarily suboptimal. This allows to eliminate certain phases from the construction of a solution.

Our first result is a sort of “bang-bang” principle for the capture control s in the interior of the domain.

Lemma 3.1. Assume that $c_s \neq 0$. Consider a piece of optimal trajectory located in the interior of the domain D, such that $x(t) > 0$. Then for every time instant t, either $s(t) = 0$, or $s(t) = \zeta x(t)$.

Proof. By definition of the interior of the domain, no state constraints applies and the first-order conditions are necessary, see Section 2.3.5. Assume by contradiction that $0 < s(t) < \zeta x(t)$. Then by (2.3.5) and (2.3.6), we have $\gamma_s(t) = \gamma_{s\zeta}(t) = 0$. Then, (2.3.2) reduces to:

$$-c_s - \lambda_Z(t) + \lambda_S(t) = 0.$$ \hfill (3.3.1)

Differentiating, we must have, over some time interval, $\lambda_Z(t) = \dot{\lambda}_S(t)$. Using (2.3.10) and (2.3.11), this implies in turn that

$$\rho + \alpha)\lambda_Z = \lambda_S + \beta \lambda_Z - \beta \lambda_Z$$

because $\nu_Z = 0$. Replacing in (3.3.1), we find that necessarily, $(\rho + \beta)c_s = \alpha \lambda_Z$. If $\alpha = 0$, this is not possible since $c_s \neq 0$. If $\alpha > 0$, the adjoint variables are necessarily constant and equal to:

$$\lambda_Z = \frac{\rho + \beta}{\alpha} c_s \quad \lambda_S = \frac{\rho + \beta + \alpha}{\alpha} c_s .$$

However, these functions do not solve the differential system (2.3.2), unless $c_s = 0$. This is excluded by assumption, hence the contradiction. \hfill \square
We observe that in the case $c_s = 0$, the reasoning above leads to the conclusion that $\lambda_S = \lambda_Z$ if $\alpha = 0$ and $\alpha S = \lambda_Z = 0$ if $\alpha > 0$. We discuss further this situation in Section 4.6.4.

Next, we rule out the possibility that both the renewable resource and the nonrenewable resource be used at the same time.

Lemma 3.2. Assume that $c_y > 0$. Consider a piece of optimal trajectory located in the interior of the domain D. Then either $x(t) > 0$ or $y(t) > 0$ but not both.

Proof. Again, the first-order conditions are necessary. Assume by contradiction that $x(t) > 0$ and $y(t) > 0$. Then $c_x(t) = 0$ and the first-order conditions (3.2.8)–(3.2.10) reduce to: $x+y = \tilde{y}$ and

$$
0 = -c_y - \lambda_Z + \gamma_x + \gamma_{Sx} \quad (3.3.3)
$$

$$
0 = c_y - c_x - \lambda_X + \zeta \lambda_Z + \zeta \gamma_{Sx} \quad (3.3.4)
$$

According to Lemma 3.1 (which is applicable since $x > 0$ and $c_s \neq 0$), either $s = 0$ and $\gamma_{Sx} = 0$, or $s = \zeta x$ and $\gamma_x = 0$. In the first case, differentiating Equation (3.3.4) gives $\lambda_X = c \lambda_Z$ or equivalently with (3.2.8): $\rho \lambda_X = \zeta (\rho + \alpha) \lambda_Z$. Then the adjoint variables are necessarily constant and equal to

$$
\lambda_Z = \frac{c_y - c_x}{\alpha s} \quad \lambda_X = \frac{\rho + \alpha}{\rho} \frac{c_y - c_x}{\alpha s} .
$$

However, these functions do not solve the differential system (3.2.8): a contradiction.

In the second case, Equation (3.3.3) provides the identity $\lambda_Z + \gamma_{Sx} = \lambda_S - c_s$, and replacing this into (3.3.4) yields:

$$
0 = c_y - c_x - \zeta \gamma_x - \lambda_X + \zeta \lambda_S .
$$

Then $\lambda_X = \lambda_S = \zeta (\rho + \beta) \lambda_S - \zeta \beta \lambda_Z = \rho \lambda_X$. Eliminating λ_X between these equations, we arrive successively at: $C := c_y - c_x - \zeta \gamma_x = \zeta (\lambda_S - \lambda_Z)$. $\lambda_S = \lambda_Z$, $\lambda_S = (\rho + \alpha + \beta) \lambda_Z$ = $\zeta (\rho + \beta) \lambda_S$. We have three linear algebraic equations linking λ_X, λ_S, and λ_Z. If $\alpha
eq 0$, this linear system has a unique solution providing three constant functions, all proportional to C. But the unique constant solution to (3.2.8)–(3.2.9) is null. This entails $\gamma_{Sx} = -c_s < 0$, which is not consistent. If $\alpha = 0$, it follows that $\lambda_Z = \lambda_S$. But this also implies $\gamma_{Sx} = -c_s < 0$. We reach a contradiction in every case. \square

3.4 Dynamics in interior phases

Given Lemmas 3.1 and 3.2, the optimal control on an interior piece of trajectory reduces to one of the three alternatives: either $y \equiv 0$, $s \equiv 0$, $x > 0$, or $y \equiv 0$, $s \equiv \zeta x$, $x > 0$, or $y \equiv \tilde{y}$, $x \equiv s \equiv 0$.

We name the first situation Phase “A”: it is characterized by the absence of constraints on the state, zero capture and exclusive consumption of nonrenewable energy.

We name the second situation Phase “B” it is characterized by the absence of constraints on the state, total capture of the emissions due to nonrenewable energy.

The third situation is called Phase “L”.

We analyze the dynamics of the system in these three phases.

3.4.1 Dynamics when capture is nil (Phase A)

Phase A corresponds to the situation where the resource is not exhausted ($X(t) > 0$), the ceiling is not reached ($Z(t) < \bar{Z}$), and no sequestration occurs ($s(t) \equiv 0$). See Appendix A.1 on page 78.

Consumption is directly given by the first-order equation (2.3.3):

$$
x = q \left(c + \lambda_X - \zeta \lambda_Z \right), \quad (3.4.1)
$$

The value of the adjoint variable $\lambda_X(t)$ is known from (3.2.8), and that of $\lambda_Z(t)$ from (3.2.9):

$$
\lambda_X(t) = \lambda_X^0 e^{(\zeta - \rho) t} \quad \lambda_Z(t) = \lambda_Z^0 e^{(\rho + \alpha)(t - \delta)},
$$

23
The integration of the dynamical system for the state variables gives:

\[
X(t) = X^0 - \int_0^t q^\ell(c_x + \lambda_X e^\rho u - \zeta \lambda_Z(u))du \tag{3.4.2}
\]

\[
Z(t) = Z^0 e^{-\alpha(t-\ell^p)} + S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\beta(t-\ell^p)} - e^{-\alpha(t-\ell^p)} \right)
+ \zeta \int_0^t e^{-\alpha(t-u)} q^\ell(c_x + \lambda_X e^\rho u - \zeta \lambda_Z(u))du \tag{3.4.3}
\]

\[
S(t) = S^0 e^{-\beta(t-\ell^p)} . \tag{3.4.4}
\]

3.4.2 Dynamics when capture is maximal (Phase B)

Phase B corresponds to the situation where the resource is not exhausted \((X(t) > 0)\), the ceiling is not reached \((Z(t) < Z)\), and maximal sequestration occurs \((s(t) = \zeta x(t))\). See Appendix A.2 on page 79.

Consumption is directly given by the first-order equations:

\[
x = q^\ell(c_x + \lambda_X - \zeta \lambda_S + \zeta c_x) . \tag{3.4.5}
\]

The value of \(\lambda_X\) is given by (3.2.3) and that of \(\lambda_S(t)\) is given by (3.2.5), that is:

\[
\lambda_S(t) = \lambda_S^0 e^{(\rho+\beta)(t-\ell^p)} - \frac{\beta}{\alpha - \beta} \lambda_Z^0 \left(e^{(\rho+\alpha)(t-\ell^p)} - e^{(\rho+\beta)(t-\ell^p)} \right) .
\]

The integration of the dynamical system for the state variables gives:

\[
X(t) = X^0 - \int_0^t q^\ell(c_x + \lambda_X^0 e^\rho u - \zeta \lambda_S(u) + \zeta c_x)du \tag{3.4.6}
\]

\[
Z(t) = Z^0 e^{-\alpha(t-\ell^p)} + \beta \int_0^t e^{\rho(u-t)} S(u)du \tag{3.4.7}
\]

\[
S(t) = S^0 e^{-\beta(t-\ell^p)} + \zeta \int_0^t e^{\alpha(t-u)} q^\ell(c_x + \lambda_X^0 e^\rho u - \zeta \lambda_S(u) + \zeta c_x)du . \tag{3.4.8}
\]

3.4.3 Dynamics with only renewable energy consumption (Phase L)

Phase L corresponds to the situation where \(x = s = 0\), and \(y = \hat{y}\), while the state is inside the domain: \(X > 0\) and \(Z < \bar{Z}(S)\). It is summarized in Appendix A.3 on page 80.\(^2\)

The trajectories of both the state and the adjoint variables follow the “free” forms (2.3.24)–(2.3.23) and (3.2.4)–(3.2.5), that is:

\[
Z(t) = Z^0 e^{-\alpha(t-\ell^p)} - S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\beta(t-\ell^p)} - e^{-\alpha(t-\ell^p)} \right)
\]

\[
S(t) = S^0 e^{-\beta(t-\ell^p)}
\]

\[
\lambda_Z(t) = \lambda_Z^0 e^{(\rho+\alpha)(t-\ell^p)}
\]

\[
\lambda_S(t) = \lambda_S^0 e^{(\rho+\beta)(t-\ell^p)} - \frac{\beta}{\alpha - \beta} \lambda_Z^0 \left(e^{(\rho+\alpha)(t-\ell^p)} - e^{(\rho+\beta)(t-\ell^p)} \right) ,
\]

together with \(X(t) = X^0\).

\(^2\)These assumptions on the control are also in the definition of Phase T and Phase U to be described in Sections 3.5.5 and 3.5.6, in which the state lies on the boundary of the domain \(\mathcal{D}\).
3.5 Boundary Phases

The boundary of the admissible domain is the frontier of the domain D defined in (3.2.1). The part of most interest in the analysis is the curve $\{ (S, \bar{Z}(S)), 0 \leq S \leq S_M \}$, itself decomposed into the “ceiling” phase $Z = \bar{Z}$ and $0 \leq S \leq S_M$, and the curve $Z = \bar{Z}_M(S)$ for $S_M \leq S \leq S_M$ (see (2.3.27).

The rest of the boundary is made of parts of the lines $S = 0$ and $Z = 0$. On the former, the dynamics is as in Phase A (Section 3.4.1). On the latter, no optimal trajectory can stay.

When $Z(t) = \bar{Z}$ over some interval of time, the dynamics (2.2.2) imply that the control is constrained by

$$\zeta x - s = \alpha Z - \beta S = \beta (S_M - S) = \zeta x - \beta S. \tag{3.5.1}$$

We analyze the consequences of this relationship in this section, depending on whether s is further constrained to be 0 (Sections 3.5.1, 3.5.3, 3.5.5 and 3.5.6), interior ($0 < s < \zeta x$, Section 3.5.2) or constrained at its maximum ($s = \zeta x$, Section 3.5.4).

3.5.1 Dynamics in Phase P (constrained atmospheric stock, no capture)

If capture is further constrained to be 0, this actually determines the consumption

$$x(t) = \frac{\beta}{\zeta}(S_M - S(t)). \tag{3.5.2}$$

We call this situation Phase “P”, see Appendix A.4 on page 81.

In such a phase, the values of the adjoint variables can be directly deduced from the first order conditions (2.3.2)–(2.3.4) and the dynamical system (2.3.10)–(2.3.11)

$$\lambda_S(t) = -\frac{1}{\zeta} \left(c_x + \lambda_X(t)e^{(\rho - \beta)t} - u, \left(\frac{\beta}{\zeta} (S_M - S(t)) - \frac{S(t)}{e^{\beta(t - \rho)}} \right) \right) \tag{3.5.3}$$

$$\lambda_S(t) = \lambda_0 e^{(\rho + \beta)(t - \rho)} - \beta \int_0^t e^{(\rho + \beta)(t - u)} \lambda_Z(u) \, du \tag{3.5.4}$$

$$\nu_Z(t) = \frac{\beta}{\zeta} \lambda_X(t) - \frac{\beta^2}{\zeta^2} S(t) \left(\frac{\beta}{\zeta} (S_M - S(t)) - \frac{S(t)}{e^{\beta(t - \rho)}} \right)$$

$$- (\rho + \alpha) \left(c_x + \lambda_X(t) - u, \left(\frac{\beta}{\zeta} (S_M - S(t)) - \frac{S(t)}{e^{\beta(t - \rho)}} \right) \right). \tag{3.5.5}$$

The state variables are:

$$X(t) = X(0) + \frac{S(t)}{\zeta} (1 - e^{-\beta(t - \rho)}) - x(t - \rho), \tag{3.5.6}$$

$$S(t) = S(0) e^{-\beta(t - \rho)} \tag{3.5.7}. $$

Along every optimal path in this phase, the fact that $s(t) = 0$ must imply by (2.3.6) that $\gamma_s(t) = c_s + \lambda_Z(t) - \lambda_S(t) \geq 0$. It is also necessary that $\nu_Z \geq 0$.

3.5.2 Dynamics in Phase Q (constrained atmospheric stock, free capture)

Phase Q corresponds to the situation where the resource is not exhausted ($X(t) > 0$), the ceiling on atmospheric pollution is reached ($Z(t) = \bar{Z}$), and sequestration occurs, but not all emissions are sequestered ($0 < s(t) < \zeta x(t)$). It is described in Appendix A.5 on page 82.

The use of the first-order conditions and the dynamical system leads to the following derivation. First, the first-order condition for s provides the identity:

$$\lambda_S(t) = \lambda_Z(t) + c_s \tag{3.5.8}. $$
Then, differentiating and using the dynamics on \(\lambda_S \), we obtain:

\[
\dot{\lambda}_S = \lambda_Z = \rho \lambda_Z + (\rho + \beta) c_s .
\]

The adjoint variable for \(S \) is obtained by integrating Equation (2.3.11). The value of \(\lambda_Z \) is then deduced from (3.5.8). These are:

\[
\lambda_Z(t) = e^{\rho(t-t^0)} \left(\lambda_Z^0 + c_s \frac{\rho + \beta}{\rho} \right) - c_s \frac{\rho + \beta}{\rho} \tag{3.5.9}
\]

\[
\lambda_S(t) = e^{\rho(t-t^0)} \left(\lambda_S^0 + c_s \frac{\rho + \beta}{\rho} \right) - c_s \frac{\beta}{\rho} \tag{3.5.10}
\]

Finally, we also have the following expressions for \(\nu_Z \):

\[
\nu_Z(t) = (\rho + \beta) \lambda_S(t) - (\rho + \alpha + \beta) \lambda_Z(t) = (\rho + \beta) c_s - \alpha \lambda_Z(t) = (\rho + \alpha + \beta) c_s - \alpha \lambda_S(t) .
\]

Let us focus on the trajectory of the adjoint variable vector \((\lambda_Z(t), \lambda_S(t)) \). If it happens that

\[
0 = \lambda_Z^0 + c_s \frac{\rho + \beta}{\rho} , \tag{3.5.11}
\]

then both quantities are constant and the system (3.5.9)–(3.5.10) is stationary at point

\[
\Omega = \left(- c_s \frac{\rho + \beta}{\rho} , - c_s \frac{\beta}{\rho} \right) . \tag{3.5.12}
\]

If Condition (3.5.11) is not satisfied, then the vector \((\lambda_Z(t), \lambda_S(t)) \) moves away from \(\Omega \) on the line \(\lambda_S = \lambda_Z + c_s \). In that case, whatever the value of \(\lambda_Z^0 \), we have: \(\lim_{t \to -\infty} (\lambda_Z(t), \lambda_S(t)) = \Omega \). We shall make use of this property in our analysis in Chapter 4.

The dynamics for \(X \) and \(S \) are given by:

\[
\dot{X} = -x \quad \dot{S} = \zeta(x - \bar{x}) .
\]

Since the values of consumption and capture are respectively given by:

\[
x(t) = q^I(c_x + \lambda_Z^0 e^{\rho(t-t^0)} - \zeta \lambda_Z(t)) \tag{3.5.13}
\]

\[
s(t) = \zeta x(t) - \beta (S_m - S(t)) = \zeta (x(t) - \bar{x}) + \beta S(t) , \tag{3.5.14}
\]

they are integrated as:

\[
X(t) = X^0 - \int_{t^0}^t q^I(c_x + \lambda_Z^0 e^{\rho u} - \zeta \lambda_Z(u)) du \tag{3.5.15}
\]

\[
S(t) = S^0 + \zeta \int_{t^0}^t q^I(c_x + \lambda_Z^0 e^{\rho u} - \zeta \lambda_Z(u)) du - \zeta (x - x^0) , \tag{3.5.16}
\]

with \(\lambda_Z(t) \) given by (3.5.9).

3.5.3 Dynamics in Phase R (constrained atmospheric stock and renewable energy consumption)

Phase R corresponds to the situation where the resource is not exhausted \((X(t) > 0) \), the ceiling on atmospheric pollution is reached \((Z(t) = Z) \), no sequestration occurs, but there is mixed consumption of the renewable and nonrenewable resource \((x(t) > 0 \text{ and } y(t) > 0) \). It is described in Appendix A.6 on page 83.
Given the first-order conditions and the ceiling constraint, the consumption of resources is given by:

\[x = \frac{\beta}{\zeta}(S_m - S) \quad (3.5.17) \]
\[y = \frac{\beta}{\zeta}(S - S_y) \quad (3.5.18) \]

where we have introduced the quantity:
\[S_y = \frac{\zeta}{\beta}(\bar{x} - \bar{y}) \quad (3.5.19) \]

Since \(x > 0 \) and \(y > 0 \), it is necessary that \(S_y < S < S_m \). The dynamics of adjoint variables are integrated explicitly as:

\[\lambda_Z = \frac{1}{\zeta} \lambda_X e^{(t - \ell)} - \frac{c_y - c_x}{\zeta} \]
\[\lambda_S = \lambda_X e^{(t - \ell)} - \beta \int_0^t e^{(t - \ell)} \lambda_Z(u) du \]
\[= \lambda_X e^{(t - \ell)} + \frac{1}{\zeta} \lambda_X e^{(t - \ell)} (1 - e^{\beta(t - \ell)}) - \frac{c_y - c_x}{\zeta} \frac{\beta}{\rho + \beta} (1 - e^{\rho + \beta(t - \ell)}) . \]

It follows that:
\[\nu_Z = -\alpha \lambda_Z + \rho \frac{c_y - c_x}{\zeta} . \]

Consider an initial condition \((X^0, Z^0, S^0) \) at time \(\ell \), such that \(S^0 \in (S_y, S_m) \). The dynamics of Phase R imply that:

\[S(t) = S^0 e^{-\beta(t - \ell)} \]
\[X(t) = X^0 - \int_0^t \left(\frac{\bar{x}}{\zeta} S(u) \right) du \]
\[= X^0 - \bar{x}(t - \ell) + \frac{1}{\zeta} (S^0 - S) . \]

Eliminating the variable \(t \) as: \(\beta(t - \ell) = \log(S^0 / S(t)) \), we see that the trajectory is the curve:
\[X = X^0 + \frac{\bar{x}}{\beta} \log \frac{S}{S^0} + \frac{1}{\zeta} (S^0 - S) . \quad (3.5.20) \]

Observe that these curves are increasing and concave in the interval \(S \in [S_y, S_m] \), and their derivative is 0 when \(S = S_m \). Let us now consider the multiplier:

\[\gamma_s(t) = c_s - \frac{\rho}{\rho + \beta} \frac{c_y - c_x}{\zeta} + e^{(t - \ell)} \left(-\lambda_S + \frac{1}{\zeta} \lambda_X - \frac{\beta}{\beta + \rho} \frac{c_y - c_x}{\zeta} \right) \]
\[= c_s - \bar{c}_s + e^{(t - \ell)} \left(-\lambda_S + \frac{1}{\zeta} \lambda_X - \frac{\beta}{\beta + \rho} \frac{c_y - c_x}{\zeta} \right) . \quad (3.5.21) \]

The constant \(\bar{c}_s \) is defined as
\[\bar{c}_s = \frac{\rho}{\rho + \beta} \frac{c_y - c_x}{\zeta} . \quad (3.5.22) \]

Consequently, assuming that the term between the last parentheses is positive, there exists a finite value \(\bar{t}_s \) at which \(\gamma_s(\bar{t}_s) = 0 \) if, and only if, \(c_s < \bar{c}_s \).
3.5.4 Dynamics in Phase S (constrained atmospheric stock and maximal capture)

Phase S corresponds to the situation where the resource is not exhausted \((X(t) > 0)\), the atmospheric pollution ceiling is reached \((Z(t) = Z)\), maximal sequestration occurs \((s(t) = \zeta x(t))\). This phase is described in Appendix A.7 on page 84.

Since \(Z\) is constant, \(\dot{Z} = 0\) and therefore from (2.2.2), it is necessary that \(\beta S = \alpha Z\), that is, \(S = S_m\). As a consequence, the trajectory is stationary at the point \((S_m, Z)\). This implies in turn that \(S = 0\) and then \(x = x\).

The integration of the dynamics of the adjoint variables yields the following expressions:

\[
\lambda_Z(t) = \frac{\rho + \beta}{\beta} (c_s - \frac{p - c_x}{\zeta}) + \frac{1}{\zeta} \lambda_X e^{\rho t} \quad (3.5.23)
\]

\[
\lambda_S(t) = c_s - \frac{p - c_x}{\zeta} + \frac{1}{\zeta} \lambda_X e^{\rho t} \quad (3.5.24)
\]

This in turn provides the value of the multiplier: from the first-order condition

\[
\lambda_S = c_s + \lambda_Z + \gamma_{sx},
\]

we obtain

\[
\gamma_{sx} = \frac{p}{\beta} (p - c_x) - \frac{\rho + \beta}{\beta} c_s = \frac{\rho}{\beta} (c_s - c_x), \quad (3.5.26)
\]

where we have defined the particular value for \(c_s\):

\[
\dot{c}_s = \frac{p}{\rho + \beta} \frac{p - c_x}{\zeta} \quad (3.5.27)
\]

The value of \(\gamma_{sx}\) is constant over time. It is positive if and only if \(c_s \leq \dot{c}_s\).

The state trajectory is simply given by:

\[
X(t) = X^0 - x(t - \ell^0) \quad S(t) = S_m \quad (3.5.28)
\]

3.5.5 Dynamics in Phase T (exhausted nonrenewable resource)

Phase T is like Phase L (Section 3.4.3), but the state is supposed to be \(X = 0\) and is therefore on one boundary of \(D\). It is described in Appendix A.8 on page 85. In that case, the set of feasible controls is reduced to \(\{(y, x, s), y \geq 0, x = 0, s = 0\}\), because of the constraint \(X \geq 0\).

Assuming that the phase is terminal, the transversality conditions (2.3.15)–(2.3.17) must hold. Since \(X = 0\), (2.3.15) is clearly satisfied. On the other hand, we have seen in Section 2.3.3 that \((Z \lambda_Z + S \lambda_Z) e^{-\rho t}\) is constant. But according to (2.3.16) and (2.3.17), \(Z \lambda_Z e^{-\rho t} \to 0\) and \(S \lambda_S e^{-\rho t} \to 0\). This constant must therefore be 0. Then, \(Z \lambda_Z + S \lambda_Z\) is also 0 for all \(t\), which is possible only if:

\[
\lambda_Z(t) = \lambda_S(t) = 0 \quad (3.5.29)
\]

Then the first-order condition (2.3.3) gives the value of \(\lambda_X\):

\[
\lambda_X(t) = c_y - c_x \quad (3.5.30)
\]

Since \(y > 0\), we have \(\gamma_y = 0\). From the first-order equations (2.3.2) and (2.3.3), the other multipliers satisfy the following constraints:

\[
0 = c_s - \gamma_s + \gamma_{sx} \quad 0 = \zeta \gamma_{sx} \quad (3.5.31)
\]

The second one implies \(\gamma_{sx} = 0\). Replacing in the first one, we have \(\gamma_s = c_s\).
3.5.6 Dynamics in Phase U (no consumption of the nonrenewable resource)

A singular situation is encountered in the case where the state of the system is located on the curve $Z = Z_M(S)$, which forms a boundary of the admissible domain when $S_m \leq S \leq S_M$, while at the same time $X > 0$.

In that case, the set of feasible controls is reduced to $\{(y, x, s), y \geq 0, x = 0, s = 0\}$, because of the viability constraint. The difference with Phase L, where $X > 0$ and $Z < \bar{Z}(S)$, has no impact on the dynamics. Whatever the value of y ($y = \bar{y}$ is the optimal one), the trajectory is forced to follow the boundary, according to the state equations of Section 3.4.3, until $S(t) = S_m$.

The analysis of the dynamics of this phase will take place in Section 4.4.2.4 on page 48.
Chapter 4

Unexhaustible resources

We study in this chapter the model introduced in Chapter 2, in the case where the resource stock X is assumed to be infinite, and the constraint on the rate of consumption of clean energy is not limiting: \(\dot{y} \geq 0 \). We will further concentrate the analysis on the case where the capacity on the stock of sequestered carbon is not limiting either: \(\bar{S} \geq S_M \). However, in Section 4.6 we explain how to handle the remaining cases.

Formally, the problem is the same as exposed in Section 2.2, except that there is no dynamics of the stock X. The system is described by the two variables $Z(t)$ and $S(t)$.

The first-order conditions associated with this new problem are easily obtained from that of the general problem by setting formally $\lambda_X = 0$.

As mentioned in Chapter 3, we consider that optimal trajectories are decomposed in a succession of phases, characterized by the set of constraints that are active. We shall use the same phase names as in that chapter, and ignore the variable X.

Optimal trajectories will be constructed backwards. We shall first identify which phases are possibly terminal, that is, contain the infinite part of the trajectory. Then we shall find which phases can possibly be “glued” to these terminal phases, and so on until an optimal trajectory starting from all possible initial states in the feasible domain has been identified.

Optimal trajectories will be identified with the help of Corollaries 3.1 and 3.2. Several lemmas will successively identify optimal trajectories starting from initial states in locations of the state space. Occasionally, we will identify pieces of trajectories satisfying the first-order conditions: these will be confirmed as optimal trajectories when glued with another piece of trajectory.

Several requirements of Corollaries 3.1 and 3.2 will be satisfied by construction and will not be checked explicitly on each candidate optimal trajectory. For instance, continuity of the state trajectory and of the adjoint variable λ_S is implicit. Likewise, it turns out that control trajectories are always bounded, as required. The bulk of proofs will therefore be devoted to checking that the state evolves in the correct domain, and that conditions on Lagrange multipliers are satisfied.

As it turns out, the only possible terminal phases are located on the boundary of the domain. The backwards construction will then involve first phases on the boundary (Phases P, Q, R, S and U in the terminology of Chapter 3), then phases of the interior (Phases A, B and L). Phase T identified in Chapter 3 is not relevant here since it is characterized by $X = 0$.

In the course of the analysis, several qualitatively different behaviors will emerge, depending on the value of the parameters of the model. We choose to classify these cases according to the value of c_s. Several critical values for this parameter will be identified along the way, as functions of the other parameters. One of them has already been defined in (3.5.27):

$$\hat{c}_s = \frac{p - c_s}{p + \beta} \zeta .$$

For future reference in this chapter, we also recall some critical values on the variable S already
In Phase P (see Appendix A.4 on page 81, and Section 3.5.1),

\[S_m = \frac{\alpha Z}{\beta} \quad \text{and} \quad S_y = \frac{\zeta}{\beta} (\bar{x} - \bar{y}), \]

with the equivalent:

\[S_m = \frac{\zeta \bar{x}}{\beta}, \quad \bar{x} = \frac{\beta S_m}{\zeta}, \quad S_m - S_y = \frac{\zeta \bar{y}}{\beta}. \]

This chapter is organized as follows. In Sections 4.1 and 4.2, we look successively at the phases defined in Chapter 3 and we identify which ones are possibly terminal. Since they turn out to be located on the boundary of the valid state space, we study in Section 4.3 the cases where an optimal trajectory may follow this boundary. In Section 4.4, we look at the way optimal trajectories in the interior connect to the boundary. Finally, in Section 4.5, we review the findings by presenting the different solutions to the problem, classified according to the value of the parameter \(\zeta \). This analysis applies when \(\exists \geq S_M \) and \(\bar{y} \geq \bar{y} \). The remaining cases, extensions of the model and concluding remarks are presented in Section 4.6.

4.1 Terminal phases

The first question we address is that of the behavior of the trajectory when \(t \to \infty \). As a consequence of the first-order conditions and the transversality conditions (2.3.16)–(2.3.17), only a few phases are consistent with the infinite part of the trajectory.

In this report, we call “terminal phase” a phase for which there exists an optimal trajectory and some \(t^0 \) for which the trajectory is within the phase for all \(t \geq t^0 \). Among terminal phases, some are possibly stationary, in the sense that the trajectories of all variables (state, costate, control etc.) remain constant.

We stick to the convention of Chapter 3 that \(t^0 \) denotes the arbitrary time instant inside the phase currently under study.

4.1.1 Terminal P phase

In Phase P (see Appendix A.4 on page 81, and Section 3.5.1), \(Z = \bar{Z} \), \(s = 0 \), \(y = 0 \) and \(x = \bar{x} - \beta S / \zeta \). The evolution of \(S \) is “free”, and \(S(t) = S_0 e^{-\beta(t-t^0)} \).

The first-order equations provide the value of \(\lambda_T \), see (3.5.3):

\[
\lambda_T(t) = \frac{1}{\zeta} \left(c_x - u'(\bar{x} - \frac{\beta}{\zeta} S(t)) \right) = \frac{c_x - \bar{y}}{\zeta} + \frac{1}{\zeta} \left(\bar{y} - u'(\bar{x} - \frac{\beta}{\zeta} S_0 e^{-\beta(t-t^0)}) \right). \tag{4.1.1}
\]

In this last expression, both terms are negative. The second one tends to 0 as \(t \to +\infty \). Accordingly,

\[
\lim_{t \to +\infty} \lambda_T(t) = \frac{c_x - \bar{y}}{\zeta} < 0.
\]

Next, the expression found for \(\lambda_S \) in (3.5.4) is:

\[
\lambda_S(t) = \lambda_S^0 e^{(\rho+\beta)(t-t^0)} - \beta \int_{t^0}^t e^{(\rho+\beta)(t-v)} \lambda_T(v) dv = \lambda_S^0 e^{(\rho+\beta)(t-t^0)} - \frac{\beta}{\zeta} \int_{t^0}^t e^{(\rho+\beta)(t-v)} \left(c_x - u'(\bar{x} - \frac{\beta}{\zeta} S_0 e^{-\beta(t-t^0)}) \right) dv = e^{(\rho+\beta)(t-t^0)} \left[\lambda_S^0 - \frac{\beta}{\zeta} \int_{t^0}^t e^{-(\rho+\beta)v} \left(c_x - u'(\bar{x} - \frac{\beta}{\zeta} S_0 e^{-\beta v}) \right) dv \right]. \tag{4.1.2}
\]
Invoking the transversality condition (2.3.17), that is:

$$\lim_{t \to \infty} e^{-\rho t} \lambda S = 0 ,$$

with $S(t) = S^0 e^{-\lambda t}$, we get for $S^0 \neq 0$,

$$\lambda^0_S = \frac{\beta}{\zeta} \int_0^\infty e^{-(\rho + \beta)v} \left(c_x - u'(x - \frac{\beta}{\zeta} S^0 e^{-\beta v}) \right) dv .$$ \hspace{1cm} (4.1.3)

Finally, replacing in (4.1.2), we obtain the value for the λ_S:

$$\lambda S(t) = \frac{\beta}{\zeta} e^{(\rho + \beta)(t-t\rho)} \int_0^\infty e^{-(\rho + \beta)v} \left(c_x - u'(x - \frac{\beta}{\zeta} S^0 e^{-\beta v}) \right) dv$$

$$= \frac{1}{\zeta} L(S^0 e^{-\lambda(t-t\rho)})$$

$$= \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} + \frac{1}{\zeta} M(S^0 e^{-\lambda(t-t\rho)}) ,$$

where we have defined the functions

$$L(S) = \beta \int_0^\infty e^{-(\rho + \beta)v} \left(c_x - u'(x - \frac{\beta}{\zeta} S^0 e^{-\beta v}) \right) dv$$ \hspace{1cm} (4.1.4)

$$M(S) = \beta \int_0^\infty e^{-(\rho + \beta)v} \left(p - u'(x - \frac{\beta}{\zeta} S^0 e^{-\beta v}) \right) dv .$$ \hspace{1cm} (4.1.5)

The properties of these functions are studied in Appendix B. In particular, $M(S) \leq 0$, so that the formula for λ_S above gives a negative value because both terms in its right-hand side are negative.

The value of γ_s can be written, introducing the constant c_s defined in (3.5.27), as:

$$\gamma_s(t) = \lambda S(t) - \lambda S(t - c_s$$

$$= c_s + \frac{c_x - p}{\zeta} + \frac{1}{\zeta} \left(p - u'(x - \frac{\beta}{\zeta} S^0 e^{-\lambda(t-t\rho)}) \right) - \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} - \frac{1}{\zeta} M(S^0 e^{-\lambda(t-t\rho)})$$

$$= c_s - c_s + \frac{1}{\zeta} \left(p - u'(x - \frac{\beta}{\zeta} S^0 e^{-\lambda(t-t\rho)}) \right) - \frac{1}{\zeta} M(S^0 e^{-\lambda(t-t\rho)}) .$$ \hspace{1cm} (4.1.6)

The previous reasoning applies only to $S^0 \neq 0$, when the value of λS is computed. Assume now that $S^0 = 0$, so that $S(t) = 0$ for all t in the phase. This is the case without capture, which has been studied in Chakravorty et al. (2006). The transversality condition (2.3.17) is automatically satisfied. In that case, from the solutions obtained in Section 3.5.1, and given that $\beta S_m/\zeta = \bar{x}$, we obtain:

$$\lambda S(t) = \frac{c_x - p}{\zeta}$$ \hspace{1cm} (4.1.7)

$$\lambda S(t) = \lambda^0_s e^{(\rho + \beta)(t-t\rho)} + \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \left(1 - e^{(\rho + \beta)(t-t\rho)} \right)$$

$$= e^{(\rho + \beta)(t-t\rho)} \left(\lambda^0_s - \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \right) + \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} .$$ \hspace{1cm} (4.1.8)

In that case, the function γ_s is:

$$\gamma_s(t) = c_s + \frac{\rho}{\rho + \beta} \frac{c_x - p}{\zeta} - e^{(\rho + \beta)(t-t\rho)} \left(\lambda^0_s - \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \right)$$

$$= c_s - c_s - e^{(\rho + \beta)(t-t\rho)} \left(\lambda^0_s - \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \right) .$$
Since the system is motionless, it is expected that the function \(\gamma_0(t) \) will be positive, whatever the value of \(t \) and \(\ell^0 \), since \(\ell^0 \) has been arbitrarily chosen within the phase. The only way this can happen is to choose

\[
\lambda_0^s = \frac{\beta}{\rho + \beta} \frac{c_x - \overline{p}}{\zeta},
\]

which implies, for all \(t \):

\[
\lambda_S(t) = \frac{\beta}{\rho + \beta} \frac{c_x - \overline{p}}{\zeta}, \quad \gamma_S(t) = c_s - \hat{c}_s.
\]

Finally, the formulas established for \(\lambda_S, \lambda_Z \) and \(\gamma_s \) hold for all \(S^0 \geq 0 \). We have identified in passing the point

\[
P_{\infty} := \left(\frac{c_x - \overline{p}}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - \overline{p}}{\zeta} \right)
\]

which represents the values of adjoint variables in the space \((\lambda_Z, \lambda_S)\) at the stationary state \((0, Z)\) as well as the limit of these variables, when \(t \to \infty \) when the system is in the terminal Phase P.

We can now prove the following result.

Lemma 4.1. Phase P can be terminal only if \(c_y > \hat{c}_s \). In that case, the entry point in Phase P is such that \(S(\ell^0) \leq S_{P} \). Under this condition, the following trajectory is optimal: \(x(t) = \overline{x} - \frac{\beta}{\zeta} S(t), \quad s(t) = y(t) = 0, \) and

\[
\begin{align*}
S &= S(\ell^0) e^{-\beta(t-\ell^0)} \\
Z &= Z \\
\lambda_Z &= \frac{1}{\zeta} \left(c_x - u'(\overline{x} - \frac{\beta}{\zeta} S) \right) = \frac{c_x - \overline{p}}{\zeta} + \frac{1}{\zeta} \left(\overline{p} - u'(\overline{x} - \frac{\beta}{\zeta} S) \right) \\
\lambda_S &= \frac{\beta}{\rho + \beta} \frac{c_x - \overline{p}}{\zeta} + \frac{1}{\zeta} M(S) \\
\gamma_s &= c_s - \hat{c}_s + \frac{1}{\zeta} \left(\overline{p} - u'(\overline{x} - \frac{\beta}{\zeta} S) \right) - \frac{1}{\zeta} M(S) \\
\gamma_{sx} &= 0 \\
\gamma_{xy} &= c_y - u'(\overline{x} - \frac{\beta}{\zeta} S)
\end{align*}
\]

on the interval \(t \in [\ell^0, \infty) \).

Proof. We check the conditions of Corollary 3.1. If the phase is permanent, then the conditions \(\nu_Z(t) \geq 0, \gamma_0(t) \geq 0 \) and \(\gamma_y(t) \geq 0 \) must hold for all value of \(t \).

From (2.3.10), we have \(\nu_Z = \lambda_Z - (\rho + \alpha) \lambda_Z \). From (4.1.1), we obtain

\[
\lambda_Z(t) = -\frac{\beta}{\zeta^2} S u''(\overline{x} - \frac{\beta}{\zeta} S(t)),
\]

and since \(u''(\cdot) \leq 0 \), \(\hat{\lambda}_Z \geq 0 \). Therefore \(\lambda_Z \) is increasing and since its limit as \(t \to +\infty \) is negative, it is always negative. As a consequence, \(\nu_Z \geq 0 \).

Given that \(\gamma_y(t) = u'(x(t)) - c_y \) and since \(u'(\cdot) \) is decreasing, we have: \(\gamma_y \geq 0 \iff x \geq \overline{y} \iff \overline{x} - \beta S/\zeta \geq \overline{y} \iff S \leq S_{P} \).

Turning now to \(\gamma_y(t) \), we see that the two last terms in (4.1.6) both tend to 0 as \(t \to \infty \), since \(u'(\overline{x}) = \overline{p} \) and \(M(0) = 0 \) (see Appendix B). Therefore, \(\lim_{t \to +\infty} \gamma_s(t) = c_s - \hat{c}_s \) and a necessary condition for \(\gamma_s(\cdot) \) to be positive for all \(t \geq \ell^0 \) is:

\[
c_s \geq \hat{c}_s.
\]

On the other hand, the condition \(c_y < \hat{c}_s \) is sufficient for the existence of a \(\ell^0 \) such that \(\gamma_y(t) > 0 \) for all \(t \geq \ell^0 \), since in that case \(\lim_{t \to +\infty} \gamma_s(t) > 0 \).
Remark: Actually, we can show that $\gamma_6(\ast)$ is increasing under the additional condition that u' is convex. Indeed, according to (4.1.13), we have:

$$\gamma_6(t) = \dot{S}(t) \frac{1}{\zeta} \left(\frac{\beta}{\zeta} u''' \left(\frac{p}{\zeta} - \frac{\beta}{\zeta} S \right) - M'(S) \right).$$

We know that $\dot{S} < 0$. On the other hand, it is shown in the proof of Lemma B.2 (page 88) that if $u'(\ast)$ is convex, then

$$M'(S) \geq \frac{\beta}{\rho + 2\beta} \frac{\beta}{\zeta} u''' \left(\frac{p}{\zeta} - \frac{\beta}{\zeta} S \right).$$

Therefore,

$$\frac{\beta}{\zeta} u''' \left(\frac{p}{\zeta} - \frac{\beta}{\zeta} S \right) - M'(S) \leq - \frac{\beta}{\zeta} \frac{\rho + \beta}{\rho + 2\beta} u''' \left(\frac{p}{\zeta} - \frac{\beta}{\zeta} S \right)$$

is negative. As a consequence, γ_6 is positive.

4.1.2 Terminal S phase

The assumptions made in Phase S are that: $Z = \bar{Z}$, $s = \bar{a}$, and $y = 0$. According to the results of Section 3.5.4, the value of S is constant as well, $S = S_m$, and $x = \bar{x}$. Then, $s = \bar{a}$. This implies $\gamma_s = 0$. Since here X is assumed to be infinite, the values of the adjoint variables in (3.5.23) and (3.5.24) have to be replaced with:

$$\lambda_Z = \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - p}{\zeta} \right)$$

$$\lambda_S = c_s + \frac{c_x - p}{\zeta}.$$

The value of γ_{sx} is still as in (3.5.26):

$$\gamma_{sx} = \frac{\rho + \beta}{\beta} (\bar{a}_s - c_s).$$

Clearly, $\gamma_{sx} \geq 0$ if and only if $c_s \leq \bar{a}_s$.

Finally, from (2.3.10), we get $\nu_Z = - (\rho + \alpha) \lambda_Z$. If $c_s \leq \bar{a}_s$, then $c_s + (c_x - p)/\zeta = c_s - (1 + \beta/\rho) \bar{a}_s < 0$. We then have $\lambda_Z < 0$ and $\nu_Z > 0$.

All conditions of Corollary 3.1 being satisfied, we have proved the following result:

Lemma 4.2. Phase S can be terminal if and only if $c_s \leq \bar{a}_s$. In that case, the following trajectory is optimal: $S(t) = S_m$, $Z(t) = \bar{Z}$, $x(t) = \bar{x}$, $s(t) = \bar{a}$, $y(t) = 0$ and

$$\lambda_Z = \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - p}{\zeta} \right)$$

$$\lambda_S = c_s + \frac{c_x - p}{\zeta}$$

$$\gamma_s = 0$$

$$\gamma_{sx} = \frac{\rho + \beta}{\beta} (\bar{a}_s - c_s)$$

$$\gamma_y = \bar{a} - p$$

on any time interval.

4.1.3 Terminal Q phase

Phase Q may be terminal in the very specific case $c_s = \bar{a}_s$, see Lemma 4.4 in Section 4.2.2.
4.1.4 Conclusion on terminal phases

Summing up the results on terminal phases, we have the following dichotomy:

if \(c_s < \hat{c}_s \), the point \((S_m, Z)\) is terminal and stationary,

if \(c_s > \hat{c}_s \), Phase P is terminal and the point \((0, Z)\) is stationary.

In the next section, we review the other possible phases and show that the cases identified above are actually the only terminal phases, except in the limit case \(c_s = \hat{c}_s \). In the process, we establish properties that will be used to construct complex trajectories.

The case \(c_s < \hat{c}_s \) is the most interesting from the point of view of Economics, since it is the one where capture of \(CO_2 \) is optimal in the long run. This is the case studied in \((\text{Lafforgue et al. 2008a}), (\text{Lafforgue et al. 2008b})\) in the case \(\beta = 0 \): their assumption is that \(c_s < (\bar{p} - c_p)/\zeta \), and this last quantity is precisely \(\hat{c}_s \) when \(\beta = 0 \).

4.2 Non-terminal Phases

We now show that phases A, B, L, Q, R and U cannot be terminal. Doing so, we obtain some insight on the way these phases may begin or end.

4.2.1 Phases A, B and L

The common feature of these three phases is that the adjoint variables evolve “freely” according to the equations (3.2.2) analyzed in Section 3.2.

It can be verified, for instance using the results of Section 3.2.3, that

\[
\lim_{t \to \infty} \lambda_Z(t) = -\infty \quad \lim_{t \to \infty} \lambda_S(t) = +\infty \quad \lim_{t \to \infty} \lambda_S(t) - \lambda_Z(t) = +\infty
\]

under the following conditions: \(\lambda_Z^0 < 0 \), \(\lambda_S^0 < 0 \) and either (a) \(\beta \leq \alpha \) or (b) \(\beta > \alpha \), and \(\lambda_Z^0 > \beta / (\beta - \alpha) \lambda_S^0 \).

According to first-order condition (2.3.2), we have

\[
\gamma_{\text{ad}}(t) - \gamma_S(t) = \lambda_S(t) - \lambda_Z(t) - c_s \to +\infty
\]

as \(t \to \infty \). If \(x(t) > 0 \) (Phase A or B), then only one of \(\gamma_{\text{ad}} \) and \(\gamma_S \) can be different from 0. Since both are positive, it means that eventually \(\gamma_{\text{ad}}(t) > 0 \) and \(\gamma_S = 0 \). In other words, the trajectory cannot stay in Phase A forever, and must necessarily enter Phase B, unless the state variable hits the boundary first.

When the trajectory is in Phase B, the consumption is given (see (3.4.5)) by:

\[
x = q^d(c_s + \zeta c_s - \zeta S).
\]

Then, when \(t \to \infty \), \(x(t) \) becomes necessarily strictly larger than \(\bar{x} \), according to Assumption 1. It is actually possible that \(x(t) \) tends to infinity if \(\lim_{t \to \infty} u'(x) \) is finite. In every situation, we have (see Appendix A.2 or Section 3.4.2):

\[
\dot{Z} + \dot{S} = \zeta x - \alpha Z = \zeta(x - \bar{x}) + \alpha(\bar{Z} - Z) > \zeta(\bar{x} - \bar{x}) > 0.
\]

As a consequence, we have \(\lim_{t \to \infty} (Z(t) + S(t)) = +\infty \), but this is not possible because the domain of Phase B is bounded. So Phase B must end in finite time, when the trajectory hits the boundary or, as we shall see, if \(\gamma_S(t) = 0 \).

Finally, consider a trajectory perpetually in Phase L. According to Conditions (2.3.2)–(2.3.4) (see also Appendix A.3 or Section 3.4.3), given that \(y = \bar{y} \), we must have:

\[
\gamma_s - \gamma_{\text{ad}} = \lambda_Z - \lambda_S + c_s
\]
\[\zeta \gamma_y = c_y - c_x - \zeta \lambda_Z, \]

and both \(\gamma_y \) and \(\gamma_x \) must be positive (Conditions (2.3.5)-(2.3.6)). But by a linear combination of these two equations, we obtain:

\[\zeta \gamma_s = -\zeta \lambda_s + \zeta c_s + c_x - c_y \rightarrow -\infty \]
as \(t \rightarrow \infty \). This is a contradiction. Phase L cannot be terminal. It is necessary that the consumption \(x \) becomes nonnegative at some point in time.

We have therefore proved:

Lemma 4.3. None of the three “interior” phases (Phase A, Phase B and Phase L) can be terminal.

4.2.2 Phase Q

In Phase Q, characterized by \(Z = \bar{Z}, \ y = 0 \) and \(0 < s < \zeta x \), the dynamics of the state are \(\dot{Z} = 0 \) and \(\dot{S} = \zeta (x - \bar{r}) \). The first-order equations imply the relationship

\[\lambda_Z - \lambda_S + c_s = 0 \tag{4.2.1} \]

The values of consumption and capture, specialized from Section 3.5.2, are respectively given by:

\[x(t) = q^d(c_x - \zeta \lambda_Z(t)) \tag{4.2.2} \]
\[s(t) = \zeta x(t) - \beta (S_m - S(t)) = \zeta (x(t) - \bar{r}) + \beta S(t), \tag{4.2.3} \]

and the constraints \(s > 0 \) and \(s < \zeta x \) are satisfied as long as, respectively, \(x > \bar{r} - \beta S_m / \zeta \) and \(S < S_m \).

The adjoint variables are given by Equations (3.5.9) and (3.5.10) which we recall here:

\[\lambda_Z(t) = e^\rho(t-\rho) \left(\lambda_Z^0 + c_s \frac{\rho + \beta}{\rho} \right) - c_x \frac{\rho + \beta}{\rho} \tag{4.2.4} \]
\[\lambda_S(t) = e^\rho(t-\rho) \left(\lambda_S^0 + c_s \frac{\rho + \beta}{\rho} \right) - c_x \frac{\beta}{\rho}. \tag{4.2.5} \]

As observed in Section 3.5.2 (on page 25), if

\[0 = \lambda_Z^0 + c_s \frac{\rho + \beta}{\rho} \]

then \((\lambda_Z(t), \lambda_S(t)) \) is stationary at point \(\Omega \) defined by (3.5.12). In that case, consumption is

\[x = q^d(c_x + c_s (\rho + \beta) / \rho) = q^d(\bar{r} + \zeta (c_x + c_s (\rho + \beta) / \rho) / \rho) \]

is constant as well) and \(\dot{S} = \zeta (x - \bar{r}) \). The value of \(\gamma_y \) is:

\[\gamma_y = c_y - c_x - \zeta c_s \frac{\rho + \beta}{\rho} = \zeta \frac{\rho + \beta}{\rho} (\bar{r}_s - c_s), \]

where \(\bar{r}_s \) has been defined in (3.5.22) on page 27. Therefore, \(\gamma_y \) is positive as long as \(c_s \leq \bar{r}_s \).

Clearly, under Assumption 1, \(\gamma_y < \bar{r}_s \). In the special case \(c_s = \bar{r}_s \), then \(x = \bar{r} \) and \(S(t) \) is constant.

The phase can therefore \textit{a priori} be terminal.

In other cases, \((\lambda_Z(t), \lambda_S(t)) \) moves away from \(\Omega \) and tends to infinity. If \(\lambda_Z^0 < -c_s (\rho + \beta) / \rho, \)

then \(\lambda_Z(t) \) tends to \(-\infty \) when \(t \rightarrow \infty \), so that the first-order condition on \(y \) (2.3.4):

\[0 \leq \gamma_y = c_y - u^d(x) = c_y - c_x + \zeta \lambda_Z \]

is eventually violated. If \(\lambda_Z^0 > -c_s (\rho + \beta) / \rho, \)

then \(\lambda_Z(t) \) tends to \(+\infty \) when \(t \rightarrow \infty \), so \(c_x - \zeta \lambda_Z(t) \)

tends to \(-\infty \). According to Assumption 1, the value of \(x(t) = q^d(c_x - \zeta \lambda_Z(t)) \) tends to infinity, possibly in finite time. Since \(\dot{S}(t) = \zeta (x(t) - \bar{r}) \), this implies that \(S(t) \) tends to infinity, which is clearly not possible.
The results can be summarized as:

Lemma 4.4. Phase Q is terminal if, and only if $c_y = \bar{c}_y$. In that case, the following constant trajectory is optimal: $S(t) = S^0$, $Z(t) = \mathbb{Z}$, $x(t) = \mathbb{x}$, $s(t) = \beta S^0$

\[
\begin{align*}
\lambda_Z &= -\frac{\rho + \beta}{\rho} \frac{c_y - \bar{c}_y}{\zeta} \\
\lambda_S &= -\frac{\beta}{\rho} \bar{c}_y = -\frac{\beta}{\rho + \beta} \frac{c_y - \bar{c}_y}{\zeta} \\
\gamma_y &= c_y - \bar{c}_y
\end{align*}
\]

and $\gamma_s = \gamma_{sx} = 0$ on any time interval and for any $0 \leq S^0 \leq \mathbb{S}_m$.

4.2.3 Phase R

In Phase R, $Z = \mathbb{Z}$, $y > 0$ and $s = 0$. The dynamics of this phase can be specialized from the equations of Section 3.5.3.

In particular, we have $S(t) = S^0 e^{-\beta(t-t^0)}$ but also, according to (3.5.18), $y(t) = (\beta/\zeta)(S(t) - S_y)$. Therefore, as $t \to \infty$, the value of y cannot remain positive. Another possibility is that λ_s may become negative. In any case, Phase R cannot be terminal.

We can state the following result. The piece of trajectory we identify is not termed as optimal because it is not described for values of t after the trajectory has exited Phase R.

Lemma 4.5. Under Assumption 1, Phase R is never terminal. The following configuration is a solution to the first-order equations and the system of constraints:

\[
\begin{align*}
S &= S^0 e^{-\beta(t-t^0)} \\
Z &= \mathbb{Z} \\
\lambda_Z &= -\frac{c_y - \bar{c}_y}{\zeta} \\
\lambda_S &= \left(\lambda_S^0 + \frac{\beta}{\rho + \beta} \frac{c_y - \bar{c}_y}{\zeta}\right) e^{\beta(t-t^0)} - \frac{\beta}{\rho + \beta} \frac{c_y - \bar{c}_y}{\zeta} \\
x &= \frac{\beta}{\zeta} (S_m - S) \\
y &= \ddot{y} - x = \frac{\beta}{\zeta} (S - S_y) \\
\gamma_s &= c_s - \bar{c}_s - \left(\lambda_s^0 + \frac{\beta}{\rho + \beta} \frac{c_y - \bar{c}_y}{\zeta}\right) e^{\beta(t-t^0)}
\end{align*}
\]

together with $\gamma_{sx} = \gamma_y = 0$, as long as $S(t) \geq S_y$ and $\gamma_s(t) \geq 0$.

Proof. In order to apply Corollary 3.1, we must check the constraint $\nu_Z \geq 0$. From (2.3.10), we have $\nu_Z = - (\rho + \alpha) \lambda_Z$. Since $\lambda_Z < 0$, we have $\nu_Z > 0$. \hfill \Box

4.2.4 Phase U

When in Phase U (the state lies on the boundary $Z = Z_M(S)$, $S_m < S \leq \mathbb{S}_M$), the sequestered stock evolves as $S(t) = S^0 e^{-\beta(t-t^0)}$ and is strictly decreasing. Therefore, the state $(S(t), Z(t))$ eventually reaches (S_m, \mathbb{Z}). Obviously, we have:

Lemma 4.6. Under Assumption 1, Phase U is never terminal.
4.3 Optimal trajectories on the boundary of the domain

In this section, we take the first steps at constructing optimal trajectories by connecting individual phases together. As a result of the analysis of Section 4.1, we know that whatever the value of \(c_s\), all optimal trajectories eventually end up on one boundary of the domain \(D\), namely, the curve defined in (2.3.27) as:

\[
Z(S) = \begin{cases}
\mathcal{Z} & \text{if } S \leq S_m \\
Z_M(S) & \text{if } S_m \leq S \leq S_M.
\end{cases}
\]

For convenience, we refer to it as “the” boundary in the following.

It is therefore reasonable to suppose that some optimal trajectories will follow this boundary until the final state. This solution strategy turns out to work for \(c_s \geq \hat{c}_s\) and we make this assumption in this section. The case \(c_s < \hat{c}_s\) will be addressed in Section 4.4.3.

The computation of optimal trajectories can be decomposed in two sub-problems: A) computing the optimal trajectory on the curve \(Z = Z(S)\), and B) computing the optimal way to join this curve. We address the first sub-problem in Section 4.3.1: we show how boundary phases P, Q, R and U can be glued together; we synthesize the findings in Section 4.3.2. The second sub-problem will be addressed in Section 4.4, where we show how trajectories coming from the inside of the domain can connect to the boundary.

The following convention is adopted throughout: when a function \(f(t)\) of time (state, adjoint variable, Lagrange multiplier) refers to a generic trajectory in Phase \(\phi\), it will be denoted as \(f(t)\).

4.3.1 Junction between phases on the boundary

The possible phases for states on the boundary \(Z = Z(S)\) are phases P, Q and R for \(S \leq S_m\) and Phase U for \(S \in [S_m, S_M]\). Connection between Phase U and other phases occurs when \(S(t) = S_m\).

4.3.1.1 Phases Q/P

Assume that a trajectory begins at time \(t^0\) in state \((S^0, Z^0)\) and in Phase Q, then enters Phase P at time \(t^{QP}\), then stays in that phase forever. Denote \(S^{QP} = S(t^{QP})\).

In Phase Q, the equations of the state and adjoint variables are given in Section 4.2.2. In Phase P, they are given in Section 4.1.1. Continuity for the state \(S(t)\) writes as:

\[
S^{QP} := S(Q)(t^{QP}) = S^0 + \zeta \int_{t^0}^{t^{QP}} d(t - \zeta \lambda_Z^Q(u)) \, du - \zeta (t^{QP} - t^0) .
\]

(4.3.1)

We try to construct a trajectory such that the adjoint variables \(\lambda_Z(\cdot)\) and \(\lambda_S(\cdot)\) are continuous at \(t = t^{QP}\). For \(t < t^{QP}\), these functions are given by formulas for Phase Q, and for \(t > t^{QP}\), they are given by formulas for terminal Phase P. Therefore: equating (4.2.4) and (4.1.11) on the one hand, and (4.2.5) and (4.1.12) on the other hand (after the appropriate change of variable in the formulas for Phase P), then using the functions \(L(\cdot)\) and \(M(\cdot)\) which have been defined in equations (4.1.4) and (4.1.5) on p. 32, we obtain the continuity equations:

\[
\lambda_Z^Q(t^{QP}) = \mathcal{E}(t^{QP} - t^0) \left(\lambda_Z^0 + \frac{\rho + \beta}{\rho} c_s \right) - \frac{\rho + \beta}{\rho} c_s = \lambda_Z^P(t^{QP}) = \frac{c_s - \rho}{\zeta} + \frac{1}{\zeta} \left(\frac{p - u(x - \beta S^{QP})}{S^{QP}} \right)
\]

(4.3.2)

\[
\lambda_S^Q(t^{QP}) = c_s + \mathcal{E}(t^{QP} - t^0) \left(\lambda_Z^0 + \frac{\rho + \beta}{\rho} c_s \right) = \lambda_S^P(t^{QP}) = \frac{1}{\zeta} L(S^{QP}) .
\]

(4.3.3)
The unknown quantities in these equations are: \(t^{QP} - t^0, S^{QP} \) and \(\gamma^0 \). We have to discuss under which conditions there exists a solution to this system.

We first determine \(S^{QP} \). Eliminating the factor of \(e^{(t^{QP} - t^0)} \) between Equations (4.3.2) and (4.3.3), we obtain the equality:

\[
\frac{c_y - c_x}{\zeta} + \frac{1}{\zeta} \left(p - u'(\bar{x} - \frac{\beta}{\zeta} S^{QP}) \right) + c_s = \frac{1}{\zeta} L(S^{QP}) = \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} + \frac{1}{\zeta} M(S^{QP}).
\]

This is actually equivalent to require that the function \(\gamma^{(QP)} \) given by Equation (4.113) is equal to 0 at \(t = t^{QP} \), which gives directly this formula. Rewriting this equation gives the form:

\[
\zeta (c_s - \bar{c}_s) + p - u'(\bar{x} - \frac{\beta}{\zeta} S^{QP}) = M(S^{QP}). \tag{4.3.4}
\]

The unique unknown quantity in this equation is \(S^{QP} \). The existence of solutions to this equation is the topic of Lemma B.2 in the Appendix (p. 88). It states, among other properties, that the solution \(S^{QP} \) of (4.3.4) exists and is unique when

\[
\bar{c}_s \leq c_s \leq c_{sm} \tag{4.3.5}
\]

and \(u'(\cdot) \) is convex. We have introduced the critical cost:

\[
c_{sm} := \frac{c_y - c_x}{\zeta} + \frac{1}{\zeta} L(S^\bar{y}) = \frac{c_y - c_x}{\zeta} + \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} + \frac{1}{\zeta} M(S^\bar{y}) = \bar{c}_s + \frac{c_y - p}{\zeta} + \frac{1}{\zeta} M(S^\bar{y}). \tag{4.3.6}
\]

This constant \(c_{sm} \) is such that \(c_{sm} > \bar{c}_s \), as proved in (B.0.4), p. 88. Observe also that \(L(S^\bar{y}) < 0 \), and therefore \(c_{sm} < (c_y - c_x)/\zeta \).

Once \(S^{QP} \) has been determined, the remaining unknowns can be computed as well. First, from (4.3.2):

\[
e^{(t^{QP} - t^0)} \left(\gamma^0 + \frac{\rho + \beta}{\rho} (c_s - \bar{c}_s) + \frac{1}{\zeta} \left(p - u'(\bar{x} - \frac{\beta}{\zeta} S^{QP}) \right) \right) = e^{(t^{QP} - t^0)} \left(\gamma^0 + \frac{\rho + \beta}{\rho} (c_s - \bar{c}_s) \right) \tag{4.3.7}
\]

Then, in Phase Q (that is, for \(t < t^{QP} \), the function \(\gamma^{(QP)} \) can be written as:

\[
\gamma^{(QP)}(t) = e^{(t-t^{QP})} \left[\frac{\rho + \beta}{\rho} (c_s - \bar{c}_s) + \frac{1}{\zeta} \left(p - u'(\bar{x} - \frac{\beta}{\zeta} S^{QP}) \right) \right] - \frac{\rho + \beta}{\rho} c_s. \tag{4.3.7}
\]

Under the condition (4.3.5), the term inside brackets is positive (Lemma B.3). Then the function \(\gamma^{(QP)}(t) \) is negative and increasing, and it is bounded on the interval \((-\infty, t^{QP}) \): its limit when \(t \to -\infty \) is \(-(\rho + \beta) c_s/\rho \). This limit is the point \(\Omega \) introduced in Section 3.5.2, Equation (3.5.12).

The condition \(\gamma^{(QP)}(t) \geq 0 \), or equivalently, \(\gamma^{(QP)}(t) \geq (c_x - c_y)/\zeta \) is required for Phase Q. Given the value of \(\gamma^{(QP)}(t) \) in (4.3.7), this condition is equivalent to:

\[
\frac{c_x - c_y}{\zeta} \leq \frac{\rho + \beta}{\rho} \left[\frac{\rho + \beta}{\rho} (c_s - \bar{c}_s) + \frac{1}{\zeta} \left(p - u'(\bar{x} - \frac{\beta}{\zeta} S^{QP}) \right) \right] - \frac{\rho + \beta}{\rho} c_s \tag{4.3.8}
\]

The left-hand side of this inequality is \((\rho + \beta)(c_x - \bar{c}_s)/\rho \). The inequality is therefore automatically satisfied if \(c_s \leq \bar{c}_s \). If \(c_s > \bar{c}_s \), it is equivalent to:

\[
\frac{c_x - c_y}{\zeta} \leq \frac{1}{\rho} \log \left(\frac{c_x - c_y + c_s \frac{\rho + \beta}{\rho}}{\zeta} \right) \tag{4.3.8}
\]
We conclude that \(\gamma_{Q}(t) \geq 0 \) for all \(t \) if \(c_{Q} \leq \bar{c}_{Q} \), and for all \(t \) satisfying (4.3.8) if \(c_{Q} > \bar{c}_{Q} \).

Since the function \(\lambda_{Q}^{(Q)}(t) \) is increasing, then \(\lambda_{Q}^{(Q)}(t) \leq \lambda_{Q}^{(Q)}(t^{QP}) \), then it follows that

\[
x^{(Q)}(t) = \quad \tilde{q}^{t}(c_{Q} - \xi \lambda_{Q}^{(Q)}(t)) < x - \frac{\beta}{\zeta} S^{QP} < x.
\]

As a consequence, \(\tilde{s}^{(Q)}(t) = \xi(x(t) - \bar{x}) < -\beta S^{QP}/\zeta < 0 \). This property implies that equation (4.3.1) can be solved for every value of \(S^{0} \in [S^{QP}, S_{m}] \); the solution gives the value of \(t^{QP} - t^{0} \).

We summarize the solution just constructed in the following result.

Lemma 4.7. Assume that Assumption 1 holds, that \(u'(\cdot) \) is convex, and that \(\bar{c}_{Q} \leq c_{Q} \leq c_{Qm} \). Let \(t^{0} \) be an arbitrary time instant. Denote with \(S^{QP} \) the unique solution to Equation (4.3.4), and with \(t^{QP} \) the unique solution to equation (4.3.1). Then the following trajectory is optimal:

- **for** \(S^{0} \leq S^{QP} \); there is no Phase Q; the trajectory is in Phase P, starting from \(S(t^{0}) = S^{0} \), as described in Lemma 4.1.

- **for** \(S^{0} > S^{QP} \); for \(t \in [t^{0}, t^{QP}] \), the trajectory is in Phase Q, starting from \(S(t^{0}) = S^{0} \), and described by Equations (4.2.2)–(4.2.5) (equivalently, Equations (4.3.7) and (4.2.1) for adjoint variables); for \(t \in [t^{QP}, \infty) \), the trajectory is in Phase P, starting from \(S(t^{QP}) = S^{QP} \), as described in Lemma 4.1, for every value of \(t^{0} \), restricted to satisfy Condition (4.3.8) in case \(\bar{c}_{Q} < c_{Q} \leq c_{Qm} \).

Proof. The only constraint not checked yet is \(\nu_{Z} \geq 0 \). From (2.3.10), \(\nu_{Z} = \lambda_{Z} - (\rho + \alpha) \lambda_{Z} \). We have observed that \(\lambda_{Z} \) is negative and increasing. This difference is therefore always positive. \(\Box \)

The result is not explicit on the exact range of values of \(S^{0} \) for which the trajectory starts in Phase Q. We come back to this point in Section 4.3.1.3.

4.3.1.2 Phases R/P

Assume the system is in Phase R at time \(t^{0} \), with initial position \((S^{0}, Z) \), and that it passes from Phase R to Phase P at time \(t^{RP} \) and location \(S^{RP} = S(t^{RP}) \) which will be determined soon.

When in Phase R, the evolution of state and adjoint variables is given by (see (4.2.6) and (4.2.7)):

\[
\begin{align*}
S^{(R)}(t) &= S^{(R)}(t^{0}) e^{-\beta(t-t^{0})} \\
\lambda_{Z}^{(R)}(t) &= -\frac{c_{y} - c_{x}}{\zeta} \\
\lambda_{S}^{(R)}(t) &= \frac{(\lambda_{S}^{0} + \frac{\beta}{\rho + \beta} \frac{c_{y} - c_{x}}{\zeta}) e^{(\rho + \beta)(t-t^{0})} - \frac{\beta}{\rho + \beta} \frac{c_{y} - c_{x}}{\zeta}}.
\end{align*}
\]

On the other hand, the equations for a terminal Phase P, starting in \(S(t^{RP}) = S^{RP} \) are (see (4.1.11) and (4.1.12) on page 33):

\[
\begin{align*}
\lambda_{Z}^{(P)} &= \frac{c_{y} - \tilde{p}}{\zeta} + \frac{1}{\zeta} \left(\tilde{p} - u'(\bar{x} - \frac{\beta}{\zeta} S^{RP} e^{(t-t^{RP})}) \right) \\
\lambda_{S}^{(P)} &= \frac{\beta}{\rho + \beta} \frac{c_{y} - \tilde{p}}{\zeta} + \frac{1}{\zeta} M(S^{RP} e^{(t-t^{RP})})
\end{align*}
\]

The continuity of the adjoint variables imposes that \(\lambda_{Z}^{(P)}(t^{RP}) = \lambda_{Z}^{(R)}(t^{RP}) \) and \(\lambda_{S}^{(P)}(t^{RP}) = \lambda_{S}^{(R)}(t^{RP}) \). The first condition implies:

\[
\frac{c_{y} - \tilde{p}}{\zeta} + \frac{1}{\zeta} \left(\tilde{p} - u'(\bar{x} - \frac{\beta}{\zeta} S^{RP}) \right) = -\frac{c_{y} - c_{x}}{\zeta}
\]

40
\[p - u(x - \beta S^R) = p - c_y \]
\[S^R = \frac{\zeta}{\beta}(x - \bar{y}) = S_{\bar{y}}, \quad (4.3.10) \]

according to the definition of \(S_{\bar{y}} \) in (3.5.19). The second condition implies:
\[\left(\lambda_0^s + \frac{\beta}{\rho + \beta} \frac{c_y - c_x}{\zeta} \right) = e^{(\rho + \beta)(t - t^{RP})} \left[\frac{\beta}{\rho + \beta} \frac{c_y - \bar{p}}{\zeta} + \frac{1}{\zeta} M(S^R) \right]. \]

Using the value of \(S^R \) determined in (4.3.10) and replacing in (4.3.9), we obtain the value of \(\lambda_s^R(t) \) for \(t \leq t^{RP} \):
\[\lambda_s^R(t) = e^{(\rho + \beta)(t - t^{RP})} \left[\frac{\beta}{\rho + \beta} \frac{c_y - \bar{p}}{\zeta} + \frac{1}{\zeta} M(S_{\bar{y}}) \right] - \frac{\beta}{\rho + \beta} \frac{c_y - c_x}{\zeta}. \]

Introducing the number \(c_{sm} \) defined in (4.3.6), the term inside brackets is actually:
\[\frac{\beta}{\rho + \beta} \frac{c_y - \bar{p}}{\zeta} + \frac{1}{\zeta} M(S_{\bar{y}}) = \frac{\beta}{\rho + \beta} \frac{c_y - c_x}{\zeta} = c_{sm} - \bar{s}, \]

where \(\bar{s} \) is defined in (3.5.22). In other terms, the function \(\lambda_s^R(t) \) is:
\[\lambda_s^R(t) = (c_{sm} - \bar{s})e^{(\rho + \beta)(t - t^{RP})} - \frac{\beta}{\rho + \beta} \frac{c_y - c_x}{\zeta}. \quad (4.3.11) \]

Finally, the value of \(\gamma_s^R(t) \) is computed as:
\[\gamma_s^R(t) = \lambda_s^R(t) - c_s = c_s - \bar{s} - (c_{sm} - \bar{s})e^{(\rho + \beta)(t - t^{RP})}. \quad (4.3.12) \]

We have seen above that \(c_{sm} - \bar{s} > 0 \). The function \(\lambda_s^R(t) \) is therefore increasing, and the function \(\gamma_s^R(t) \) is decreasing on the interval \((-\infty, t^{RP})\). Its limit when \(t \to -\infty \) is \(c_s - \bar{s} \) and its value at \(t = t^{RP} \) is \(\gamma_s^R(t^{RP}) = c_s - c_{sm} \). The function \(\gamma_s^R(t) \) is positive on the interval \((-\infty, t^{RP})\) if and only if this value is positive, and this is equivalent to: \(c_s \geq c_{sm} \). As argued in Section 4.2.3 (Lemma 4.5), \(\nu_Z \geq 0 \) in Phase R.

The results are summarized as follows.

Lemma 4.8. Assume that Assumption 1 holds and \(c_s \geq c_{sm} \). Then for every \(S^O \in [S^R_{\bar{y}}, S_m] \) the following trajectory is optimal. Let \(t^{RP} = \rho - \beta^{-1} \log(S_{\bar{y}}/S^O) \). For \(t \in [t^{RP}, \infty) \) the trajectory is in Phase R, as described in Lemma 4.5; for \(t \in [t^{RP}, \infty) \) the trajectory is in Phase P, as described in Lemma 4.4.

4.3.1.3 Phases R/Q

In Section 4.3.1.1, we have left open the issue of whether Phase Q can start from any initial \(S^O \in [S^Q_{\bar{y}}, S_m] \), where \(S^Q_{\bar{y}} \) solves Equation (4.3.4). We resolve this issue by considering the possibility that a Phase R precedes Phase Q.

Assume the system is in phase R at time \(\bar{t} \), with initial position \((S^O_{\bar{y}}, Z) \), and that it passes from Phase R to Phase Q at time \(t^{RQ} \) and location \(S^{RQ} = S(t^{RQ}) \).

When in Phase R, the evolution of the state is \(S(t) = S_{\bar{y}}e^{-\lambda(t-\bar{t})} \) and that of the adjoint variables is given by (4.2.6) and (4.2.7), see also Section 4.3.1.2. The condition \(S(t^{RP}) = S^{RQ} \) provides the value of \(t^{RP} \) as \(t^{RP} = -\beta^{-1} \log(S^{RQ}/S^O) \).

On the other hand, assuming that Phase Q is followed by Phase P, we have the form (4.3.7) for \(\lambda^Q \), and we have the relation \(\lambda_s^Q(t) = \lambda_s^Q(t) + c_s \) which characterizes Phase Q. The continuity of
the adjoint variables imposes that $\lambda_Z^{(Q)}(t^{R_Q}) = \lambda_Z^{(R)}(t^{R_Q})$ and $\lambda_S^{(Q)}(t^{R_Q}) = \lambda_S^{(R)}(t^{R_Q})$. The first condition writes just as:

$$
\lambda_Z^{(Q)}(t^{R_Q}) = - \frac{c_y - c_x}{\zeta}.
$$

According to (4.3.8) on page 39 and the reasoning preceding it, this equation can be solved only for $c_s > \bar{c}_s$ and we get:

$$
t^{R_Q} - t^{Q_P} = \frac{1}{\rho} \log \left(\frac{c_y - c_x}{\zeta} + \frac{c_x e^{\rho \beta} + \beta}{\rho} \left(\frac{c_x - u'(x - \frac{\beta}{\zeta} S^{Q_P})}{\zeta} + c_s e^{\rho \beta} \right) \right) .
$$

(4.3.13)

Remember that S^{Q_P} itself depends on c_s since it is defined as the solution of (4.3.4). The continuity of λ_S at $t = t^{R_Q}$ provides the value of $\lambda^{(R)}_S$, and then:

$$
\lambda_S^{(R)}(t) = (c_s - c_x) e^\left(\frac{\rho + \beta}{\rho} (t - t^{R_Q}) \right) - \frac{\beta}{\rho + \beta} \frac{c_y - c_x}{\zeta} .
$$

(4.3.14)

As in Section 4.3.1.2, we conclude that if $c_s \geq \bar{c}_s$, then $\lambda_S^{(R)}$ is increasing, and $\gamma_s^{(R)}$ is decreasing. It is 0 at $t = t^{R_Q}$, therefore it is positive for $t \leq t^{R_Q}$.

Finally, dynamics of the state in Phase Q are given by (3.5.16), which yields

$$
S(t) = S^{Q_P} + \int_{t^{Q_P}}^{t} (x^{(Q)}(s) - \bar{x}) ds = S^{Q_P} + \int_{t^{Q_P}}^{t} (q^d(c_x - \lambda_Z^{(Q)}(s)) - \bar{x}) ds
$$

$$
= S^{Q_P} - \zeta(t - t^{Q_P})
$$

$$
+ \zeta \int_{t^{Q_P}}^{t} q^d \left(c_x - c_x + \frac{\rho + \beta}{\rho} c_s + \frac{1}{\zeta} \left(c_x - u'(x - \frac{\beta}{\zeta} S^{Q_P}) \right) + \frac{\rho + \beta}{\rho} c_s \right) ds
$$

$$
= S^{Q_P} - \zeta(t - t^{Q_P})
$$

$$
+ \zeta \int_{t^{R_Q}}^{t^{Q_P}} q^d \left(c_x + \frac{\rho + \beta}{\rho} c_s - e^{\rho \beta} \left(\frac{\rho + \beta}{\rho} c_s + x - u'(x - \frac{\beta}{\zeta} S^{Q_P}) \right) \right) dv .
$$

In particular, the value of the stock S at the time the system passes from Phase R to Phase Q is given by:

$$
S^{R_Q} = S^{Q_P} - \zeta(t^{R_Q} - t^{Q_P})
$$

$$
+ \zeta \int_{0}^{t^{R_Q} - t^{Q_P}} q^d \left(c_x + \frac{\rho + \beta}{\rho} c_s - e^{\rho \beta} \left(\frac{\rho + \beta}{\rho} c_s + c_x - u'(x - \frac{\beta}{\zeta} S^{Q_P}) \right) \right) dv .
$$

(4.3.15)

Depending on the value of c_s, this value S^{R_Q} is smaller than S_m or not.

This leads us to introduce a new threshold for c_s: this value c_{Q_s} is such that Phase R “just disappears” at the stock value $S = S_m$. More precisely, we have simultaneously:

$$
S^{(Q)}(t^{R_Q}) = S_m, \quad \lambda_Z^{(Q)}(t^{R_Q}) = \frac{c_x - c_y}{\zeta} \quad \text{or, equivalently:} \quad x^{(Q)}(t^{R_Q}) = \bar{y} .
$$

Given the formula above for S^{R_Q}, we have the equivalent form:

$$
S_m = S^{Q_P} - \zeta(t^{R_Q} - t^{Q_P})
$$

$$
+ \zeta \int_{0}^{t^{R_Q} - t^{Q_P}} q^d \left(c_x + \frac{\rho + \beta}{\rho} c_s - e^{\rho \beta} \left(\frac{\rho + \beta}{\rho} c_s + c_x - u'(x - \frac{\beta}{\zeta} S^{Q_P}) \right) \right) dv .
$$

(4.3.16)

The values of S^{Q_P} and $t^{R_Q} - t^{Q_P}$ are given respectively by (4.3.4) and (4.3.13). They are themselves functions of c_s. The number c_{Q_s} is the unique solution of this equation; it belongs to the interval $[\bar{c}_s, c_m]$.

42
We are now in position to complete Lemma 4.7. Having checked that \(\gamma_\theta \geq 0 \) and \(S(t) \geq S_\theta \) when Phase R is involved, and using Lemma 4.5:

Lemma 4.9. Assume that Assumption 1 holds, that \(\tilde{y}(\cdot) \) is convex, and that \(\bar{c}_b \leq c_b \leq c_{B\infty} \). Denote with \(S_{QP} \) the unique solution to Equation (4.3.14) (it exists according to Lemma B.3). Then:

if \(\bar{c}_b \leq c_b \leq c_{BQ} \) for every \(S^0 \in [S_{QP}, S_M] \), the trajectory starting in Phase Q as described in Lemma 4.7 is optimal; there is no Phase R.

if \(c_{BQ} < c_b \leq c_{B\infty} \) : Let \(S_{RQ} \) be defined by (4.3.15). Then \(S_{RQ} \leq S_{B\infty} \), and

for \(S^0 \in [S_{RQ}, S_{B\infty}] \): the trajectory starting in Phase Q as described in Lemma 4.7 is optimal; there is no Phase R.

for \(S^0 \in [S_{QP}, S_{RQ}] \): the trajectory starting from \(S(t^0) = S^0 \) (where \(t_{RQ} = t^0 - \beta^{-1} \ln(S_{RQ}/S^0) \)), and continuing in Phase Q for \(t \in [t_{RQ}, \infty) \) from \(S(t_{RQ}) = S_{RQ} \), as described in Lemma 4.7, is optimal.

Concluding this paragraph, we observe that controls are discontinuous at time \(t_{RQ} \). Indeed, we have, from the values of control in phases Q and R, and the fact that \(\lambda_S(t_{RQ}) = (c_a - c_b)/\zeta \):

\[
\begin{align*}
 x(t_{RQ}^-) &= \frac{\beta}{\zeta} (S_m - S_{RQ}) \quad s(t_{RQ}^-) = 0 \\
 y(t_{RQ}^-) &= \frac{\beta}{\zeta} (S_{RQ} - S_B) \\
 x(t_{RQ}^+) &= \tilde{y} \quad s(t_{RQ}^+) = c_y - \beta (S_m - S_{RQ}) \\
 y(t_{RQ}^+) &= 0.
\end{align*}
\]

On the other hand, the current-value Hamiltonian \(H(t) := u(x(t) + y(t)) - c_a s(t) - c_b x(t) - c_y y(t) + \lambda_z(t) [-\alpha z(t) + \beta S(t) + \zeta x(t) - s(t)] + \lambda_S(t) [-\beta S(t) + s(t)] \) is continuous at time \(t_{RQ} \), which we check now. Since the trajectory is such that \(Z(t) = Z \), the value of \([-\alpha Z + \beta S + \zeta x - s] \) is identically 0. Next, we have \(\lambda_S(t_{RQ}) = c_a + (c_x - c_y)/\zeta \). Also, the total energy consumption \(x(t) + y(t) \) is continuous at \(t = t_{RQ} \) with value \(\tilde{y} \). Then,

\[
\begin{align*}
 H(t_{RQ}^-) &= u(\tilde{y}) - c_a \frac{\beta}{\zeta} (S_m - S_{RQ}) - c_b \frac{\beta}{\zeta} (S_{RQ} - S_B) - \beta S_{RQ} \left(c_a + \frac{c_x - c_y}{\zeta} \right) \\
 &= u(\tilde{y}) - c_b \tilde{y} + \frac{c_y - c_x}{\zeta} \beta (S_m - S_{RQ}) - \beta S_{RQ} \left(c_a + \frac{c_x - c_y}{\zeta} \right) \\
 &= u(\tilde{y}) - c_b \tilde{y} + \frac{c_y - c_x}{\zeta} \beta S_m - c_a \beta S_{RQ} \\
 H(t_{RQ}^+) &= u(\tilde{y}) - c_a \tilde{y} - c_b s(t_{RQ}^+) + \left(c_a + \frac{c_x - c_y}{\zeta} \right) (\beta S_{RQ} + s(t_{RQ}^+)) \\
 &= u(\tilde{y}) - c_b \tilde{y} + \frac{c_y - c_x}{\zeta} \left(\tilde{y} - \beta (S_m - S_{RQ}) \right) - \beta S_{RQ} \left(c_a + \frac{c_x - c_y}{\zeta} \right) \\
 &= u(\tilde{y}) - c_b \tilde{y} + \frac{c_y - c_x}{\zeta} \beta S_m - c_a \beta S_{RQ}.
\end{align*}
\]

4.3.2 Synthesis on the boundary \(Z = \bar{Z}(S) \), large \(c_s \)

At this point, we have a complete description of optimal trajectories starting from initial points on the boundary \(Z = \bar{Z}(S) \).

The situation of phases is summarized in Figure 4.1 (page 44). This figure depicts the optimal consumption \(x(t), y(t) \) and capture \(s(t) \) as a state feedback. As a function of time, \(S(t) \) is decreasing (or constant if \(c_{BQ} = c_b \)) so that the evolution occurs from right to left. Capture is represented as \(s(t)/\zeta \) in order to make an easier comparison with its maximum value \(x(t) \).

The different cases are detailed as follows. The trajectory of interest is starting at \(S = S_M \) and \(Z = 0 \). In all situations, the optimal trajectory is in Phase U (see Section 3.5.6) as long as \(S > S_m \). What happens next depends on \(c_a \).
Figure 4.1: Phases on the boundary for $c_s \geq \hat{c}_s$: optimal controls as state feedback
Case $c_b \geq c_{en}$. In this situation, the sequence of phases is $U/R/P$ (Lemma 4.8 on page 41). Capture $s(t)$ is zero at all times. Consumption $x(S)$ is a straight line with slope $-\gamma/S_m = -\beta/\zeta$, for $S \leq S_m$, see (3.5.2) and (3.5.17). Consumption $y(S)$ is a straight line with slope γ/S_m for $S_m \leq S \leq S_m$, see (3.5.18). Both paths $x(t)$ and $y(t)$ are continuous.

Case $c_{en} \geq c_b \geq c_{eq}$. In this situation, the sequence of phases is $U/R/Q/P$ (Lemma 4.9 on page 43). As observed at the end of Section 4.3.1.3, the consumption/capture paths $x(t)$, $s(t)$ and $y(t)$ are continuous except for a discontinuity at $t = t^{RQ}$ (i.e. when $S = S^{RQ}$). The function $x(t) + y(t)$ is continuous everywhere. When in Phase Q, $x(t)$ and $s(t)$ are not straight lines, contrary to what the figure suggests for ease of representation. See also Appendix E.3 on page 107. However, $x(t) - s(t)/\zeta$ is linear, according to (4.2.3).

Case $c_{eq} \geq c_b \geq \tilde{c}_b$. In this situation, the sequence of phases is reduced to $U/Q/P$ (Lemma 4.9 on page 43). The paths $x(t)$, $s(t)$ and $y(t)$ are continuous except for a discontinuity at $t = t^{UQ}$ (i.e. when $S = S^{UQ} = S_m$). The function $x(t) + y(t)$ is also discontinuous at that point.

Case $c_b = \tilde{c}_b$. In this particular situation, the sequence of phases is U/Q, but all points in phase Q are stationary (Lemma 4.4 on page 37). The paths $x(t)$, $s(t)$ and $y(t)$ are continuous except for a discontinuity at $t = t^{UQ} = S_m$. The function $x(t) + y(t)$ is also discontinuous at that point. The function $s(t)$ is a straight line as a function of $S(t)$.

4.4 Junction with the boundary

The previous section has addressed pieces of optimal trajectories included in the boundary $Z = \tilde{Z}(S)$. We now study how optimal trajectories located inside the domain join this boundary. It turns out that, depending on the value of the parameters, two types of junctions take place. One is a “regular” junction, with continuity of state and adjoint variables: we will show in Section 4.4.2 that it takes place with the boundary phases called P, Q, R and U. The second one is a junction at the particular location (S_m, \tilde{Z}), with a discontinuity in the adjoint variable λ_Z. We call these junctions “singular” and analyze them in Section 4.4.3.

We start the analysis with the introduction in Section 4.4.1 of useful properties of adjoint variables, and a very convenient graphical representation.

4.4.1 Evolution of adjoint variables

Figure 4.2 represents the phase diagram of adjoint variables (λ_Z, λ_S) governed by equations (3.2.2), together with several particular values, curves, zones and locations.

Trajectories of $(\lambda_Z(t), \lambda_S(t))$ are represented as blue lines. They all reach their minimal value on the green line of equation $(\rho + \beta)\lambda_S = \beta \lambda_Z$, which is the locus of points where $\lambda_S = 0$. When above this curve, $\lambda_S(t)$ increases, and it decreases below. In all cases, $\lambda_Z(t)$ is decreasing.

The zones corresponding to Phases A and B are delimited by the red line $\gamma = \lambda_S - \lambda_Z = c_b = 0$. Phase A is below the line, Phase B is above it. The zone corresponding to Phase L is represented in blue. It is separated from Phase A by the line $\lambda_Z = (c_b - c_p)/\zeta$ (corresponding to $x^{(A)} = \eta(c_b - c_p)/\zeta = \tilde{y}$) and from Phase B by the line $\lambda_S = c_b + (c_b - c_p)/\zeta$ (corresponding to $x^{(B)} = \eta(c_b + c_p - c_s)/\zeta = \tilde{y}$). Inside this blue zone, the value of $x(t)$ as given by first-order conditions of Phase A or Phase B is less than \tilde{y}. As a consequence of Lemma 3.2, this means that $y = \tilde{y}$, that is, Phase L, is optimal.\footnote{In terms of “cleaned” and “dirty” carbon consumption (see Footnote 5 of Chapter 2 on page 7), the blue zone corresponds to the consumption of only renewable energy ($x_{en} = x_{eq} = 0$), the zone labeled “A” (below the red line and to the right of the blue zone) corresponds to only dirty carbon consumption ($x_{eq} = y = 0$) and the zone labeled “B” corresponds to only cleaned carbon consumption ($x_{eq} = y_{eq} = 0$). Mixed consumption is possible only when costate variables move on the boundary of these zones.}

Dashed lines $\lambda_Z = (c_b - \rho)/\zeta$ and $\lambda_S = c_b + (c_b - \rho)/\zeta$ correspond to values of the control x equal to \bar{x}, in Phase A and Phase B respectively. The yellow zone represents values where the optimal control is $\bar{y} \leq x \leq \bar{x}$, whatever the phase. In the zone outside it, $x > \bar{x}$.\footnote{In terms of “cleaned” and “dirty” carbon consumption (see Footnote 5 of Chapter 2 on page 7), the blue zone corresponds to the consumption of only renewable energy ($x_{en} = x_{eq} = 0$), the zone labeled “A” (below the red line and to the right of the blue zone) corresponds to only dirty carbon consumption ($x_{eq} = y = 0$) and the zone labeled “B” corresponds to only cleaned carbon consumption ($x_{eq} = y_{eq} = 0$). Mixed consumption is possible only when costate variables move on the boundary of these zones.}
of them, imposing the continuity of (both for state and adjoint variables) the boundary. We review these cases in this section. In all For some values of

\[\frac{c_x}{\zeta} - \frac{c_y}{\zeta} \]

\[\lambda_S \]

\[\lambda_Z \]

\[\gamma = 0 \]

\[\rho = \frac{\beta}{\alpha} \]

\[\frac{c_x - c_y}{\zeta} \]

\[c + \frac{c_x - c_y}{\zeta} \]

\[c + \frac{c_x - p}{\zeta} \]

\[-c + \frac{c_x - p}{\zeta} \]

\[\lambda_S > 0 \]

\[\lambda_S = 0 \]

\[\lambda_S < 0 \]

\[\Omega \]

\[\gamma = 0 \]

\[\rho > \frac{\beta}{\alpha} \]

\[P_S = \left(\frac{\rho + \beta}{\alpha} \right) \left(c + \frac{c_x - p}{\zeta}, \frac{c_y - p}{\zeta} \right) \]

\[P_\infty = \left(\frac{c_x - p}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \right) \]

Figure 4.2 also features some particular points:

\[P_S = \left(\frac{\rho + \beta}{\alpha} \right) \left(c + \frac{c_x - p}{\zeta}, \frac{c_y - p}{\zeta} \right) \]

\[P_\infty = \left(\frac{c_x - p}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - p}{\zeta} \right) \]

These correspond, respectively, to the stationary Phase S (Lemma 4.2), and to the limiting values in terminal Phase P when \(t \to \infty \) (see (4.1.9) on page 33).

Finally, point \(\Omega \) has been introduced in (3.5.12). It is shown in Lemma 4.4 that this point corresponds to a stationary solution in the specific case \(c_x = \hat{c}_x \). In every case, it is a repulsive point for the dynamics of \((\lambda_Z, \lambda_S)\) in Phase Q: in this phase the adjoint variables move on the red line \(\gamma = 0 \) away from point \(\Omega \). See the discussion of Section 3.5.2 on page 25.

Observe that the elements in black and red on Figure 4.2 depend only on cost parameters \((c_x, c_y, c_x, p)\) and \(\zeta \), whereas blue and green elements depend only on \(\alpha \), \(\beta \) and \(p \). This separation is not perfect though, because \(p \) is determined by the cost function \(u(\cdot) \) and the special consumption value \(\tilde{p} \), which itself is defined with \(\zeta, \beta \) and \(\alpha \).

Depending on values of the parameters, the green line \(\lambda_S = 0 \) may enter the blue zone Phase L either by its horizontal boundary, or by its vertical one. In the first case, the corner of the Phase L zone is below the line, which translates as:

\[(\rho + \beta) \left(c + \frac{c_x - c_y}{\zeta} \right) \leq \beta \frac{c_x - c_y}{\zeta} \iff c_x \leq \tilde{c}_x, \]

where \(\tilde{c}_x \) has been defined in (3.5.22). This is the situation represented in Figure 4.2, see also Figure 4.5. The other situation is represented in Figure 4.3 on page 51.

4.4.2 Regular junctions

For some values of \(c_x \), optimal trajectories in the interior can be in Phase A and join continuously (both for state and adjoint variables) the boundary. We review these cases in this section. In all of them, imposing the continuity of \(\lambda_S \) at the junction point is sufficient for obtaining a solution.
4.4.2.1 Junction with Phase P

Lemma 4.10. Assume that Assumption 1 holds, that $u^i(\cdot)$ convex and that $c_s > \hat{c}_s$. Then the following trajectory is optimal. The trajectory is in Phase A, characterized by $x(t) = q^i(c_x - \zeta \lambda_Z(t))$, $s(t) = y(t) = 0$, $S(t) = S^0 e^{-\alpha(t-t^0)}$, and

$$Z(t) = Z^0 e^{-\alpha(t-t^0)} + S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\beta(t-t^0)} - e^{-\alpha(t-t^0)}\right) + \zeta \int_{t^0}^{t} e^{-\alpha(t-u)} q^i(c_x - \zeta \lambda_Z(u)) du$$

(4.4.1)

and λ_S, λ_Z given by Equations (3.2.4) and (3.2.5), for $t \in [t^0, t^{AP}]$, where t^{AP} solves the equation $Z(t^{AP}) = Z$. Then the trajectory continues in Phase P as described in Lemma 4.1.

Such trajectories are illustrated for instance in Figures 4.11 and 4.12 on page 61.

Proof. Since the trajectory described here is continuous, with piecewise continuously differentiable λ_S and λ_Z, we will apply Corollary 3.1. It is necessary to check that the constraints $\gamma_y(t) \geq 0$ and $\gamma_y(t) \geq 0$ are satisfied on the trajectory.

Observe that in both Phases A and P, $\gamma_y = c_y - c_x + \zeta \lambda_Z$. It is therefore a continuous function on the trajectory. In Phase P, $\gamma_y \geq 0$ so that $\gamma_y(t^{AP}) \geq 0$. Since λ_Z is decreasing in Phase A, so is γ_y and we have for all $t \in [t^0, t^{AP}]$: $\gamma_y(t) \geq 0$.

Likewise, $\gamma_y = \lambda_Z - c_x + c_y$ in both phases A and P, and it is positive in Phase P, hence at time $t = t^{AP}$. A straightforward variation analysis based on observations in Section 3.2.1 reveals that the general behavior of $\gamma_y(t)$ is as follows. Starting from $t \to -\infty$, γ_y starts from c_y then increases, then decreases, goes through 0 and tends to $-\infty$ when $t \to +\infty$. Therefore, it is necessarily positive on the interval $[t^0, t^{AP}]$ since it is positive at the end of the interval.

Observe also that when in Phase A, we have $\dot{Z} > 0$, which justifies the idea that there are initial values (S^0, Z^0), $Z^0 < Z$, such that $Z(t) = Z(t)$ (given by (4.4.1)) has actually a solution. Since in Phase A we have $x(t) = q^i(c_x - \zeta \lambda_Z(t))$ and λ_Z is decreasing, $x(t)$ is decreasing as well. Its value at t^{AP} is $x^{AP}(t^{AP}) = \overline{S} - S^{AP}/\zeta$. Then we can write (remember that $\alpha Z = \lambda Z$):

$$\dot{Z} = -\alpha Z + \beta S + \zeta x = \alpha(Z - Z) + \beta(S - S^{AP}) + \zeta(x - \overline{S} + \beta S^{AP}/\zeta).$$

Since S is also decreasing in Phase A, it is always larger than S^{AP}. Then all three terms in this expression are positive. They all vanish at t^{AP}, which means that $\dot{Z}(t^{AP}) = 0$: the trajectory joins the ceiling $Z = \overline{Z}$ tangentially. See also Section D.1 in the Appendix, page 98.

The set of initial positions (S^0, Z^0) of trajectories which satisfy Lemma 4.10 is limited by the particular trajectory which joins point (S^{QP}, Z) (when $c_s \in (\hat{c}_s, c_s]$) or point (S^{Q}_y, Z) (when $c_s \geq c_s$).

4.4.2.2 Junction with Phase Q

The geometric position of $(\lambda_S^{(Q)}(t), \lambda_Z^{(Q)}(t))$ also allows to construct consistent continuous trajectories where Phase A joins Phase Q.

Lemma 4.11. Assume that Assumption 1 holds, that $u^i(\cdot)$ convex and that $\hat{c}_s \leq c_s \leq c_s$. Then the following trajectory is optimal. The trajectory is in Phase A (see its equations in Lemma 4.10) for $t \in [t^0, t^{AQ}]$, where t^{AQ} solves the equation $Z^{(A)}(t^{AQ}) = Z$. Then the trajectory continues in Phase Q as described in Lemma 4.4 (if $c_s = \hat{c}_s$), or Lemmas 4.7 and 4.9 (if $\hat{c}_s < c_s \leq c_s$).

Such trajectories are illustrated for instance in Figure 4.8 page 57, Figure 4.12 page 61 or Figure 14 page 64.

Proof. The proof is similar to that of Lemma 4.10, with the difference that $\gamma_y(t^{AQ}) = 0$ instead of being positive. One concludes nevertheless that γ_y and γ_y are both positive. □
4.4.2.3 Junction with Phase R

It is also possible to construct consistent continuous trajectories where Phase A joins Phase R.

Lemma 4.12. Assume that Assumption 1 holds, that \(u^e(\cdot) \) convex and that \(c_s \geq c_Q \). Then the following trajectory is optimal. The trajectory is in Phase A (see its equations in Lemma 4.10) for \(t \in [t^A, t^AR] \), where \(t^AR \) solves the equation \(Z(t^AR) = Z \). Then the trajectory continues in Phase R as described in Lemma 4.8 or Lemma 4.9.

Such trajectories are illustrated for instance in Figure 4.17, page 64 or Figure 4.20, page 66.

Proof. In Phase R, \(\lambda_Z \) is constant and \(\lambda_S \), given by Equation (4.3.14), is increasing. According to Lemmas 4.8 and 4.9, the trajectory in Phase R finishes either in Phase Q of in Phase P, with the continuity of \(\lambda_S \) and \(\lambda_Z \), and therefore of \(\gamma_s = \lambda_Z - \lambda_S + c_s \). This function either vanishes at \(t = t^RQ \) or is positive at \(t = t^{RP} \). It is decreasing, therefore it is positive in Phase R (see an illustration in Figure 4.16 or Figure 4.19). The same reasoning as for the proof of Lemma 4.10 can be applied, to conclude that \(\gamma_{\theta} \) and \(\gamma_s \) are both positive. \(\square \)

The following observation will be useful later on: for all \(t \) in Phase R, and in particular for \(t = t^AR \), \(\lambda_Z(t^AR) + c_s \geq \lambda_S(t) - \beta \lambda_S(t)/(\rho + \beta) \), where \(\lambda_Z(t^AR) = (c_x - c_y)/\zeta \). This is a consequence of the explicit formulas we have obtained for \(\lambda_S(t) \), in (4.3.11) when \(c_s \geq c_m \), or (4.3.14) when \(c_sQ \geq c_s \geq c_m \).

4.4.2.4 Junction with Phase U

It is also possible to construct consistent continuous trajectories which are in Phase A, then hit the curve \(Z = Z_M(S) \), then follow this curve in Phase U. We have two ways to prove that such a trajectory is optimal: one with the constraint \(Z \leq Z_M(S) \) explicitly taken into account, one without it. Several features are common to both cases.

In both situations, suppose that an optimal trajectory follows the curve \(Z = Z_M(S) \) during the time interval \(t \in [t^{AU}, t^{UR}] \). At time \(t^{UR} \), the value of \(S \) is \(S(t^{UR}) = S_m \). At time \(t^{AU} \), a trajectory coming from the interior in Phase A hits the curve \(Z = Z_M(S) \). Considering for instance the related finite-horizon problem (see Section C.1.2.2 on page 94) allows to “guess” that

\[
\lambda_Z(t^{AU}) = \lambda_Z(S) := \frac{c_x - c_y}{\zeta}. \tag{4.4.2}
\]

In addition, the dynamics of \(S(\cdot) \) provide the duration \(t^{UR} - t^{AU} = \beta - 1 \log(S(t^{AU})/S_m) \), which is the time it takes for the trajectory to reach \(S = S_m \) starting at \(S(t^{AU}) = S_Q \).

Also, since \(x(t) + y(t) = \tilde{y}_Q \); (2.3.4) implies that \(\gamma_{\theta}(t) = 0 \) for all \(t \in [t^{AU}, t^{UR}] \), in accordance with (2.3.7). With (2.3.3), this implies

\[
\lambda_Z + \gamma_{\theta} = \frac{c_x - c_y}{\zeta}. \tag{4.4.3}
\]

Finally, we have observed at the end of Section 4.4.2.3 that \(\beta \lambda_Z(t^{UR}) / (\rho + \beta) \leq \lambda_S(t^{UR}) \leq \lambda_Z(t^{UR}) + c_s \).

Solution with an explicit constraint. In this specific situation, we make use of Corollary 3.2. In this case, the dynamics of the adjoint variables during Phase U do not obey (2.3.10) and (2.3.11), but rather (2.3.10) and (2.3.30). Let us first develop the computations relevant to this case.

The dynamics of the adjoint variables (2.3.10) and (2.3.30) are then:

\[
\dot{\lambda}_Z = (\rho + \alpha) \lambda_Z + \nu Z \\
\dot{\lambda}_S = (\rho + \beta) \lambda_S - \beta \lambda_Z - \nu Z \tilde{Z}_M(S)
\]

Looking for continuous trajectories, we deduce from (4.4.2) that \(\lambda_Z \) should be constant on the interval \(I = [t^{AU}, t^{UR}] \). Equation (4.4.3) is satisfied with \(\gamma_{\theta} = 0 \). Then we must have (as we had
in Phase R), \(r_Z \equiv - (\rho + \alpha) \lambda_Z \) which is positive as required by condition (2.3.29). When replaced in the second equation, we have:

\[
\lambda_S(t) = (\rho + \beta) \lambda_S(t) - \beta \frac{c_x - c_y}{\zeta} + (\rho + \alpha) \frac{c_x - c_y}{\zeta} \tilde{Z}_M(S(t)) ,
\]

(4.4.4)

and \(S(t) = S(t^{AU}) e^{-\beta t(t^{UR} - t^{AU})} \).

We now show that \(\gamma_s(t) \geq 0 \) for \(t \in I \). Since \(\gamma_s(t) = \lambda_Z^{(U)} - \lambda_S(t) + c_x \), we have \(\gamma_s = - \lambda_S \). But because \(c_x - c_y < 0 \) and \(\tilde{Z}'(S) \leq 0 \), we deduce from (4.4.4) that for all \(t \in I \),

\[
\lambda_S(t) \geq (\rho + \beta) \lambda_S(t) - \beta \lambda_Z^{(L)} .
\]

We also know that \(\lambda_S(t^{UR}) \geq \beta \lambda_Z^{(L)}/(\rho + \beta) \). Thanks to Grönwall’s lemma, we deduce that \(\lambda_S(t) \geq \beta \lambda_Z^{(L)}/(\rho + \beta) \) for all \(t \in I \), and that \(\lambda_S(t) \) is increasing. This implies in turn that \(\gamma_s \) is decreasing. Since it is positive at \(t = t^{UR} \), it is positive for all \(t \in I \).

We have now the elements to prove the following result.

Lemma 4.13. Assume that Assumption 1 holds, that \(u^d(*) \) convex and that \(c_x > c_Z \). Let \(t^{AU} \) be an arbitrary time instant. Then for every \(S^{AU} \in [S_m, S_M] \), there exists an optimal trajectory with \(S(t^{AU}) = S^{AU} \), \(Z(t^{AU}) = \tilde{Z}(S^{AU}) \), which runs as follows.

The trajectory is in Phase A (see its equations in Lemma 4.10) for \(t \in [t^0, t^{AU}] \), where \(t^0 \) solves the equation \(Z(t^0) = 0 \).

Then the trajectory continues in Phase U, with \(\lambda_Z(t) = \lambda_Z^{(L)} \) for all \(t \in [t^{AU}, t^{UR}] \), and \(\lambda_S(t) \) given by the solution to the differential equation (4.4.4) with boundary condition at \(t = t^{UR} \).

Then the trajectory continues in Phase R and Phase P, or Phases R, Q, P, as described in Lemma 4.8 or Lemma 4.9 respectively.

Proof. In order to use Corollary 3.2, we construct a trajectory with continuous functions \(\lambda_Z(*) \) and \(\lambda_S(*) \).

Fix some arbitrary \(t^{AU} \) with \(S(t^{AU}) = S^{AU} \), \(Z(t^{AU}) = \tilde{Z}(S^{AU}) \).

Continuous trajectories for \(\lambda_S \) and \(\lambda_Z \) are provided for \(t \geq t^{UR} \) by Lemma 4.8 or Lemma 4.9, depending on the value of \(c_x \). In particular, from the analysis of Phase R (Section 4.2.3), we know the property that \(\lambda_Z(t^{UR}) = \lambda_Z^{(U)} \). Then, defining \(\lambda_S(t) \) for \(t \in I \) as the solution of (4.4.4) with the boundary condition at \(t = t^{UR} \) provides a continuous function over the interval \(t \in [t^{AU}, \infty) \). We have checked in the computation above that \(\gamma_s(t) \) and \(\gamma_g(t) \) are both positive for all \(t \in [t^{AU}, t^{UR}] \), and therefore for all \(t \geq t^{AU} \).

When \(t < t^{AU} \), the trajectory is in Phase A, with adjoint variables continuous at \(t = t^{AU} \). The proof that \(\lambda_S \), \(\lambda_Z \), \(\gamma_s \) and \(\gamma_g \) are consistent is as in Lemma 4.10. The existence of a time \(t^0 \) at which \(Z(t^0) = 0 \) is implied by the fact that \(\tilde{Z}' = -\alpha Z + \beta S + \zeta x \), with \(-\alpha Z + \beta S > 0 \) and \(x \geq g \); since \(\tilde{Z} > \tilde{Z} \), trajectories in Phase A (taken backwards) necessarily exit the domain in finite time.

Solution without an additional constraint. We consider here the framework of Corollary 2.1, so that the unique state constraint explicitly enforced is \(Z \leq \tilde{Z} \). The dynamics of the adjoint variables are then that of Phase I, see Section 3.4.3. Accordingly, we have the following relationship between adjoint variables at the beginning and at the end of the phase:

\[
\lambda_Z(t^{UR}) = \lambda_Z(t^{AU}) e^{(\rho + \alpha)(t^{UR} - t^{AU})} - \frac{\beta}{\alpha - \beta} \lambda_Z(t^{AU}) \left(e^{(\rho + \alpha)(t^{UR} - t^{AU})} - e^{(\rho + \beta)(t^{UR} - t^{AU})} \right) .
\]

49
Two boundary conditions are enforced if we mean to use Corollary 3.1: \(\lambda_S \) is continuous at \(t = t^{UR} \) and \(\lambda_Z \) is continuous at \(t = t^{AU} \), because at this point, no state constraint becomes active or ceases to be so. The value \(\lambda_Z(t^{AU}) \) is “guessed” to be as in (4.4.2). Accordingly:

\[
\begin{align*}
\lambda_Z(t^{UR}) &= \frac{c_x - c_y}{\zeta} \left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha + \beta}{\beta}} \\
\lambda_S(t^{UR}) &= \lambda_S(t^{AU}) \left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha + \beta}{\beta}} - \frac{\beta}{\alpha - \beta} \frac{c_x - c_y}{\zeta} \left(\left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha + \beta}{\beta}} - \left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha - \beta}{\beta}} \right).
\end{align*}
\]

This last equation allows to express the value of \(\lambda_S(t^{AU}) \) in function of \(\lambda_S(t^{UR}) \) which is known from Lemma 4.8 or Lemma 4.9:

\[
\lambda_S(t^{AU}) = \lambda_S(t^{UR}) \left(\frac{S_m}{S_{AU}^{W}} \right)^{\frac{\alpha + \beta}{\beta}} + \frac{\beta}{\alpha - \beta} \frac{c_x - c_y}{\zeta} \left(\left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha + \beta}{\beta}} - 1 \right).
\]

Next, we check the first-order conditions (2.3.2)–(2.3.3) over the time interval \([t^{AU}, t^{UR}]\), Condition (2.3.4) having been checked in the preliminaries. We clearly have \(\dot{\lambda}_Z(t) \leq (c_x - c_y)/\zeta \), so that \(\gamma_{sx} \geq 0 \), in accordance with (2.3.5). Finally, from (2.3.2), we have

\[
\gamma_s = c_s + \lambda_Z + \gamma_{sx} - \lambda_S = c_s + \frac{c_x - c_y}{\zeta} - \lambda_S
\]

and indeed, since \(\lambda_S(\cdot) \) is increasing on interval \([t^{AU}, t^{UR}]\) and \(\lambda_S(t^{UR}) \leq c_s + \lambda_Z^{(L)} \) as shown above, we have \(\gamma_s \geq 0 \) in accordance with (2.3.6).

In summary, we have constructed a trajectory as described in Lemma 4.13, with the difference that \(\lambda_Z \) is not continuous but has a jump at time \(t^{UR} \) of magnitude

\[
\lambda_Z(t^{UR+}) - \lambda_Z(t^{UR-}) = \frac{c_x - c_y}{\zeta} \left(1 - \left(\frac{S_{AU}^{W}}{S_m} \right)^{\frac{\alpha + \beta}{\beta}} \right) \geq 0.
\]

Such a jump is compatible with condition (2.3.22). It can be checked that the trajectories \(\lambda_S(t) \) are the same in both constructions.

Such trajectories are illustrated for instance in Figures 4.16 and 4.17 on page 64.

4.4.3 Singular Junctions

The location \((S_m, Z)\) of the boundary has a particular status. For one thing, we have seen in Lemma 4.2 (page 34) that there exist stationary optimal trajectories staying at that point: what we have called Phase S. This situation happens if and only if \(c_s \leq \ell_s \). We have identified in Section 2.3.5 that first-order conditions may not be necessary in this situation. When \(c_s > \ell_s \), the location \((S_m, Z)\) is not stationary anymore, but may retain its “non-standard” character.

This singular character lies in the fact that \(\lambda_Z \) may have jumps at the time when state \((S_m, Z)\) is attained, say, at time \(T \). This feature can be “guessed” using the finite-horizon arguments developed in Appendix C.1. When the “final” state of such an optimization problem is constrained to be \((S_m, Z)\), \(\lambda_S \) is necessarily continuous, but \(\lambda_Z \) is not determined by sufficient conditions. There is however a lower bound on it.

In order to prove the optimality of such trajectories, we shall indeed invoke Corollary 3.1. Accordingly, we shall construct trajectories where the adjoint variable \(\lambda_S \) is continuous and where \(\lambda_Z \) may have one jump at time \(T \). According to (3.1.1), such jumps may occur only upwards, that is, \(\lambda_Z(T^-) \leq \lambda_Z(T^+) \) where \(\lambda_Z(T^+) \) is determined by the remainder of the trajectory.

When setting \(\lambda_Z(T) \) to all possible values in the interval \((-\infty, \lambda_Z(T^+))\), we obtain a family of trajectories. For all of them, the state variables end up at point \((S_m, Z)\) in Phase B, and the
adjoint variables end up at point \((\lambda_Z(T), \lambda_S(T))\). During their evolution before time \(T\), these trajectories may actually be in one of three possible phases, according to the sign of \(\lambda_S - \lambda_Z - c_s\) (Phases A or B), and to whether the consumption \(x\) is larger or smaller than \(\tilde{y}\) (Phase L). Again, two cases must be distinguished: whether \(c_s > \hat{c}_s\) or \(c_s \leq \hat{c}_s\). We investigate the first situation in Section 4.4.3.1, and the second one in Section 4.4.3.2.

4.4.3.1 Junctions passing through point \((S_m, Z)\)

The situation of adjoint variables when \(c_s > \hat{c}_s\) is represented in Figure 4.3. It is assumed that a family of trajectories of \((\lambda_Z(t), \lambda_S(t))\) terminate at some time \(T\) with the same value of \(\lambda_S(T)\), represented as a horizontal dashed line.

As observed in Section 4.4.1, in the situation where \(c_s > \bar{c}_s\), the green line \(\hat{\lambda}_S = 0\) enters the Phase L zone by intersecting its vertical boundary. In that case, whenever the point \((\lambda_Z(t), \lambda_S(t))\) is in Phase B, \(\lambda_S(t)\) is increasing.

Figure 4.3 displays a particular value \(\lambda_Z^{BL}\) which is such that when \(\lambda_Z(T) = \lambda_Z^{BL}\), the trajectory of \((\lambda_Z, \lambda_S)\) goes precisely through the corner of Phase L. Two types of trajectories are possible: either \(\lambda_Z(T) > \lambda^{BL}_Z\) and Phase A is followed by Phase B (tagged as \((AB)\) in the figure), or \(\lambda_Z(T) < \lambda^{LB}_Z\) and the phases are A, then L, then B (tagged as \((ALB)\)). In the limiting case \(\lambda_Z(T) = \lambda^{LB}_Z\), Phase L is just “touched” at a single point in time.

These observations can be used to prove the following result.

Lemma 4.14. Assume that Assumption 1 holds, that \(u'(\cdot)\) convex and that \(\hat{c}_s < c_s < c_{\bar{Q}}\). Let \(t^0\) be an arbitrary time instant. Let \(\lambda^0_S = \lambda_S(t^0)\) be the value of \(\lambda_S\) when the optimal trajectory described in Lemma 4.9 starts from point \((S_m, Z)\).

Then for every \(\lambda^{BL}_Z \in (-\infty, \lambda^0_S - c_s)\), there exists an optimal trajectory in the interior of Domain \(D\) which ends up at \((S_m, Z)\) at time \(t^0\), and such that \(\lambda_Z(t^{\pi}) = \lambda^{BL}_Z\).

Proof. Once again, we use Corollary 3.1 by constructing adjoint variable functions \(\lambda_S\) continuous and \(\lambda_Z\) continuous except at \(t = t^0\), with a jump in the positive direction at \(t = t^0\).

The phase this trajectory is in depends on the value of \((\lambda_Z(t), \lambda_S(t))\) as explained in Section 4.4.1. This guarantees the consistency of multiplier \(\gamma_{\bar{Q}}\). The consistency of multipliers \(\gamma_{\bar{Q}}\) and \(\gamma_{sr}\) can be deduced from the graphical configuration of Figure 4.3.
There remains to prove that the state trajectory is consistent. The argument is that both Z and S are decreasing along these trajectories, which we prove by considering, backwards, the successive phases possible. First of all, we observe that $X_0^S \leq c_s + (c_x - \bar{p})/\zeta$. Indeed, it can be gathered from the proofs of Lemma 4.1, Lemma 4.7, Lemma 4.8 and Lemma 4.9 that the function $\lambda_5(t)$ is increasing for the optimal trajectory lying on the boundary $Z = \bar{Z}$ for $t \geq t^0$. But its limit when $t \to \infty$ is $\lambda_5^{(P)}(\infty) = \beta (c_x - \bar{p})/\zeta (\rho + \beta)$ (see the definition of P_∞ in (4.19)). This value is smaller than $c_x + (c_x - \bar{p})/\zeta$ when $c_x > \bar{c}_x$. The statement on X_0^S is therefore proved.

Consider then the trajectory just before it reaches (S_m, Z). It is necessarily in Phase B. In view of Figure 4.3, $\lambda_5(t) \leq X_0$ as long as t is in Phase B. Therefore, $x(t) = \varphi(t)(c_x + c_x - \zeta \lambda_5(t)) < \varphi$ (see also the description of Figure 4.2 in Section 4.4.1, p. 46). Since $\dot{S} = -\beta S + \zeta x$, having $\dot{S}(t) = 0$ for some $t < \varphi$ would require $\beta S(t) = \zeta x(t) < \varphi$, in other words, $S(t) < S_m$. But $S(\varphi) = S_m$ with $\dot{S}(\varphi) > 0$, so this is not possible. Then S is necessarily decreasing and larger than S_m. Finally, $\dot{Z} = -\beta Z + \beta S$ is also negative for $S \geq S_m$.

The piece of trajectory in Phase B may be preceded by a piece in Phase I or Phase A. In both phases, S is decreasing. Therefore it is always larger than S_m. Also in both phases, $\dot{Z} \geq -\alpha Z + \beta S$. This is necessarily negative if $S > S_m$.

We have therefore proved the claim that S and Z decrease over all optimal trajectories ending at (S_m, Z). They are therefore consistent as long as $Z > 0$. The condition $Z = 0$ determines the starting date and location of the optimal trajectory. Such a date necessarily exists, following the argument used in the proof of Lemma 4.13, whether trajectories exit (backwards) the domain when in Phase A or Phase B.

4.4.3.2 Junction with Phase S

For values of c_s less than the threshold \bar{c}_s, the final phase is Phase S, stationary at point (S_m, Z) (Lemma 4.2 on page 34). The principle, used in Section 4.3, that optimal trajectories follow the boundary $Z = \tilde{Z}(S)$ until the final phase, does not hold anymore. It turns out that optimal trajectory may leave the boundary and return to it.

The difficulty for proving the consistency of candidate optimal trajectories is here that optimal trajectories of the state happen to “turn around” the final point (S_m, Z) instead of reaching it in a straight, monotonous way. In particular, trajectories that start at a point (S_0, Z) will leave the line $Z = Z$ and later return to it. We discuss in Section 4.5.5.2 (p. 67) why going directly to $S = S_m$ while maintaining $Z = Z$ is not optimal. In addition to this odd behavior, the trajectories join the final point very smoothly, with order 2 or order 3 junctions. This makes the local analysis unusually involved.

The typical situation is depicted in Figure 4.4 (top), which represents an evolution of the system supposed to be in Phase B. The three curves represented are $s(t) = \zeta x(t)$, $\beta S(t)$ and $\alpha Z(t)$. These three functions take the same value at time φ, T where the point (S_m, Z) is reached. In the state space (S, Z), the evolution is as in Figure 4.4 (bottom).

According to the diagram, going backwards under these dynamics, the state (S, Z) possibly exits the domain D. Such a trajectory cannot be entirely consistent. Indeed, depending on the value of $\lambda_5(T)$, the phase is limited by one of the events: (a) $Z = \bar{Z}$; (b) $Z = 0$; (c) $\gamma_{st} = 0$; (d) $x(t) = \bar{g}$. We address these possibilities below.

The proof that the general scheme of Figure 4.4 is correct, at least for a set of trajectories “close” to the point (S_m, Z), is to be found in Appendix D.2.2, p. 101.

The following lemma explains the form of optimal trajectories for the case $c_s < \bar{c}_s$, just before they reach the point (S_m, Z). The statement refers to the values of adjoint variables in Phase S and the jump conditions which are in this case:

$$\lambda_5(T) = \lambda_5^{(S)} = c_s + (c_x - \bar{p})/\zeta, \quad \lambda_Z(T) = \lambda_Z^{(S)} = \rho + \frac{\beta}{\beta} \lambda_5^{(S)}.$$

Lemma 4.15. Assume that Assumption 1 holds and that $c_s < \bar{c}_s$. Let T be an arbitrary time instant. Then there exists a positive constant ℓ such that for all $\ell \in (0, \bar{\tau}]$, the following trajectories are optimal:
in a time interval $[\tau_1, T]$, the system is in Phase B, with $S(\tau_1) \in (0, S_m)$. $Z(\tau_1) = \bar{Z}$, $S(T) = S_m$. $Z(T) = \bar{Z}$, $\lambda_S(T) = \lambda_S^S$ and $\lambda_Z(T^m) = \lambda_Z^S - \ell$.

in the time interval $[T, \infty)$, the trajectory is stationary with $S(t) = S_m$. $Z(t) = \bar{Z}$, $\lambda_S(t) = \lambda_S^S$ and $\lambda_Z(t) = \lambda_Z^S$ (Phase S).

Proof. By construction, both pieces of this trajectory satisfy the differential equations of the first-order conditions, and the control constraints on x, s and y. Also by construction, the trajectories are continuous everywhere, except for $\lambda_Z(\cdot)$ which has a discontinuity at $t = T$. The jump at $t = T$ satisfies the condition (2.3.18). There remains to check the constraints on states and multipliers.

Using Lemma D.1 (p. 101), for each $t \in (0, \bar{t})$ there exists τ_1 such that $Z(\tau_1) = \bar{Z}$ and $Z(t) < \bar{Z}$ for $t \in (\tau_1, T)$. There also exists τ_3 such that $S(\tau_3) = S_m$. Applying Grönwall’s lemma to the differential equation $\dot{\bar{Z}} = -\beta S + \zeta x$, $S(0) = S_m$, with the bound $x(t) \leq \hat{x} := q^T(c_x + c_s)$, we conclude that $S(t) > 0$ for all $t > \tau_3 + \beta^{-1} \log(1 - \bar{t}/\hat{x})$. Likewise, since $\dot{\bar{Z}} = -\alpha Z + \beta S \leq \beta S_m$, $Z(t) > 0$ for all $t > T - S_m/\beta S_m$. Since τ_1 can be bounded by $C_3 \bar{t}$ (Lemma D.2), we conclude that \bar{t} can be chosen so that the trajectory in Phase B satisfies all state constraints $Z \leq \bar{Z}$, $Z \geq 0$ and $S \geq 0$ in the interval $[\tau_1, T]$.

We now turn to the constraints on multipliers. Clearly, in Phase B, $x > 0$ and $s > 0$ so that $\gamma_s = 0$ and it remains to check that $\gamma_{sx} \geq 0$ and $\gamma_{sy} \geq 0$. These are respectively equivalent to

$$\lambda_S - \lambda_Z - c_s \geq 0$$
Informally, we now describe what happens on optimal trajectories before they enter Phase B, or when $\lambda_Z(T)$ is outside the range specified in Lemma 4.15. The complete picture is shown in Figure 4.7 on page 57.

On Figure 4.5, we have represented the general situation for adjoint variables. As mentioned in Section 4.4.1, the curve $\tilde{\lambda}_s$ is 0 enters the “Phase L” zone by intersecting its horizontal boundary. There exists here two critical values $\lambda^L > \lambda^BL$ with the following properties. (1) for all $\lambda_Z(T^-) > \lambda^L$, the trajectory of $(\lambda_Z(t), \lambda_S(t))$ for $t \leq T$ never enters the L zone: it simply passes from Phase A to Phase B; (2) for $\lambda_Z(T^-) = \lambda^L$, it just “touches” Phase L; (3) for $\lambda^BL < \lambda_Z(T^-) < \lambda^L$, it goes through phases A, B, L then B again; (4) for $\lambda_Z(T^-) \leq \lambda^BL$, these trajectories go through phases A, L and B.

When $\lambda_Z(T^-) \in (\lambda^BL, \lambda^L)$, the minimum of the curve $x(t)$ (Figure 4.4) is below \tilde{y}. There is a period in Phase L inserted inside Phase B, between time instants τ_5 and T. This essentially does not modify the behavior in Figure 4.4 because $S(t)$ is decreasing and $Z(t)$ is increasing in Phase L, given that $\beta S(t) > \alpha Z(t)$. A sketch of the corresponding trajectory is drawn in Figure 4.6.

In all situations where $\lambda_Z(T^-) > \lambda^BL$, the last (or unique) Phase B is always preceded by a Phase A. When $\lambda_Z(T^-) < \lambda^BL$, this is different since the Phase L is directly preceded by a Phase A. Observe that in Phase A, $Z(t)$ is increasing and $S(t)$ is decreasing (see Section 4.4.2.1). Therefore, the behavior represented in Figure 4.4 is not possible in Phase A. There exists a critical value of λ_Z which the trajectory $(\lambda_Z(t), \lambda_S(t))$ switches from Phase A to Phase B at the exact moment where $Z(t)$ reaches λ_Z. This critical value may or may not be larger than λ^L.

\[
\lambda_S \geq c_s + \frac{c_x - c_y}{\xi}.
\]

This second inequality is satisfied when $\lambda_Z(T^-) \in [\lambda^L, \lambda^BL]$ (see the definition of of λ^L below). The constant \tilde{t} can be chosen such that this is the case for all t. For the first inequality, it is easily shown that the function $\gamma(t) = \lambda_S(t) - \lambda_Z(t) - c_s$ is increasing. Therefore, the instant τ at which $\gamma(\tau) = 0$ is an increasing function of ℓ. Since the value of $\gamma(0)$ is strictly positive in Phase S (see Lemma 4.2 on page 34), the value of τ can never approach 0. Hence, the value of \tilde{t} can be chosen so that, for all $t \leq \tilde{t}$, $\gamma_{S}(t) = \gamma(t) > 0$ for $t \in [\tau_5, T]$. $
$
4.5 Description and classification of optimal trajectories

We are now in position to describe the optimal trajectories in the different cases.

First of all, compiling the optimality results stated in Lemmas 4.1–4.15, we see that several threshold values for c_s have been identified:

\[\hat{c}_s < c_{sQ} < c_{sm}. \]

These are respectively defined by (3.5.27) (see also Section 4.1), by the solution of (4.3.16), and in (4.3.6).

The three thresholds define four intervals for c_s. We call these situations respectively: “c_s small”, “c_s medium-inf”, “c_s medium-sup” and “c_s large”. Some qualitative features of the optimal trajectories are summarized in the following table, according to the intervals where c_s lies. For instance, when c_s goes from 0 to infinity: Phase S is replaced by Phase P when c_s goes through \hat{c}_s. Phases Q and L disappear and are replaced by Phase R. Finally, Phase Q disappears when c_s goes beyond c_{sm}.

![Figure 4.6: Trajectories of the state through phases L, B and S](image)

<table>
<thead>
<tr>
<th>Range of c_s</th>
<th>0</th>
<th>\hat{c}_s</th>
<th>c_{sQ}</th>
<th>c_{sm}</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit point ($S(\infty), Z(\infty)$)</td>
<td>$(0, Z)$</td>
<td>(S_m, Z)</td>
<td>(S_m, Z)</td>
<td>(S_m, Z)</td>
<td></td>
</tr>
<tr>
<td>Continuity of λ_Z</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>possible</td>
<td></td>
</tr>
<tr>
<td>Simultaneous use of x and y</td>
<td>n</td>
<td>n</td>
<td>possible</td>
<td>possible</td>
<td></td>
</tr>
<tr>
<td>Use of y inside the domain</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>in every optimal trajectory</td>
<td>y</td>
<td>possible</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>inside the domain</td>
<td>y</td>
<td>possible</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>on the boundary</td>
<td>y</td>
<td>possible</td>
<td>n</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>

We describe these four cases next, with the help of diagrams in the state space (S, Z) and in the space of adjoint variables (λ_Z, λ_S). See Section 4.4.1 on page 45 for the general description of such diagrams. In addition, we make the convention that, for some phases x and y, point S^y on a state space diagram generally mark where the state moves from Phase x to Phase y.

\[S^y = \]
They correspond to points $P_{S,y}$ on the corresponding adjoint variable diagram: these represent the location of the adjoint variables when the state is (S^0, Z). Point P_S represents the location of the adjoint variables when the state trajectory passes through (S_m, Z) or stays at this point.

4.5.1 Small c_S ($c_B < c_S$)

When $0 < c_S < c_B$, the situation is represented in Figure 4.7 on page 57 (for the evolution of $(\lambda_Z(t), \lambda_S(t))$ over time), Figure 4.8 (for the evolution of $(S(t), Z(t))$ over time) and Figure 4.9 on page 58 for the correspondence between the evolution of λ_Z, λ_S and that of consumption. See also Figure 4.10 for the particular case $c_S = \hat{c}_S$. The results relevant to these figures are Lemma 4.2 (p. 34) and Lemma 4.15 (p. 52) and the discussion following it.

The figures display four “typical” optimal trajectories, labeled from (I) to (IV). Figure 4.7 shows in addition the different elements already described in Figure 4.2 (Section 4.4.1). Figure 4.8 shows also, as a dashed red line, the locus of states where there is a transition from Phase A to Phase B.

The typical situation can be summarized as follows:

Phase A A trajectory starting with $S(0)$ small enough will follow a state and an adjoint path as the ones labeled with I in Figures 4.7 and 4.8. The adjoint path and the consumption/capture path is represented in Figure 4.9. Capture is 0, and Z will increase and S decrease, until Z hits the ceiling. Both λ_Z and λ_S are decreasing in this phase. At some point in time, simultaneously, $Z(t) = Z$ and $\lambda_S(t) = \lambda_Z(t) + c_S$. The trajectory enters Phase Q.

Phase Q Next, the trajectory stays at the ceiling in Phase Q; capture occurs according to Equation (4.2.3): $\dot{s} = \zeta x - \beta(S_m - S)$. Since $S(t)$ increases towards S_m, the gap between $\zeta x(t)$ and $s(t)$ decreases over time. It is not possible for the optimal trajectory to stay on the boundary $Z = Z$ until $S = S_m$, as explained in Section 4.5.5.2, page 67. There exists therefore a point (labeled Y in Figure 4.8) where the trajectory leaves the boundary and enters Phase B.

This particular trajectory is labeled as (II) and represented as a continuous blue line in Figures 4.7 and 4.8.

Phase B A trajectory with initial position $(S(0), Z(0))$ close enough to (S_m, Z) but not too close to the curve $Z = Z_M(S)$ will be in Phase B. In this phase, capture is maximum, and the dynamics of Z is given by $\dot{Z} = \beta S - \alpha Z$. Suppose for instance that $\beta S(0) - \alpha Z(0) < 0$. Then initially, $S(t)$ is increasing and $Z(t)$ is decreasing, until $\beta S = \alpha Z$. Then $Z(t)$ is increasing again. The adjoint variable $\lambda_S(t)$ is decreasing then increasing, and so is the consumption $x(t)$. There happens a time at which $\dot{S} = \zeta x - \beta S$ becomes null then negative, and $S(t)$ decreases. The trajectory ends up at point (S_m, Z) in Phase S. See also Figure 4.4 on page 53.

Some trajectories, as the one labeled (III) in the figures, follow a sequence of phases A/B/S. They do not reach the ceiling $Z = Z$ before the final phase S. The red line in Figure 4.8 is the separatrix of Phase A and Phase B.

Phase L If the initial state $(S(0), Z(0))$ is close to the curve $Z = Z_M(S)$, then consumption x of the nonrenewable resource, as it would be in Phase B, falls below \tilde{y}. Equivalently, λ_S falls below $c_S + (c_B - \tilde{p})/\zeta$. In that case, the trajectory is in Phase L, which is typically inserted between two periods in Phase B. This situation is not represented in Figure 4.9. In Figure 4.7, it corresponds to trajectories of the adjoint variable entering the zone colored in light blue. During this Phase L, $x = 0$ and $y = \tilde{y}$.

Some trajectories, as the one labeled (IV) in the figures, follow a sequence of phases L/B/S.

Phase S All trajectories terminate at the point (S_m, Z), where they stay forever. The values of (λ_Z, λ_S), as well as x, y and s are constant in that phase: they are given in Section 4.1.2. These terminal values correspond to the point marked as P_S in Figure 4.7.

Figure 4.7: Evolution of (λ_Z, λ_S), case $c_s < \hat{c}_s$

Figure 4.8: Evolution of (S, Z), case $c_s < \hat{c}_s$
shadow prices

\[- \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - p}{\zeta} \right) \]

\[-c_s + \frac{p - c_x}{\zeta} \]

Figure 4.9: Evolution of λ_Z, λ_S, x, y and s, case $c_a < \hat{c}_a$
4.5.2 Medium-inf \(c_s \) (\(\hat{c}_s < c_s < c_{sQ} \))

When \(\hat{c}_s < c_s < c_{sQ} \), the situation is represented in Figures 4.11 and Figures 4.14 (for the evolution of \((\lambda_Z(t), \lambda_S(t))\) over time) and 4.12 (for the evolution of \((S(t), Z(t))\) over time). See also Figure 4.10 for the boundary case \(c_s = \hat{c}_s \) and Figure 4.15 for the boundary case \(c_s = c_{sQ} \).

Also relevant to this range of \(c_s \) values is the particular value \(\bar{c}_s \) defined in (3.5.22), which is such that \(\hat{c}_s < \bar{c}_s < c_{sQ} \). This case is represented in Figure 4.13. Relevant results are Lemmas 4.1, 4.9, 4.10, 4.11 and 4.14.

The distinction between cases \(c_s < \bar{c}_s \) (Figure 4.11) and \(c_s > \bar{c}_s \) (Figure 4.14) lies in the geometric position of the point \(\Omega \). When \(c_s = \hat{c}_s \), points \(\Omega \) and \(P_S \) coincide and are located outside the zone labeled as “L” (Figure 4.10). When \(c_s = \bar{c}_s \), the point \(\Omega \) enters this zone, and it lies inside it when \(c_s > \bar{c}_s \). In that case, it becomes geometrically possible for the point \(P_S \) to move on the line \(\gamma = 0 \) to a position where \(\lambda_Z = (c_s - c_p)/\zeta \). However, it does not do so as long as \(c_s < c_{sQ} \). Indeed, the value of \(c_{sQ} \) is defined in Section 4.3.2 on p. 43 as the value of \(c_s \) such that point \(P_S \) is located both on the line \(\gamma = 0 \) and the boundary \(\lambda_Z = (c_s - c_p)/\zeta \).

Figures 4.11 and 4.12 exhibit four trajectories, labeled as (I) to (IV). These trajectories go, respectively through phases A/P, A/Q/P, A/S/Q/P where Phase S is limited to a passage through point \((S_m, \bar{Z})\), and phases A/B/S/Q/P. The possibilities A/B/L/B/S/Q/P and A/L/B/S/Q/P also exist (as explained in Section 4.4.3.2) but are not represented. We now describe these curves.

A typical trajectory starting with a moderate value of \(S(0) \) (labeled as (II)) has the following features.

Phase A It starts in the interior of the domain in Phase A. The evolution of \((\lambda_Z(t), \lambda_S(t))\) is that of the “free” trajectories (3.2.4)–(3.2.5). While \(\lambda_Z \) always decreases, \(\lambda_S \) decreases, then increases again.

Phase Q If the initial value of \(S \) is large enough, the value of \(\gamma(t) = \lambda_S(t) - \lambda_Z(t) - c_s \), which is negative in Phase A, eventually vanishes. At that moment, the value of \(Z(t) \) hits the ceiling \(\bar{Z} \). The trajectory then continues in Phase Q: atmospheric stock at the ceiling, with some capture \(s(t) \).

![Figure 4.10: Evolution of \((\lambda_Z, \lambda_S)\), case \(c_s = \hat{c}_s \)](image)
The situation is represented in Figure 4.16 for adjoint variables and Figure 4.17 for state variables. At that location, we have simultaneously $\lambda_S = 0$ and $\lambda_Z = (c_x - \bar{p})/\zeta$, corresponding to a consumption of \bar{F} (see also Figure 4.1).

Eventually, the value of $s(t)$ vanishes and the trajectory enters Phase P.

Phase P

Phase P is terminal: the states move asymptotically to point $(0, \bar{F})$; the adjoint variables move to the point materialized as P_∞. At that location, we have simultaneously $\lambda_S = 0$ and $\lambda_Z = (c_x - \bar{p})/\zeta$, corresponding to a consumption of \bar{F} (see also Figure 4.1).

The dashed line which passes through P_{QP} and P_∞ in Figure 4.11 is the trajectory of the adjoint variables in Phase P, which is actually independent of c_x. It need not be a straight line in general, but it is indeed so in the “linear-quadratic” case developed in Appendix E.

A trajectory which starts with smaller values of $S(0)$ (labeled as (I) on the figures) will follow Phase A in the interior of the domain, but will enter directly Phase P. At the contact point with the boundary $Z = Z$, the trajectory is tangent, as explained in Appendix D and Section 4.4.2.1.

On the other hand, a trajectory starting with a large value of $S(0)$ (labeled as (IV) on the figures) will get close to the boundary $Z = Z_M(S)$ and has the following features.

Phase A

It starts in the interior of the domain in Phase A as before. However, either λ_Z reaches the critical value $(c_x - c_y)/\zeta$ or λ_S reaches the critical value $c_x + (c_x - c_y)/\zeta$. In the first event, the trajectory enters Phase L; in the second event, it enters directly Phase B.

Phase L

Consumption $x(t)$ falls below the level \bar{y}. Consistent with Lemma 3.2 on page 23, it becomes optimal to set $x = 0$ and consume $y(t) = \bar{y}$. The state variables evolve along “free” trajectories, as well as adjoint variables. Eventually, $\gamma(t)$ becomes positive and λ_S increases to become equal to $c_x + (c_x - c_y)/\zeta$. At that moment, the trajectory enters Phase B.

Phase B

Capture $s(t) = \zeta x(t)$ is maximal. This piece of trajectory ends up at point (S_m, \bar{F}) with a value of $\lambda_S = (c_x - \bar{p})/\zeta$ corresponding to a consumption $x = \bar{F}$. The value of λ_Z however depends on the trajectory. The smaller it is, the closer the trajectory gets to the limit $Z = Z_M(S)$.

Phases Q and P

From the point (S_m, \bar{F}), the trajectory enters Phase Q. There is a discontinuity in the value of λ_Z (represented as a thin line in Figure 4.11) so that $\gamma(t) = \lambda_S(t) - \lambda_Z(t) - c_s$, which is negative in Phase B, becomes null in Phase Q. The evolution is similar to the situation described previously. Eventually, the value of $s(t)$ vanishes and the trajectory enters terminal Phase P.

One particular trajectory (labeled as (III) on the figures) joins with the boundary precisely at point (S_m, \bar{F}). On this trajectory, the adjoint variables are continuous.

4.5.3 Medium-sup c_s $(c_s Q < c_s < c_{sm})$

The situation is represented in Figure 4.16 for adjoint variables and Figure 4.17 for state variables. In that case, the point P_S is located on the boundary $\lambda_Z = (c_x - \bar{p})/\zeta$ of the zone L, which corresponds to the fact that a Phase R appears on the boundary $Z = Z$. In Figure 4.16, a point P_{RQ} appears. Relevant results are Lemmas 4.1, 4.9, 4.10, 4.11, 4.12 and 4.13.

In that case, the scenario above is modified as follows, for initial values of S large enough:

Phase A

ends when λ_Z reaches $(c_y - c_x)/\zeta$ first. At that moment, $Z(t)$ reaches $Z_M(S(t))$ and consumption $x(t)$ reaches \bar{y}. Depending on whether $S(t)$ is larger or smaller than S_m, the trajectory continues in Phase U, or one of Phases R, Q or P, respectively.

Phase U

The trajectory continues along $Z = Z_M(S)$ with $x = 0$ and $y = \bar{y}$. The value of λ_S is increasing and λ_Z is constant at $(c_y - c_x)/\zeta$. The point $(\lambda_Z(t), \lambda_S(t))$ therefore moves up in Figure 4.16 on the line $\lambda_Z = (c_y - c_x)/\zeta$. The state trajectory eventually reaches (S_m, \bar{F}). The location of (λ_Z, λ_S) corresponding to this time instant is labeled as P_S in Figure 4.16.
Figure 4.11: Evolution of (λ_Z, λ_S), case $\lambda_s \leq c_s \leq \bar{c}_s$

Figure 4.12: Evolution of (S, Z), case $\lambda_s \leq c_s \leq c_{sQ}$
Phase R The trajectory in Phase R has been described in Figure 4.1: as S decreases from S_m to S_p, consumption γ increases from 0 to $\hat{\gamma}$ while y decreases from \hat{y} to 0, their sum being always $x+y=\hat{y}$. The point $(\lambda_Z(t),\lambda_S(t))$ continues to move up on the line $\lambda_Z = (c_y-c_z)/\zeta$. Eventually, $\gamma(t)=0$ and the trajectory enters Phase Q at point (S_R^Q,Z), see Figure 4.1.

Phases Q and P It becomes optimal to use capture. As $S(t)$ decreases, capture $s(t)$ decreases also and eventually vanishes: the trajectory enters terminal Phase P at point (S^{QP},Z).

See Figure 4.15 for the boundary case $c_s = c_{sQ}$. In this last case, the points P_S (which is also P_{UR}) and P_{RQ} coincide. Phase R just vanishes.

4.5.4 Large c_s ($c_s \geq c_{sm}$)

When $c_s > c_{sm}$, Phase Q disappears completely, as well as Phase B. Actually, capture is so expensive in this case that $s(t)=0$ at all times. The model is equivalent to one where capture is not possible at all.

The situation is represented in Figures 4.19 (for the evolution of $(\lambda_Z(t),\lambda_S(t))$ over time) and 4.20 (for the evolution of $(S(t),Z(t))$ over time). See also Figure 4.18 for the boundary case $c_s = c_{sm}$. Relevant results are Lemmas 4.1, 4.8, 4.10, 4.12 and 4.13.

The description of a typical trajectory is quite similar to the case $c_{sQ} < c_s < c_{sm}$ (“medium-sup c_s”), except that there is no Phase Q. When in Phase R, as S decreases from S_m to S_p, consumption γ increases from 0 to $\hat{\gamma}$ while y decreases from \hat{y} to 0, their sum being always $x+y=\hat{y}$. The trajectory then continues in Phase P as before.

Trajectories starting from smaller values of $S(0)$ will have a succession of phases A/R/P or just A/P.

4.5.5 Direct arguments for the case $c_s \leq \hat{c}_s$

This section gathers additional observations on the case where c_s is small. This is the case where Phase S is the terminal phase, and we develop in Section 4.5.5.1 an elementary argument for this
Figure 4.14: Evolution of (λ_Z, λ_S), case $c_x \leq c_s \leq c_{\#Q}$

Figure 4.15: Evolution of (λ_Z, λ_S), case $c_s = c_{\#Q}$
Figure 4.16: Evolution of λ_Z and λ_S, case $c_{aQ} \leq c_s \leq c_{am}$

Figure 4.17: Evolution of (S, Z), case $c_{aQ} \leq c_s \leq c_{am}$
4.5.5.1 An interpretation of threshold \(\hat{c}_s \) through a perturbation analysis

An interpretation of the value \(\hat{c}_s \) derives from a local perturbation of trajectories close to the point \((S_m, Z)\), as follows.

Consider the reference situation where \(Z(t) = Z, S(t) = S_m, x(t) = \bar{x} \text{ and } s(t) = \zeta X \) (see Section 4.1.2). Assume that on the time interval \([0, \Delta t]\), the consumption is modified into \(x(t) = \bar{x} - \Delta x \) (constant over time) and the capture computed so that the constraint \(Z(t) = Z \) still holds. Then since \(\dot{Z} = 0 \), we must have:

\[
0 = -\alpha Z + \beta S(t) + \zeta (\bar{x} - \Delta x) - s(t) \implies s(t) = \beta S(t) - \zeta \Delta x.
\]

As a consequence, we have \(\dot{S} = -\beta S + s = -\zeta \Delta x \) is constant on the interval, and \(S(t) = S_m - \zeta \Delta x \).

On interval \([\Delta t, \infty)\), capture is restored to the nominal level \(\zeta \bar{x} \), and consumption is such that \(Z = Z \): it is therefore

\[
x(t) = \bar{x} + (S_m - S(t))/\zeta.
\]

As a consequence, \(\dot{S} = \beta (S_m - S) \) on the interval, and \(S(t) = S_m + (\beta \Delta t - S_m) e^{-\beta (t-\Delta t)} = S_m - \zeta \Delta x \Delta t e^{-\beta (t-\Delta t)} \).

On the interval \([0, \Delta t]\), the difference in the sum of discounted net surplus between both trajectories is

\[
D_1 = \int_0^{\Delta t} e^{-\rho t}[u(\bar{x}) - u(\bar{x} - \Delta x) - c_x \Delta x - c_s (\zeta \bar{x} - \beta S(t) + \zeta \Delta x)]dt
\]

\[
= \frac{1}{\rho} e^{-\rho \Delta t}[u(\bar{x}) - u(\bar{x} - \Delta x) - (c_x + \zeta c_s) \Delta x] - \frac{c_s}{\rho} \int_0^{\Delta t} e^{-\rho t} \beta (S_m - S(t))dt
\]

(see elementary in the sense that it does not use adjoint variables). It is also the situation where optimal trajectories may leave the boundary \(Z = Z \), and we develop an argument for this in Sections 4.5.5.2 and 4.5.5.3.
\[
\lambda_S = 0
\]
\[
c_s + \frac{c_x - c_y}{\zeta} = 0
\]
\[
\dot{\lambda}_S > 0
\]
\[
\dot{\lambda}_S < 0
\]

Figure 4.19: Evolution of \((\lambda_Z, \lambda_S)\), case \(c_s \geq c_{sm}\)

\[
Z = Z
s = 0
y = 0
\]
\[
Z = Z
s = 0
x + y = \tilde{y}
\]
\[
Z < Z(S)
S = 0
y = 0
\]
\[
Z = Z(Z)
x = 0, s = 0
y = \tilde{y}
\]

Figure 4.20: Evolution of \((S, Z)\), case \(c_s \geq c_{sm}\)
\[1 - e^{-\rho \Delta t} = \frac{1}{\rho} \left[u(x) - u(x - \Delta x) - (c_x + \zeta c_x)\Delta x \right] - \beta c_x \zeta \Delta x \int_0^{\Delta t} te^{-\rho s} \, ds. \]

On the interval \([\Delta t, \infty)\), this difference is:

\[D_2 = \int_0^{\Delta t} e^{-\rho s} \left[u(x) - u(x + \beta(S_m - S(t))/\zeta) + c_x \beta(S_m - S(t))/\zeta \right] \, ds \]

\[= \int_0^{\Delta t} e^{-\rho s} \left[u(x) - u(x + \beta \Delta t \Delta x e^{-\beta(t-\Delta t)}) + \beta c_x \Delta t \Delta x e^{-\beta(t-\Delta t)} \right] \, ds. \]

When \(\Delta t\) tends to 0, we have

\[D_2 = \int_0^{\Delta t} e^{-\rho s} \left[-\beta \beta \Delta t \Delta x e^{-\beta(t-\Delta t)} + \beta c_x \Delta t \Delta x e^{-\beta(t-\Delta t)} \right] \, ds + o(\Delta t) \]

\[= \frac{\beta}{\rho + \beta} \Delta t \Delta x (c_x - \bar{p}) + o(\Delta t). \]

On the other hand, assuming that \(\Delta x\) is also small,

\[D_1 = \int_0^{\Delta t} \left[u(x) - u(x - \Delta x) - (c_x + \zeta c_x)\Delta x \right] \, ds + o(\Delta t) \]

\[= \left[\int_0^{\Delta t} \left[u(x - \Delta x) - (c_x + \zeta c_x)\Delta x + o(\Delta x) \right] \, ds + o(\Delta t) \right] \]

\[= \left[(p - c_x - \zeta c_x)\Delta x + o(\Delta x) \right] \Delta t + o(\Delta t). \]

If the reference trajectory is optimal, then \(D_1 + D_2\) must be positive. Asymptotically when \(\Delta t\) and \(\Delta x\) tend to 0, this means:

\[0 \leq \frac{\beta}{\rho + \beta} \Delta t \Delta x (c_x - \bar{p}) = \Delta t \Delta x (\hat{c}_x - c_x). \]

The value of \(\Delta t\) has been chosen positive, and the value of \(\Delta x\) must be positive also: otherwise the trajectory would not be admissible. We conclude that necessarily, \(c_x \leq \hat{c}_x\).

4.5.5.2 Non-optimality of joining Phase Q and Phase S: a necessity argument

In this paragraph, we develop the argument that no optimal trajectory consists in Phase Q joining Phase S. We have seen that Phase S may be terminal only if \(c_x \leq \hat{c}_x\). Moreover, we know that if \(c_x = \hat{c}_x\), every point \((S, Z)\) with \(S \leq S_m\) is stationary, so that Phase Q cannot be followed by Phase S. We therefore assume that \(c_x < \hat{c}_x\).

The argument is based on the fact that when the adjoint variables of optimal trajectories have jumps, the sign of these jumps is related to the constraints that become binding or cease to be so. A relevant result is (4.19) in Sethi & Thompson (2000, p. 107), which provides necessary conditions for an optimal trajectory. This theorem applies to pure state constraints \(g(x) \geq 0\) (we use the notation of Section 2.1 instead of that of Sethi & Thompson (2000)), with \(g\) “as many times continuously differentiable as necessary”. It states that there must exist a vector of costate variables \(p(\cdot)\) and a positive function \(\zeta(\cdot)\) such that in particular, at each entry or contact time \(\tau\) of an optimal trajectory with the constraint \(g(\cdot)\), the “jump condition” (see (2.3.18)) is:

\[p_t(\tau^-) - p_t(\tau^+) = \zeta(\tau) \frac{\partial g}{\partial x_i}(x(\tau)). \]

We can apply the theorem to the constraint \(g(S, Z) := Z - S \geq 0\) which is \(C^\infty\). Consider an optimal trajectory with initial condition \((S^0, Z)\) at some arbitrary time \(t_0\), with \(S^0 < S_m\). Let \(t^{QS}\) be such that \(S(t^{QS}) < S_m\). Since the constraint is \(g(S, Z) \geq 0\) then there exits \(\beta := \zeta(t^{QS}) \geq 0\) such that:

\[\lambda_S(t^{QS}) - \lambda_S(t^{QS}) = \beta \frac{\partial g}{\partial S}(S(t^{QS}), Z(t^{QS})) = 0. \]
\[\lambda_Z(t^{QS-}) - \lambda_Z(t^{QS}) = \beta \frac{\partial y}{\partial Z}(s(t^{QS}), Z(t^{QS})) = -\beta. \]

The function \(\lambda_Z \) *must* therefore be continuous at \(t = t^{QS} \). However, we have the possibility that \(\lambda_Z \) has a jump, with:

\[\lambda_Z(t^{QS-}) - \lambda_Z(t^{QS}) \leq 0. \] \hspace{1cm} (4.5.1)

On the other hand, we have in Phase Q:

\[\lambda_Z(t^{QS-}) - \lambda_S(t^{QS-}) + c_s = \lambda_Z(t^{QS-}) - \lambda_S(t^{QS-}) + c_s = 0. \] \hspace{1cm} (4.5.2)

In Phase S, given the values (4.1.15) and (4.1.16), we have:

\[\lambda_Z(t^{QS+}) - \lambda_S(t^{QS+}) + c_s = \lambda_Z(t^{QS+}) - \lambda_S(t^{QS+}) + c_s = \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - p}{\zeta} \right) = \frac{\rho + \beta}{\beta} \left(c_s - \hat{c}_s \right). \] \hspace{1cm} (4.5.3)

However, using the continuity of \(\lambda_S(t) \) in (4.5.2) and (4.5.3) we obtain, by difference,

\[\lambda_Z(t^{QS-}) - \lambda_Z(t^{QS+}) = -\frac{\rho + \beta}{\beta} (c_s - \hat{c}_s) > 0, \]

a contradiction with (4.5.1). Such an optimal trajectory cannot exist.

4.5.5.3 Non-optimality of joining Phase Q and Phase S: a comparison argument

In this section, we provide an argument for the non-optimality of a trajectory following the ceiling \(Z = Z \), through the comparison of trajectories.

Specifically, we evaluate the value \(V^Q(S^0) \) of a trajectory constrained to stay on \(Z = Z \), starting from some \(S = S^0 < S_m \) and ending in \(S = S_m \), and optimal within this set of constraints. Next, we evaluate the value \(V^C(S^0) \) of a specifically constructed trajectory, also starting from \(S = S^0 \) and ending in \(S = S_m \), but which behaves much like trajectories in Phase B, without being necessarily optimal. When \(S^0 \) is close to \(S_m \), we arrive at the following asymptotic expansions:

\[V^Q(S^0) = V(S_m) + \lambda_S(S^0 - S_m) + O((S_m - S^0)^{3/2}) \]
\[V^C(S^0) = \lambda_S(S^0 - S_m) + O((S_m - S^0)^{3/2}) \]

where \(\lambda_S = c_x + (c_x - p)/\zeta \) and \(O(Q) = O(S_m - S^0)^{3/2} \) is asymptotically smaller than \((S_m - S^0)^{3/2} \) when \(S^0 \to S_m \), it follows that there exists a range of values for \(S^0 \) such that \(V^C(S^0) > V^Q(S^0) \). Indeed, from the expressions above, we have, as \(S^0 \to S_m \),

\[V^C(S^0) - V^Q(S^0) = -O(Q)(S_m - S^0)^{3/2} + O((S_m - S^0)^{3/2}) \]

The term in brackets is necessarily strictly positive on some interval for \(S^0 \). For initial values of \(S^0 \) in this interval, the trajectory in Phase Q is outperformed by the special trajectory “C”.

Preliminary: value of a trajectory. All trajectories considered in this paragraph start from some state \((S^0, Z) \) at time \(t^0 \), and eventually reach the state \((S_m, Z) \) at time \(T \). The value of this trajectory is then:

\[V(S^0) = \int_{t^0}^T \left[u(x(t)) - c_x x(t) - c_s s(t) \right] e^{-\rho(t-t^0)} dt + e^{-\rho(T-t^0)} \frac{u(x(T)) - (c_x + \zeta c_s) x(T)}{\rho} \]
\[
= \int_0^T \left[u(x(t)) - u(\overline{x}) - c_x(x(t) - \overline{x}) - c_s(s(t) - \overline{\zeta}) \right] e^{-\alpha(t-\overline{t})} dt + \frac{u(\overline{x}) - (c_x + \zeta c_s)\overline{x}}{\rho} \\
= V(S_m) + \int_0^T \left[u(x(t)) - u(\overline{x}) - c_x(x(t) - \overline{x}) - c_s(s(t) - \overline{\zeta}) \right] e^{-\alpha(t-\overline{t})} dt. \tag{4.5.6}
\]

The value \(V(S_m)\) of state \((S_m, \overline{Z})\) is the same for all trajectories.

Optimal trajectory on the ceiling. Finding the optimal control when the constraint \(Z = \overline{Z}\) is enforced is the topic of Appendix C.1.3 on page 95.

The value of an optimal trajectory is given by (cf. (4.5.6)):
\[
V^{(O)}(S^0) = V(S_m) + h(\overline{t})
\]

where
\[
h(\overline{t}) = \int_0^T \left[u(x(t)) - u(\overline{x}) - (c_x + \zeta c_s)(x(t) - \overline{x}) + \beta c_s(S_m - S(t)) \right] e^{-\alpha(t-\overline{t})} dt. \tag{4.5.7}
\]

The difficulty is that the value is expressed as a function of \(t^0\) and we need it as a function of \(S^0\). The relationship between both variables is not explicit: we will need to approximately express \(S^0\) as a function of \(t^0\) when \(t^0\) is close to \(T\).

We first expand \(h(\cdot)\) as a Taylor series at \(t^0 = T\). Differentiating, we get successively:
\[
h'(t) = -[u(x(t)) - u(\overline{x}) - (c_x + \zeta c_s)(x(t) - \overline{x}) + \beta c_s(S_m - S(t))] + \rho h(t) \\
h''(t) = -\left[\dot{\zeta}(t) u'(x(t)) - (c_x + \zeta c_s)\dot{\zeta}(t) - \beta c_s \dot{S}(t)\right] + \rho h'(t) \\
h'''(t) = -\left[\dot{\zeta}(t) u'(x(t)) + (\dot{\zeta}(t))^2 u''(x(t)) - (c_x + \zeta c_s)\ddot{\zeta}(t) - \beta c_s \ddot{S}(t)\right] + \rho h''(t).
\]

Since \(x(T) = \overline{x}\), and \(\dot{\zeta} = \zeta(x - \overline{x})\), these derivatives evaluate at \(t^0 = T\) to:
\[
h(T) = 0 \\
h'(T) = -[\dot{\zeta}(T) \overline{p} - (c_x + \zeta c_s)\dot{\zeta}(T)] = \zeta_S(S) \dot{\zeta}(T) \\
h''(T) = -[\dot{\zeta}(T) \overline{p} + (\dot{\zeta}(T))^2 u''(\overline{x}) - (c_x + \zeta c_s)\ddot{\zeta}(T) - \beta c_s \ddot{S}(T)] + \rho h'(T) \\
= \zeta_S(S) \ddot{\zeta}(T) + \dot{\zeta}(T) \left(-\dot{\zeta}(T) u''(\overline{x}) + \zeta(\beta c_s + \rho \zeta_S(S))\right).
\]

The Taylor expansion of \(h(\cdot)\) writes then as:
\[
h(t^0) = \frac{1}{2} \zeta_S(S) \dot{\zeta}(T)(t^0 - T)^2 + \frac{1}{6} \zeta_S(S) \ddot{\zeta}(T)(t^0 - T)^3 \\
+ \frac{1}{6} \dot{\zeta}(T) \left(-\dot{\zeta}(T) u''(\overline{x}) + \zeta(\beta c_s + \rho \zeta_S(S))\right)(t^0 - T)^3 + O((t^0 - T)^4). \tag{4.5.8}
\]

Using again the fact that \(\dot{\zeta} = \zeta(x - \overline{x})\), a Taylor expansion for \(S(t^0)\) is:
\[
S(t^0) = S_m + \frac{1}{2} \dot{\zeta}(T)(t^0 - T)^2 + \frac{1}{6} \ddot{\zeta}(T)(t^0 - T)^3 + O((t^0 - T)^4). \tag{4.5.9}
\]

Substituting (4.5.9) into (4.5.8), we get:
\[
h(t^0) = \lambda_S(S(t^0) - S_m) + \frac{1}{6} \dot{\zeta}(T) \left(-\dot{\zeta}(T) u''(\overline{x}) + \zeta(\beta c_s + \rho \zeta_S(S))\right)(t^0 - T)^3 + O((t^0 - T)^4). \tag{4.5.10}
\]

The value of \(\dot{\zeta}(T)\) is obtained from (C.1.13) and (C.1.14) as:
\[
\dot{\zeta}(T) = -\zeta \dot{\mu}_S(T)(q^0)'(c_x + \zeta c_s - \mu_S(T)) = -\zeta \rho \left(\lambda_S(S) + \frac{\beta c_s}{\rho}\right)(q^0)'(\overline{p})
\]

69
\[= \frac{\zeta}{W} (\rho \lambda^{(S)} + \beta \epsilon) = \frac{\zeta}{W} (\rho + \beta)(c_s - \epsilon). \]

We have introduced the notation \(W = -u'^2(\xi) = -1/(q^2)'(\xi) \). By assumption on \(u(t) \), \(W > 0 \). Since \(\epsilon < \epsilon_0 \) by assumption, we have \(\dot{\epsilon}(T) < 0 \).

On the other hand, from (4.5.9), we can solve “approximately” this equation for \(\theta^0 \) as a function of \(S^0 = S(\theta^0) \). We obtain, remembering that \(\theta^0 - T = 0 \) and since \(\dot{\epsilon}(T) < 0 \):

\[\theta^0 - T = -\sqrt{-\frac{2(S_m - S^0)}{\dot{\epsilon}(T)(1 + o(1))}}. \]

When replaced in (4.5.10), we obtain after simplification:

\[h(\theta^0(S^0)) = -\lambda^{(S)}(S_m - S^0) - \frac{1}{6} \dot{\epsilon}(T) 2W \dot{\epsilon}(T) \left(-\frac{2(S_m - S^0)}{\dot{\epsilon}(T)} \right)^{3/2} (1 + o(1)) \]

\[= -\lambda^{(S)}(S_m - S^0) - \frac{2}{3\lambda^{(S)}} (2W(\rho + \beta)(\epsilon - \epsilon_0))^{1/2} (S_m - S^0)^{3/2}(1 + o(1)). \]

Summing up, we have proved the expansion (4.5.4) with the constant

\[\alpha^{(S)} = -\frac{2}{3\lambda^{(S)}} (2W(\rho + \beta)(\epsilon - \epsilon_0))^{1/2} \]

which is strictly negative as announced.

A trajectory leaving the ceiling. We now construct and analyze a specific trajectory generated by a control as in Phase B, that is, where \(s(t) = \xi(t) \). Throughout the computations, we repeatedly use the identity \(\alpha Z = \beta S_m = \xi \). We start with the choice of \(Z(t) \) and we successively deduce \(S(t) \) and \(s(t) = \xi(t) \). We begin with defining:

\[\varepsilon = S_m - S^0 \quad u_0 = \left(\frac{24W\varepsilon}{(\xi^2(\rho + \alpha)(\rho + \beta)\lambda^{(S)})} \right)^{1/3}, \]

a negative time value since \(\lambda^{(S)} < 0 \). Then, define, for \(u \in [u_0, 0] \):

\[Z(T + u) = Z + \frac{\varepsilon}{u_0^2} u^3 \left(1 - \frac{u}{u_0} \right). \]

Clearly, \(Z(T + u_0) = Z(T) = Z \). On the interval \(u \in [u_0, 0] \), \(Z(T + u) \leq Z \). Since \(\varepsilon/u_0^3 \) is of order \(\varepsilon^{1/3} \), the function \(Z(\varepsilon) \) is positive on the interval \([u_0, 0] \) when \(\varepsilon \) is sufficiently small. According to the dynamics of \(Z(t) \), we must have

\[\beta S(T + u) = \dot{Z}(T + u) + \alpha Z(T + u) = \beta S_m + \frac{\varepsilon u^2}{u_0^3} (3u_0 - (4 - \alpha u_0)u - \alpha u^2) \]

It is readily verified that \(S(T + u_0) = S^0 \) and \(S(T) = S_m \).

Next, the dynamics on \(S \) provide the value of the control \(s \):

\[s(T + u) = S(T + u) + \beta S(T + u) \]

\[= \xi + \frac{\varepsilon u}{u_0^2} (6u_0 - 12u + 3(\alpha + \beta)u_0u - \beta(4 - \alpha u_0)u^2 - 4\alpha u^2 - \alpha u^2) \]

Since \(u \in [u_0, 0] \) and \(u_0 \) is of order \(\varepsilon^{1/3} \), it follows that the term in parentheses can be made as small as needed by a proper choice of \(\varepsilon \). Therefore, for \(\varepsilon \) sufficiently close to 0, the function \(s(T + u) \) is positive for \(u \in [u_0, 0] \) and the control is admissible.
At this point, we have verified that the proposed trajectory is feasible: it stays in the domain of constraints, and the control associated to it is valid. Moreover, it starts in state \((S^0, \bar{Z})\) at time \(t^0 = T + u_0\) and ends up in state \((S_m, Z)\) at time \(T\).

We now turn to the evaluation of the value \(V^{(C)}(S^0)\) of this trajectory. It is (cf. (4.5.6)):

\[
V^{(C)}(S^0) = V(S_m) + h(t^0)
\]

where \(t^0 = T + u_0\) and

\[
h(t^0) = \int_{t^0}^T [u(x(t)) - u(\bar{x}) - (c_2 + \xi c_3)(x(t) - \bar{x})] e^{-\rho(t-t^0)} \, dt.
\]

Computing the Taylor expansion of \(h(\bullet)\) turns out to be cumbersome, because an expansion to order 5 is necessary. We use a different approach, after a small preparation aimed at shortening later computations. Let us introduce the function \(u_2\) such that:

\[
u(x) = u(\bar{x}) - \nu(x - \bar{x}) = u_2(x).
\]

Note that \(\bar{p} = u'(\bar{x})\). Replacing in the expression for \(h(t^0)\), we obtain successively,

\[
h(t^0) = \int_{t^0}^T [u_2(x(t)) + (\bar{p} - c_2 - \xi c_3)(x(t) - \bar{x})] e^{-\rho(t-t^0)} \, dt
\]

\[
= \int_{t^0}^T [u_2(x(t)) - \chi_S^S \xi(s(t) - \bar{x})] e^{-\rho(t-t^0)} \, dt
\]

\[
= \int_{t^0}^T [u_2(x(t)) - \chi_S^S \hat{S}(t) - \chi_S^S \beta_t(S(t) - S_m)] e^{-\rho(t-t^0)} \, dt.
\]

(4.5.12)

In the last expression, we have used the fact that \(s = \hat{S} + \beta S\), which implies \(s - \xi \bar{x} = \hat{S} + \beta(S - S_m)\).

Integrating by parts, we have:

\[
\int_{t^0}^T \hat{S}(t) e^{-\rho(t-t^0)} \, dt = S_m - S^0 + \rho \int_{t^0}^T (S(t) - S_m) e^{-\rho(t-t^0)} \, dt.
\]

(4.5.13)

In the same vein, we have the following property, which we shall use later:

\[
\int_{t^0}^T \hat{Z}(t) e^{-\rho(t-t^0)} \, dt = \rho \int_{t^0}^T (Z(t) - Z) e^{-\rho(t-t^0)} \, dt.
\]

(4.5.14)

Replacing in (4.5.12), we obtain the new expression:

\[
h(t^0) = \chi_S^S (S^0 - S_m) + \int_{t^0}^T u_2(x(t)) e^{-\rho(t-t^0)} \, dt - (\rho + \beta) \chi_S^S \int_{t^0}^T (S(t) - S_m) e^{-\rho(t-t^0)} \, dt.
\]

We now proceed with the expansion of the integrals in this expression as \(\varepsilon \to 0\), remembering that \(\nu_0 = u^0 - T\) is of order \(\varepsilon^{1/3}\). First, since \(u_2(x) = -(W/2)(x - \bar{x})^2 + O((x - \bar{x})^3)\), we get:

\[
\int_{t^0}^T u_2(x(t)) e^{-\rho(t-t^0)} \, dt
\]

\[
= -\frac{W}{2\varepsilon^2} \int_{u_0}^0 \left[(s(T + u) - \bar{x})^2 + O((s(T + u) - \bar{x})^3)\right] e^{-\rho(u-u_0)} \, du
\]

\[
= -\frac{W}{2\varepsilon^2} \int_{u_0}^T \varepsilon^2 36u^2(u_0 - 2u + O(u_0^3))^2 e^{-\rho(u-u_0)} \, du
\]

\[
= -\frac{W}{2\varepsilon^2} \int_{u_0}^T \left(-24 \frac{5}{3} u_0^2 + O(u_0^3)\right) e^{-\rho(u-u_0)} \, du = \frac{12W}{5\varepsilon^2} \left(-24 \frac{5}{3} u_0^2 + O(u_0^3)\right).
\]

71
For the second integral, from the value of \(S(t) \) we have:

\[
\int_0^T (S(t) - S_m)c^{-\rho(t-u)}dt \\
= \int_0^T \frac{1}{\beta}(Z(t) + \alpha(Z(t) - \bar{Z}))c^{-\rho(t-u)}du \\
= \frac{\rho + \alpha}{\beta} \int_0^U (Z(T + u) - \bar{Z})c^{-\rho(u-u_0)}du \\
= (\rho + \alpha) \frac{1}{\beta} \int_{u_0}^U u^3\left(1 - \frac{u}{u_0}\right)c^{-\rho(u-u_0)}du \\
= -\frac{\rho + \alpha}{20} u_0^2 + O(\varepsilon^2).
\]

We have used (4.5.14) in the derivation. Gathering the different parts and replacing \(u_0 \) with \(-L^{1/3}\) and \(\varepsilon \) with \(S_m - S^0 \), we obtain:

\[
V_C(S^0) = V(S_m) + \lambda_S(S^0 - S_m) + \left(\rho + \alpha\right) \lambda_S\left(\frac{L^2}{20} - \frac{12W}{5\varepsilon^2L}\right) \left(S_m - S^0\right)^{5/3} + O((S_m - S^0)^2).
\]

This expansion is the one announced in (4.5.5) with the term \(O((S_m - S^0)^{5/3}) \) made more precise.

Final comments. Some observations resulting from the analysis:

1. The time each trajectory takes to reach the final state is expressed as a function of \(\varepsilon = S_m - S^0 \). When the ceiling is followed, we have \(T - T_0 = O(\varepsilon^{1/2}) \), whereas for the constructed trajectory, \(T - T_0 = O(\varepsilon^{1/3}) \). This last trajectory takes therefore more time to reach the final state, during which slightly more utility is accrued.

2. Using the function \(u_0 \) is also possible in the analysis of Phase Q trajectories. Introducing it in (4.5.7), we write successively, with (4.5.13),

\[
h^{(\rho)} = \int_{u_0}^T \left[u_2(x(t)) + (\beta c_x - \zeta c)\left(x(t) - \bar{x}\right) + \beta c_x(S_m - S(t))\right]c^{-\rho(t-u)}dt \\
= \int_{u_0}^T \left[u_2(x(t)) - \lambda_S(S^0 - S_m) + \beta c_x(S_m - S(t))\right]c^{-\rho(t-u)}dt \\
= \lambda_S(S^0 - S_m) + \int_{u_0}^T \left[u_2(x(t)) + \left(\beta c_x + \zeta c\right)(S_m - S(t))\right]c^{-\rho(t-u)}dt.
\]

A Taylor expansion of the integral leads to (4.4.3).

3. We have selected the relationship between \(u_0 \) and \(\varepsilon \) as \(u_0 = -L^{1/3} \), being guided by the analysis of Phase B in Appendix D.2.2. Alternately, one may choose a general relationship \(u_0 = -C\varepsilon^7 \), and conclude that the optimal choice of parameters is \(\gamma = 1/3 \) and \(C = L \) as above.

4.6 Extensions and concluding remarks

We conclude this analysis with several comments related to particular values, limiting cases or extensions of the results.

4.6.1 Finite storage capacity

If the sequestered stock is assumed to have a maximal capacity \(S \), additional phases appear when \(S = S \). Assume that \(S > 0 \) so that sequestration is effectively possible. We briefly sketch the construction of solutions in this case, under the condition \(c_x \leq \hat{c}_x \). When \(c_x > \hat{c}_x \), optimal trajectories are obtained by simply restricting the trajectories previously obtained to \(S \leq S \).

Indeed, it turns out that \(S(t) \) is monotonously decreasing on every optimal trajectory.
Using the dynamics (2.3.11) and (2.3.10), we get:

\[s = \beta S, \quad x = \frac{\alpha Z}{\zeta}. \]

Since we must have \(s \leq \zeta x \), this is possible only when \(\beta S \leq \alpha Z \). Imposing \(\dot{\lambda}_Z = \dot{\lambda}_S = 0 \), we get \(\nu_Z = - (\rho + \alpha) \lambda_Z \) and \((\rho + \beta) \lambda_S = \beta \lambda_Z \). If the stationary point is such that \(Z < \bar{Z} \), then \(\nu_Z = 0 \) and \(\lambda_Z = \lambda_S = 0 \). This cannot satisfy the first-order conditions.

Therefore, when \(\bar{S} \leq S_m \), the point \((\bar{S}, \bar{Z})\) is the only candidate stationary point. From the state dynamics (2.2.2), we get the constant consumption and capture values:

\[s = \bar{s} := \beta \bar{S}, \quad x = \bar{x}. \]

We have indeed \(\bar{S} \leq \bar{Z} \), with equality if and only if \(\bar{S} = S_m \).

In the case \(0 < \bar{S} < S_m \), inequality is strict and we have \(\gamma_s = \gamma_{ax} = 0 \). Consequently, from (2.3.3) then (2.3.2), assuming \(y = 0 \), we obtain the constant values for the costate variables:

\[\lambda_S = c_s + \frac{c_x - p}{\zeta}, \quad \lambda_Z = \frac{c_x - p}{\zeta}. \]

From (2.3.7), we obtain \(\gamma_y = c_y - p \) positive by assumption.

Finally, the value of \(\nu_S \) is obtained from (2.3.14) as:

\[\nu_S = \beta \lambda_Z - (\rho + \beta) \lambda_S = - \rho \left(\frac{c_x - p}{\zeta} \right) - (\rho + \beta) c_s = (\rho + \beta) (\bar{c}_s - c_s) \]

and \(\nu_S \geq 0 \) under the condition \(c_s \leq \bar{c}_s \).

However, in the case \(\bar{S} = S_m \), \(\gamma_s = 0 \) but \(\gamma_{ax} \) is possibly a positive number. From first-order conditions (2.3.3) then (2.3.2) we obtain:

\[\lambda_S = c_s + \frac{c_x - p}{\zeta}, \quad \lambda_Z = \frac{c_x - p}{\zeta} - \gamma_{ax}, \]

The dynamics (2.3.11) of \(\lambda_S \) imply:

\[0 = (\rho + \beta) \lambda_S - \beta \lambda_Z + \nu_S \quad \implies \quad \nu_S = \beta \lambda_Z - (\rho + \beta) \lambda_S. \]

Finally, we have from (2.3.10): \(\nu_Z = \lambda_Z - (\rho + \alpha) \lambda_Z \). The constraints \(\gamma_{ax} \geq 0, \nu_Z \geq 0 \) and \(\nu_S \geq 0 \) are satisfied when \(\lambda_Z \) is chosen as any constant such that

\[\frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - p}{\zeta} \right) \leq \lambda_Z \leq \frac{c_x - p}{\zeta}, \]

this interval being nonempty whenever \(c_s \leq \bar{c}_s \). Other, non-constant choices of \(\lambda_Z(t) \) are possible. The value of \(\lambda_Z \) is not uniquely determined in this case but the value of \(\lambda_Z + \gamma_{ax} \) is determined.

Non-stationary phase. Assume now that \(S = \bar{S} \) and \(Z > \bar{Z} \). Since \(\dot{S} = 0 \), we have the constant capture rate \(s = \bar{s} \) as above. The value \(x(t) \) may be either \(\bar{s}/\zeta \) (as in Phase B) or strictly larger (as in Phase Q). We first rule out the second possibility.

Assume indeed that \(\bar{S} < \zeta x \). Then \(\gamma_s = \gamma_{ax} = 0 \) and \(\lambda_S = \lambda_Z + c_s \). This implies \(\dot{\lambda}_S = \dot{\lambda}_Z \). Using the dynamics (2.3.11) and (2.3.10), we get:

\[(\rho + \alpha) \lambda_Z = (\rho + \beta) \lambda_S - \beta \lambda_Z + \nu_S \quad \implies \quad \nu_S = \alpha \lambda_Z - (\rho + \beta) c_s. \]

Since \(\lambda_Z < 0 \), this implies \(\nu_S < 0 \), a contradiction.
Therefore, if such a phase exists, we must have a constant consumption:

\[x = \xi := \frac{\beta S}{\zeta}. \]

As in Phase B, the first-order conditions imply \(\lambda_Z + \gamma_{skr} = \lambda_S - c_s \), then

\[u'(\xi) = c_x + \zeta c_s - \zeta \lambda_S. \]

Accordingly, with the notation \(\bar{\eta} := u'(\xi) \), the value of \(\lambda_S \) is constant at:

\[\lambda_S = c_s + \frac{c_x - \bar{\eta}}{\zeta}. \]

As previously, since \(\lambda_S \) is constant, we must have:

\[\nu_S = \beta \lambda_Z - (\rho + \beta) \lambda_S. \]

The constraints \(\nu_S \geq 0 \) and \(\gamma_{skr} \geq 0 \) are satisfied as long as \(\lambda_Z \) is in the interval defined by:

\[\frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - \bar{\eta}}{\zeta} \right) \leq \lambda_Z \leq \frac{c_x - \bar{\eta}}{\zeta}. \]

Connection with other phases. When \(S > S_m \), the phase where \(S = S \) cannot be terminal. It must therefore be connected with other phases.

Obviously, the optimal trajectories we have described in the case \(S \geq S_M \) are still optimal if they lie entirely in the domain \(D \cap \{ S \leq S \} \). Consider the case \(c_s < \hat{c}_s \); these trajectories are represented on Figures 4.8 and 4.7 on page 57. We focus on trajectories in Phase B that end up at point \((S_m, Z)\) at some time instant \(T \). Those are parametrized by the value \(\lambda_Z(T^-) \).

Consider some value \(S > S_m \). To it corresponds a consumption \(\bar{\xi} > \xi \), a price \(\bar{\eta} < \eta \) and a value \(\lambda_S = \lambda \Rightarrow \lambda_s = c_s + (c_r - \bar{\eta})/\zeta > c_s + (c_r - \eta)/\zeta = \lambda^S \). Pick a value \(\lambda_Z(T^-) \), and follow backwards the corresponding trajectory. There exists a time \(T < t \) such that \(\lambda_S(t) = \lambda \). Then, if \(S \) is not too large, there exists some \(\lambda_Z(T^-) \) for which \(S(t) = S \). Since \(\beta S = \zeta \), the trajectory is such that \(S(t) = 0 \); it is therefore tangent to the line \(S = S \). It is possible to glue the piece of trajectory with \(S = S \) with the trajectory in Phase B at this point.

Going backwards in time, the trajectory of adjoint variables \((\lambda_Z, \lambda_S) \) moves on the line \(\lambda_S = \lambda \) to the trajectory with \(S = S \) until it reaches the line \(\lambda_S = \hat{\lambda}_S + c_s \). At this point the first-order conditions cease to be satisfied and the trajectory with \(S = S \) cannot be prolonged.

The situation is represented in Figure 4.21. Some trajectories (not represented) are the same as in the case \(S \geq S_M \): those located inside the “loop” and those located above the loop but to the left of \(S = S \). Trajectories located below the loop are different from those of the case \(S \geq S_M \).

When \(S \) is too large, such a diagram is not possible because: either the condition \(\lambda_S(t) = \hat{\lambda}_S \) cannot be met while the point \((\lambda_Z, \lambda_S) \) is in Phase B; or else because the condition \(S = S \) cannot be met. The limiting situation will be when an optimal trajectory has a vertical tangent \((S = 0)\) while at the same time passing from Phase A to Phase B. See the trajectory numbered as \((III) \) in Figure 4.8. This defines a limiting value \(S_{\text{max}} \). For all values of \(S > S_{\text{max}} \), the optimal trajectories are just the same as when \(S \geq S_M \).

4.6.2 Bounded clean energy production capacity

If there is a bound \(\bar{y} \) on the consumption of renewable energy, and if \(\bar{y} < \bar{y} \), then some optimal trajectories are modified. Denote \(c_{\bar{y}} = u'(\bar{y}) \). Since \(u' \) is decreasing by Assumption 1, we have \(c_{\bar{y}} > c_y \).

The first-order equations related to \(y \) are now (2.3.4), (2.3.7) and (2.3.8):

\[u'(x + y) = c_y - \gamma_{xy} + \gamma_{xy}, \quad \gamma_{xy} y = 0, \quad \gamma_{xy}(y - y) = 0 \]
Observe that the threshold values $\gamma_y \geq 0$, $\tau_y \geq 0$. In every situation where $y = \bar{y}$ was found to be optimal, it is still now with the choice $\tau_y = 0$. When $y = \bar{y}$, together with $x = s = 0$ was found to be optimal (Phase L or Phase U), then it has to be replaced with $y = \bar{y}$ and we must set $\tau_y = c_y - c_y$ which is indeed positive. But then along such optimal trajectories, $u'(x + y) = c_y$ instead of c_y. Therefore, when “gluing” pieces of trajectories, we must substitute c_y to c_y. For instance, in Figure 4.3 representing adjoint variables, the zone “L” must now be defined by $\lambda Z \leq (c_y - c_y)/\zeta$ and $\lambda S \leq c_s + (c_y - c_y)/\zeta$.

Finally, there is the situation of Phase R, where $x > 0$ and $y > 0$ was found to be optimal. If $0 < y < \bar{y}$, we must have $\gamma_y = \tau_y = 0$ and the situation is the same as described in Section 3.5.3, with $x + y = \bar{y}$. Since y is determined by (3.5.18), the constraint $0 \leq y \leq \bar{y}$ imposes now

$$S_y \leq S \leq S_m - \frac{\zeta}{c} (\bar{y} - y).$$

If $y = \bar{y}$, then we have $u'(x + y) = c_y + \tau_y$ with, by Equation (3.5.18), $x = (\beta/\zeta)(S_m - S)$. For $S \in [S_m - (\zeta/\beta)(\bar{y} - y), S_m]$, which amounts to say: $S_m - S \in [0, (\zeta/\beta)(\bar{y} - y)]$, we see that $x + y \in [\bar{y}, \bar{y}]$ so that $\gamma_y = u'(x + y) - c_y \geq 0$.

Figure 4.22 represents the new situation in the case c_0 “large”, to be compared with Figure 4.1. The value of the total energy consumption $x + y$ has also been represented: this value is not bounded below by \bar{y} anymore, but instead by \bar{y}. The situation for other values of c_0 follows. Observe that the threshold values c_{SG} and c_{sm} identified in the analysis are changed also.
4.6.3 Storage costs

Assume that the cost function includes a constant storage management cost c_m per unit of stored carbon and per unit time. The maximization problem (2.2.1) becomes:

$$
\max_{s(t),y(t)} \int_0^\infty \left[u(x(t) + y(t)) - c_as(t) - c_xx(t) - c_yy(t) - c_ms(t) \right] e^{-\rho t} dt
$$

The modification in the first-order conditions is limited to (2.3.11) which becomes (assuming that $S \geq S_M$, hence $\nu_S = 0$):

$$
\dot{\lambda}_S = (\rho + \beta)\lambda_S - \beta\lambda_Z + c_m
$$

Accordingly, on diagrams representing the the evolution of (λ_S, λ_Z) (see the generic Figure 4.2 on page 46 and its specialization in different cases), the line $\lambda_S = 0$ must be translated down (assuming logically that the cost c_m is positive) since its equation is now $(\rho + \beta)\lambda_S = \beta\lambda_Z - c_m$.

The geometric locations P_S, P_∞ and Ω are therefore changed, providing respectively the new stationary values for Phase S, Phase P and Phase Q:

$$
P_S = \left(\frac{c_m}{\beta} + \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - \varnothing}{\zeta} \right), c_s + \frac{c_x - \varnothing}{\zeta} \right), \quad P_\infty = \left(\frac{c_s - \varnothing}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - \varnothing}{\zeta} - \frac{c_m}{\rho + \beta} \right),
$$

$$
\Omega = \left(-c_s \frac{\rho + \beta}{\rho} - \frac{c_m}{\rho}, -c_s \frac{\beta - \varnothing}{\rho} - \frac{c_m}{\rho} \right).
$$

The discussion of the different parametric cases then goes along the same lines as when $c_m = 0$. In particular, the value of c_s which separates the case where Phase S is terminal and where it is not, is determined by the condition $\Omega = P_S$ (see Figure 4.10 on page 59). We obtain now:

$$
\dot{c}_s = \frac{\rho}{\rho + \beta} \left(\frac{\varnothing - c_x}{\zeta} - \frac{c_m}{\rho} \right)
$$

4.6.4 Complements on capture costs

Assumption 1 includes the assumption that $c_s > 0$. The case $c_s = 0$ is also interesting from the Economics standpoint, in the sense that it allows to concentrate on the impact of the externality provoked by the leakage of sequestered CO2. Analyzing the case $c_s < 0$ is also relevant, be it for the sake of completeness.

When $c_s = 0$, Lemma 3.1 does not apply. It was concluded that, when $\alpha > 0$, the fact that $0 < s < \zeta x$ implies $\lambda_S = \lambda_Z = 0$. Consumption of resources must then be $x = \bar{x}$ and $y = 0$. The
value of s is not determined by first-order equations. However, whatever its value, the dynamics (2.2.2) imply that

$$\dot{S} + \dot{Z} = -\alpha Z + \zeta \dot{X} = \alpha(Z - Z) + \zeta(\dot{X} - \bar{X}).$$

As a consequence, the state of the system must exit the interior of domain D in finite time. Assuming that the boundary is hit where $Z = \bar{Z}$, the system must continue in Phase Q, still with $x(t) = \hat{x}$, until it reaches $S = S_m$ where it must stop, at some time T, in Phase S. However, such a trajectory has a value equal to:

$$\frac{u(\hat{x}) - c_x \bar{x}}{\rho} (1 - e^{-\rho T}) + e^{-\rho T} \frac{u(\bar{x}) - c_x \bar{x}}{\rho}$$

and it is outperformed by any trajectory with a constant consumption $x = \bar{x}$. It cannot be optimal, and the initial assumption that $0 < s < \zeta \xi$ must be wrong. The bang-bang principle of Lemma 3.1 applies also when $c_s = 0$.

Let us now turn to the case where $c_s < 0$. The synthesis of Section 4.5.1 (p. 76) essentially applies, with the following difference in the interior of the domain. Recall from, e.g. Section 4.4.1 on page 45, that the sign of $\gamma(t) = \lambda_2(t) - \lambda_0(t) - c_s$ determines whether Phase A or Phase B prevails. When $t \to -\infty$, both $\lambda_0(t)$ and $\lambda_2(t)$ tend to 0. Therefore, $\gamma(t) \to -c_s > 0$. Then, going backwards in time, it is now possible to exit Phase A and switch to Phase B. So, in forward time, some trajectories will start in Phase B, switch temporarily to Phase A, then switch back to Phase B. When c_s is a large negative cost, all trajectories will eventually stay in Phase B.

4.6.5 Comparison with non-leaky reservoirs

The situation where $\beta = 0$ is the one studied in Lafforgue et al. (2008a) and Lafforgue et al. (2008b). This situation is not a special case of the analysis above (which requires $\beta > 0$) but can be analyzed directly.

It turns out that in this case, $\lambda_S \equiv 0$, which is economically interpreted as units of carbon storage S being “free”. Then there are three cases for c_s. Observe that $\bar{c}_s = (\bar{p} - c_x) / \zeta$ when $\beta = 0$ and it does not depend on ρ anymore.

- $c_s \geq \bar{c}_s$: there no capture, $x = \bar{x}$, S is constant, $Z = \bar{Z}$;
- $0 \leq c_s < \bar{c}_s$: consumption is $x = q^d(c_x + \zeta c_s)$, capture is $s = x - \bar{x}$, $Z = \bar{Z}$;
- $c_s < 0$: there is full capture $s = \zeta x$, with consumption $x = q^d(c_x + \zeta c_s)$, $Z < \bar{Z}$.

When comparing with the situation where $\beta > 0$, we see that both points S_m and $S_\bar{S}$ go to infinity. Phases R, S and U vanish. There is no possibility of having simultaneously trajectories with and without capture, nor of having consumption of the renewable resource.

The point S_M also goes to infinity, so that the possibility $S \geq S_M$ is not possible anymore. The state (\bar{S}, \bar{Z}) is a terminal state when $c_s < \bar{c}_s$, as shown in (Lafforgue et al. 2008b) (see also Section 4.6.1).
Appendix A

Synthetic description of the different phases

A.1 Phase A (free extraction of the NRR; no sequestration)

Specification

<table>
<thead>
<tr>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>=0</td>
<td>>0</td>
<td>=0</td>
<td>>0</td>
<td><Z</td>
<td>≥0</td>
</tr>
</tbody>
</table>

Dynamical system

\[
\begin{align*}
\dot{X} &= -x \\
\dot{Z} &= -\alpha Z + \beta S + \zeta x \\
\dot{S} &= -\beta S \\
\dot{\lambda}_x &= \rho \lambda_x \\
\dot{\lambda}_z &= (\rho + \alpha) \lambda_z \\
\dot{\lambda}_s &= (\rho + \beta) \lambda_s - \beta \lambda_z
\end{align*}
\]

First order conditions

\[
\begin{align*}
\lambda_s &= c_y + \lambda_z - \gamma_y \\
u'(x) &= c_x + \lambda_x - \zeta \lambda_z \quad \Rightarrow \quad u'(x) = c_x + \lambda_x - \zeta \lambda_z \\
u'(x) &= c_y - \gamma_y \\
u'(z) &= c_x + \lambda_x - \zeta \lambda_z
\end{align*}
\]

Constraints

\[
\begin{align*}
X &> 0 \\
Z &< Z \\
s &= 0 \\
x &= c_x + \lambda_x - \zeta \lambda_z \\
y &= 0 \\
\nu_x &= 0 \\
\nu_z &= 0 \\
\gamma_s &= c_y + \lambda_z - \lambda_s \\
\gamma_{sx} &= 0 \\
\gamma_y &= c_y - c_x - \lambda x + \zeta \lambda z \
\end{align*}
\]
A.2 Phase B (free extraction of the NRR; maximal sequestration)

Specification

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= \zeta x$</td>
<td>> 0</td>
<td>$= 0$</td>
<td>> 0</td>
<td>$< Z$</td>
<td>≥ 0</td>
</tr>
</tbody>
</table>

Dynamical system

$$
\begin{align*}
\dot{X} &= -x \\
\dot{Z} &= -\alpha Z + \beta S \\
\dot{S} &= -\beta S + \zeta x \\
\lambda_X &= \rho \lambda_X \\
\lambda_Z &= (\rho + \alpha) \lambda_Z \\
\lambda_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z
\end{align*}
$$

First order conditions

$$
\begin{align*}
\lambda_S &= c_s + \lambda_Z + \zeta \gamma_x \\
\mu'(x) &= c_s + \lambda_X - \zeta \lambda_Z - \zeta \gamma_x \\
u'(x) &= c_y - \gamma_y
\end{align*}
\quad \implies \quad
\begin{align*}
\gamma_x &= \lambda_S - c_s - \lambda_Z \\
x &= q(c_s + \lambda_X - \zeta \lambda_S + \zeta c_s) \\
\gamma_y &= c_y - c_s - \lambda_X + \zeta \lambda_S - \zeta c_s
\end{align*}
$$

Constraints

$$
\begin{align*}
X &> 0 \\
Z &< Z \\
s &= \zeta x \\
x &c_s + \lambda_X - \zeta \lambda_S + \zeta c_s \geq 0 \\
y &= 0 \\
\nu_X &= 0 \\
\nu_Z &= 0 \\
\gamma_s &= \gamma_s = 0 \\
\gamma_{se} &= \lambda_S - c_s - \lambda_Z \geq 0 \\
\gamma_y &= c_y - c_s - \lambda_X + \zeta \lambda_S - \zeta c_s \geq 0
\end{align*}
$$
A.3 Phase L (zero extraction of the NRR)

Specification

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamical system

\[
\begin{align*}
\dot{x} &= -x \\
\dot{Z} &= -\alpha Z + \beta S \\
\dot{S} &= -\beta S \\
\dot{\lambda}_X &= \rho \lambda_X \\
\dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z \\
\dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z \\
\end{align*}
\]

First order conditions

\[
\begin{align*}
0 &= \lambda_S - c_s - \lambda_Z + \gamma_s - \gamma_{sx} \\
\Rightarrow \quad \gamma_s - \gamma_{sx} &= \lambda_Z - \lambda_S + c_s \\
\end{align*}
\]

\[
\begin{align*}
\mu'(y) &= c_x + \lambda_x - \zeta \lambda_z - \zeta \gamma_{sx} \\
\Rightarrow \quad y &= \tilde{y} \\
\end{align*}
\]

Constraints

\[
\begin{align*}
X &\quad X > 0 \\
Z &\quad Z \leq Z \\
s &\quad s = 0 \\
x &\quad x = 0 \\
y &\quad y > 0 \\
\nu_X &\quad \nu_X = 0 \\
\nu_Z &\quad \nu_Z = 0 \\
\gamma_s &\quad \gamma_s \geq 0 \\
\gamma_{sx} &\quad \gamma_{sx} \geq 0 \\
\gamma_y &\quad \gamma_y = 0 \\
\end{align*}
\]

80
A.4 Phase P (ceiling; no sequestration)

Specification

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
 s & x & y & X & Z & S \\
 \hline
 0 & >0 & 0 & 0 & >0 & \equiv Z & \geq 0 \\
\end{array}
\]

Ceiling constraint:

\[
x = \pi - \frac{\beta}{\zeta} S = \frac{\beta}{\zeta} (S_m - S).
\]

Dynamical system

\[
\begin{aligned}
 \dot{X} &= -x \\
 \dot{Z} &= 0 \\
 \dot{S} &= -\beta S \\
 \dot{\lambda}_X &= \rho \lambda_X \\
 \dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z + \nu_Z \\
 \dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z
\end{aligned}
\]

First order conditions

\[
\begin{aligned}
 \lambda_S &= c_s + \lambda_Z - \gamma_s \\
 u'(x) &= c_x + \lambda_X - \zeta \lambda_Z \\
 u'(x) &= c_y - \gamma_y
\end{aligned} \implies
\begin{aligned}
 \gamma_s &= c_s + \lambda_Z - \lambda_S \\
 \lambda_Z &= \frac{1}{\zeta} (c_x + \lambda_X - u'(x - \frac{\beta S}{\zeta})) \\
 \gamma_y &= c_y - c_x - \lambda_X + \zeta \lambda_Z
\end{aligned}
\]

Constraints

\[
\begin{aligned}
 X &> 0 \\
 Z &= Z \\
 s &= 0 \\
 x &\leq S_m \text{ et } c_x + \lambda_X - \zeta \lambda_Z \geq 0 \\
 y &= 0 \\
 \nu_X &= \nu_X = 0 \\
 \nu_Z &= \nu_Z \geq 0 \\
 \gamma_s &= c_s + \lambda_Z - \lambda_S \geq 0 \\
 \gamma_{sx} &= \gamma_{sx} = 0 \\
 \gamma_y &= c_y - c_x - \lambda_X + \zeta \lambda_Z \geq 0 \iff u'(x) \leq c_y \\
 &\iff x \geq \bar{y} \iff S \leq S_y.
\end{aligned}
\]
A.5 Phase Q (ceiling; sequestration)

Specification

<table>
<thead>
<tr>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0 and (<\zeta x)</td>
<td>> 0</td>
<td>= 0</td>
<td>> 0</td>
<td>= Z</td>
<td>≥ 0</td>
</tr>
</tbody>
</table>

Ceiling constraint:

\[s = \zeta(x - \bar{x}) + \beta S = \zeta x - \beta(S_m - S). \]

Dynamical system

\[
\begin{align*}
\dot{x} &= -x \\
\dot{S} &= \zeta(x - \bar{x}) \\
\dot{\lambda}_X &= \rho \lambda_X \\
\dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z + \nu_Z \\
\dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z
\end{align*}
\]

First order conditions

\[
\begin{align*}
\lambda_S &= c_s + \lambda_Z \\
u'(x) &= c_s + \lambda_X + \zeta \lambda_Z \implies x &= q'(c_s + \lambda_X - \zeta \lambda_Z) \\
u'(x) &= c_y - \gamma_y \implies \gamma_y &= c_y - c_x - \lambda_X + \zeta \lambda_Z
\end{align*}
\]

Constraints

\[
\begin{align*}
X &= X > 0 \\
Z &= Z = \bar{Z} \\
s &= S \leq S_m \text{ and } x \geq \frac{x}{\zeta}(S_m - S) \\
x &= c_s + \lambda_X - \zeta \lambda_Z \geq 0 \\
y &= y = 0 \\
\nu_X &= \nu_X \geq 0 \\
\nu_Z &= \lambda_Z \leq \frac{\alpha + \beta}{\alpha} c_s \text{ or } \lambda_S \leq \frac{\alpha + \beta}{\alpha} c_s \\
\gamma_s &= c_s + \lambda_Z - \lambda_s = 0 \\
\gamma_{ax} &= \gamma_{ax} = 0 \\
\gamma_y &= c_y - c_x - \lambda_X + \zeta \lambda_Z \geq 0
\end{align*}
\]

Observations. Conditions \(\lambda_Z \leq 0\) and \(c_s + \lambda_Z - \lambda_s \geq 0\) imply Conditions \(\lambda_Z \leq \frac{\alpha + \beta}{\alpha} c_s\) or \(\lambda_S \leq \frac{\alpha + \beta}{\alpha} c_s\).

If \(c_s = 0\), then \(\lambda_Z\) cannot change sign.
A.6 Phase R (ceiling; no sequestration, double extraction)

Specification

<table>
<thead>
<tr>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>>0</td>
<td>>0</td>
<td>>0</td>
<td>$\equiv Z$</td>
<td>0</td>
</tr>
</tbody>
</table>

Ceiling constraint:

$$x = \pi - \frac{\beta}{\zeta}S = \frac{\beta}{\zeta}(S_m - S).$$

Dynamical system

$$\begin{cases}
\dot{x} = -x \\
\dot{Z} = 0 \\
\dot{S} = -\beta S \\
\dot{\lambda}_X = \rho \lambda_X \\
\dot{\lambda}_Z = (\rho + \alpha)\lambda_Z + \nu_Z \\
\dot{\lambda}_S = (\rho + \beta)\lambda_S - \beta \lambda_Z
\end{cases}$$

First order conditions

$$\begin{align*}
\lambda_S &= c_s + \lambda_Z - \gamma_s \\
\nu'(x+y) &= \nu_x + \lambda_X - \zeta \lambda_Z \\
\nu'(x+y) &= \nu_y
\end{align*}$$

$$\Rightarrow \begin{align*}
\gamma_s &= c_s + \lambda_Z - \lambda_S \\
\lambda_Z &= \frac{1}{\zeta}(c_x + \lambda_X - c_y) \\
y &= \tilde{y} - \frac{\beta}{\zeta}(S_m - S) = \frac{\beta}{\zeta}(S - S_y)
\end{align*}$$

Constraints

$$\begin{align*}
X &> 0 \\
Z &= Z \equiv Z \\
s &= s = 0 \\
x &\geq S_m \\
y &> 0 \iff S(t) \geq S_y \\
\nu_X &= \nu_X = 0 \\
\nu_Z &= \nu_Z \geq 0 \\
\gamma_s &= c_s + \lambda_Z - \lambda_S \geq 0 \\
\gamma_{sx} &= \gamma_{sx} = 0 \\
\gamma_y &= \gamma_y = 0
\end{align*}$$

83
A.7 Phase S (ceiling for Z et S; maximal sequestration)

Specification

\[
\begin{array}{cccccc}
 s & x & y & X & Z & S \\
\xi & \bar{x} & \bar{x} & 0 & >0 & =S_m \\
\end{array}
\]

Ceiling constraint: satisfied by construction.

Dynamical system

\[
\begin{align*}
\dot{x} &= -\bar{x} \\
\dot{Z} &= 0 \\
\dot{S} &= 0 \\
\lambda_X &= \rho \lambda_X \\
\dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z + \nu_Z \\
\dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z
\end{align*}
\]

First order conditions

\[
\begin{align*}
\lambda_S &= c_s + \lambda_Z + \gamma_{sx} \\
\nu(x) &= c_x + \lambda_X - \xi \lambda_Z - \xi \gamma_{sx} \\
u'(x) &= c_y - \gamma_y
\end{align*}
\]

\[
\begin{align*}
\lambda_s + \lambda_Z &= \lambda_s - c_s \\
\gamma_{sx} + \lambda_Z &= \frac{1}{\xi} (c_x + \lambda_X - \bar{p}) \\
\gamma_y &= c_y - \bar{p}.
\end{align*}
\]

Constraints

\[
\begin{align*}
X &> 0 \\
Z &= \bar{Z} \\
s &= \xi x \\
x &\leq S_m \\
y &> 0 \iff S(t) \geq S_y \\
\nu_X &= 0 \\
\nu_Z &\geq 0 \\
\gamma_s &= 0 \\
\gamma_{sx} &\geq 0 \\
\gamma_y &\geq 0
\end{align*}
\]
A.8 Phase T (no NRR; extraction of the NRR; extraction of the RR)

Specification

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= 0</td>
<td>= 0</td>
<td>> 0</td>
<td>= 0</td>
<td>< \hat{Z}(S)</td>
<td>\geq 0</td>
</tr>
</tbody>
</table>

Dynamical system

\[
\begin{align*}
\dot{X} &= 0 \\
\dot{Z} &= -\alpha Z + \beta S \\
\dot{S} &= -\beta S \\
\dot{\lambda}_X &= \rho \lambda_X - \nu_X \\
\dot{\lambda}_Z &= (\rho + \alpha) \lambda_Z \\
\dot{\lambda}_S &= (\rho + \beta) \lambda_S - \beta \lambda_Z
\end{align*}
\]

First order conditions

\[
\begin{align*}
\lambda_S &= c_s + \lambda_Z - \gamma_s + \gamma_{sx} &\implies \gamma_s &= \frac{1}{2} (c_x + c_s + \lambda_X) \\
\nu'(y) &= c_x + \lambda_x - \zeta \lambda - \zeta_{sx} &\implies \gamma_{sx} &= \frac{1}{2} (c_x + \lambda_X) - \lambda_Z \\
\nu'(y) &= c_y &\implies y &= \hat{y}
\end{align*}
\]

Constraints

\[
\begin{align*}
X &= 0 \\
Z &= Z < \hat{Z}(S) \\
s &= s = 0 \\
x &= x = 0 \\
y &= y > 0 \\
\nu_X &= \nu_X \geq 0 \\
\nu_Z &= \nu_Z = 0 \\
\gamma_s &= \gamma_s \geq 0 \\
\gamma_{sx} &= \gamma_{sx} \geq 0 \\
\gamma_y &= \gamma_y = 0
\end{align*}
\]
A.9 Phase U (no extraction of the NRR; extraction of the RR; NRR available)

Specification

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>x</th>
<th>y</th>
<th>X</th>
<th>Z</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>> 0</td>
<td>> 0</td>
<td>= Z(S)</td>
<td>≥ 0</td>
</tr>
</tbody>
</table>

Dynamical system

\[
\begin{align*}
\dot{x} &= 0 \\
\dot{z} &= -\alpha z + \beta S \\
\dot{s} &= -\beta S \\
\dot{\lambda}_x &= \rho \lambda_x \\
\dot{\lambda}_z &= (\rho + \alpha) \lambda_z \\
\dot{\lambda}_s &= (\rho + \beta) \lambda_s - \beta \lambda_z + \nu_z \dot{z}'(S)
\end{align*}
\]

First order conditions

\[
\begin{align*}
\lambda_s &= c_s + \lambda_z - \gamma_s + \gamma_{sx} \\
\dot{\gamma}_s &= \frac{1}{2}(c_x + \gamma_{sx} + \lambda_x) \\
\dot{\gamma}_s &= c_z + \lambda x - \zeta \lambda z - \zeta \gamma_{sx} \\
\dot{\gamma}_{sx} &= \frac{1}{2}(c_x + \lambda x) - \lambda z \\
\dot{\gamma}_y &= c_y \\
\dot{y} &= \tilde{y}
\end{align*}
\]

Constraints

\[
\begin{align*}
X &\quad X > 0 \\
Z &\quad Z = \tilde{Z}(S) \\
s &\quad s = 0 \\
x &\quad x = 0 \\
y &\quad y > 0 \\
\nu_X &\quad \nu_X = 0 \\
\nu_Z &\quad \nu_Z \geq 0 \\
\gamma_s &\quad \gamma_s \geq 0 \\
\gamma_{sx} &\quad \gamma_{sx} \geq 0 \\
\gamma_y &\quad \gamma_y = 0
\end{align*}
\]
Appendix B

Properties of auxiliary functions L and M

The functions $L(\cdot)$ and $M(\cdot)$ are defined in (4.1.4) and (4.1.5) as:

$$L(S) = \beta \int_0^\infty e^{-(\rho+\beta)v} \left(c_x - u'(\bar{x} - \frac{\beta}{\zeta} \zeta e^{-\beta v}) \right) dv$$

$$M(S) = \beta \int_0^\infty e^{-(\rho+\beta)v} \left(\bar{p} - u'(\bar{x} - \frac{\beta}{\zeta} \zeta e^{-\beta v}) \right) dv.$$

They differ by a constant and negative additive factor:

$$L(S) = \frac{\beta}{\rho + \beta} (c_x - \bar{p}) + M(S).$$

The function M is clearly negative with $M(0) = 0$. It is decreasing: differentiating in its definition, one gets:

$$L'(S) = M'(S) = \frac{\beta^2}{\zeta} \int_0^\infty e^{-(\rho+\beta)v} u'' \left(\bar{x} - \frac{\beta}{\zeta} \zeta e^{-\beta v} \right) dv,$$ \hspace{1cm} (B.0.1)

which is negative because $u'' \leq 0$. The function L is therefore decreasing as well.

Lemma B.1. Under Assumption 1, we have the bounds, for all $S \geq 0$:

$$L(S) \geq \frac{\beta}{\rho + \beta} \left(c_x - u' \left(\bar{x} - \frac{\beta}{\zeta} S \right) \right)$$ \hspace{1cm} (B.0.2)

$$M(S) \geq \frac{\beta}{\rho + \beta} \left(\bar{p} - u' \left(\bar{x} - \frac{\beta}{\zeta} S \right) \right),$$ \hspace{1cm} (B.0.3)

with equality if and only if $S = 0$.

Proof. This bound is proven with the following sequence of inequalities. Given that $u'(\cdot)$ is decreasing, then for all $v \geq 0$,

$$\frac{\beta}{\zeta} \zeta e^{-\beta v} \leq \frac{\beta}{\zeta} S$$

$$\bar{x} - \frac{\beta}{\zeta} \zeta e^{-\beta v} \geq \bar{x} - \frac{\beta}{\zeta} S$$

$$u' \left(\bar{x} - \frac{\beta}{\zeta} \zeta e^{-\beta v} \right) \leq u' \left(\bar{x} - \frac{\beta}{\zeta} S \right)$$
This expression is obtained from the definition in (4.1.4) and integration by parts as:
\[
\int_0^\infty e^{-(\rho + \beta)v} \left[p - u' \left(x - \frac{\beta}{\zeta} S e^{-\beta v} \right) \right] dv \geq \frac{1}{\rho + \beta} \left[p - u' \left(x - \frac{\beta}{\zeta} S \right) \right].
\]

If \(S = 0 \), all inequalities in this derivation are equalities. If \(S \neq 0 \), the third one is strict since \(u \) is strictly convex.

As a corollary, from the definition of \(c_{sm} \) in Equation (4.3.6), we have the inequality:
\[
c_{sm} = \frac{c_y - c_x}{\zeta} + L(S_y) \geq \frac{c_y - c_x}{\zeta} + \frac{\beta}{\rho + \beta} \left(c_x - u' \left(x - \frac{\beta}{\zeta} S y \right) \right) \]
\[
= \frac{c_y - c_x}{\zeta} + \frac{\beta}{\rho + \beta} \frac{c_x - c_y}{\zeta} = \bar{c}_s.
\]

The following refines this reasoning. According to the definition of \(c_{sm} \) in Equation (4.3.6), and that of \(L(S) \) in Equation (4.1.4), we have actually:
\[
c_{sm} - \bar{c}_s = \frac{c_y - c_x}{\zeta} + L(S_y) - \left(\frac{c_y - c_x}{\zeta} + \frac{\beta}{\rho + \beta} \frac{c_x - c_y}{\zeta} \right) \int_0^\infty e^{-(\rho + \beta)v} \left(u' \left(x - \frac{\beta}{\zeta} S y e^{-\beta v} \right) - u' \left(x - \frac{\beta}{\zeta} S_y \right) \right) dv.
\]

This is positive, because \(u' \) is decreasing.

Alternate expressions exist for \(L(\cdot) \) and \(M(\cdot) \). For instance:
\[
L(S) = \frac{\beta c_x}{\rho + \beta} + \frac{\zeta}{\beta S} u(x - \frac{\beta}{\zeta} S) - \frac{\zeta}{\beta S} \int_0^\infty e^{-\rho t} u(x - \frac{\beta}{\zeta} S e^{-\beta t}) dt.
\]

This expression is obtained from the definition in (4.1.4) and integration by parts as:
\[
L(S) = \beta \int_0^\infty e^{-(\rho + \beta)v} \left(c_x - u' \left(x - \frac{\beta}{\zeta} S e^{-\beta v} \right) \right) dv
\]
\[
= \beta \frac{c_x}{\rho + \beta} - \frac{\zeta}{\beta S} \beta \frac{S}{\zeta} \int_0^\infty e^{-\rho v} \frac{\beta}{\zeta} u(x - \frac{\beta}{\zeta} S e^{-\beta v}) dv
\]
\[
= \beta \frac{c_x}{\rho + \beta} - \frac{\zeta}{\beta S} \left\{ \left[e^{-\rho v} u(x - \frac{\beta}{\zeta} S) \right]_0^\infty + \int_0^\infty \rho e^{-\rho v} u(x - \frac{\beta}{\zeta} S e^{-\beta v}) dv \right\}
\]
\[
= \beta \frac{c_x}{\rho + \beta} + \frac{\zeta}{\beta S} u(x - \frac{\beta}{\zeta} S) - \frac{\zeta}{\beta S} \int_0^\infty e^{-\rho v} u(x - \frac{\beta}{\zeta} S e^{-\beta v}) dv.
\]

We now prove results concerning the resolution of Equation (4.3.4), that is:
\[
\zeta(c_x - \bar{c}_s) + p - u'(x - \frac{\beta}{\zeta} S) = M(S).
\]

Lemma B.2. We have the following properties, under Assumption 1:

(i) if \(c_x < \bar{c}_s \), then Equation (4.3.4)/(B.0.7) has no positive solution;

(ii) if in addition \(u'(\cdot) \) is convex, and if
\[
\bar{c}_s \leq c_x \leq c_{sm}
\]

then Equation (4.3.4)/(B.0.7) has a unique solution \(S^{\text{QP}} \in [0, S_y] \);
(iii) if in addition \(u'(\cdot)\) is convex, and if \(c_s > c_{sm}\), then Equation (4.3.4) / (B.0.7) has no solution in \([0, S_0]\).

Proof.

(i) Denote with \(\phi(S)\) the left-hand side of the equation. According to the bound (B.0.3), we have

\[
M(S) \geq \frac{\beta}{\rho + \beta} \left(\overline{p} - u'(\overline{\tau} - \frac{\beta}{\zeta} S) \right).
\]

If the right-hand side of this inequality is strictly larger than \(\phi(S)\), then the statement is proved. This sufficient condition writes as:

\[
\frac{\beta}{\rho + \beta} \left(\overline{p} - u'(\overline{\tau} - \frac{\beta}{\zeta} S) \right) > \zeta(c_s - \ell_s) + \overline{p} - u'(\overline{\tau} - \frac{\beta}{\zeta} S)
\]

\[
\iff \zeta(c_s - \ell_s) < -\frac{\rho}{\rho + \beta} \left(\overline{p} - u'(\overline{\tau} - \frac{\beta}{\zeta} S) \right).
\]

This last inequality indeed holds since \(c_s - \ell_s < 0\) by assumption, and the right-hand side is positive for \(S \geq 0\).

(ii) We first show that the function

\[
h(S) = \zeta(c_s - \ell_s) + \overline{p} - u'(\overline{\tau} - \frac{\beta}{\zeta} S) - M(S)
\]

is decreasing. As a consequence, there is at most one solution to Equation (B.0.7) for \(S \in [0, S_0]\).

If \(u'(\cdot)\) is convex, then \(u''(\cdot)\) is increasing. Then we have:

\[
\frac{\beta}{\zeta} \overline{\tau} e^{-\beta \zeta} \leq \frac{\beta}{\zeta} S
\]

\[
\overline{\tau} - \frac{\beta}{\zeta} \overline{\tau} e^{-\beta \zeta} \geq \overline{\tau} - \frac{\beta}{\zeta} S
\]

\[
u''\left(\overline{\tau} - \frac{\beta}{\zeta} \overline{\tau} e^{-\beta \zeta}\right) \geq u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right).
\]

Given Equation (B.0.1) for \(M'(S)\), we have for all \(S \geq 0\),

\[
M'(S) \geq \frac{\beta}{\rho + \beta} \frac{\beta}{\zeta} u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right).
\]

On the other hand, we have

\[
h'(S) = \frac{\beta}{\zeta} u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right) - M'(S)
\]

\[
\leq \frac{\beta}{\zeta} u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right) - \frac{\rho}{\rho + \beta} \frac{\beta}{\zeta} u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right)
\]

\[
= \frac{\beta}{\zeta} \frac{\rho + \beta}{\rho + 2\beta} u''\left(\overline{\tau} - \frac{\beta}{\zeta} S\right) \leq 0.
\]

Therefore, \(h\) is decreasing. The solutions to (B.0.7) are the zeros of \(h(\cdot)\).

The uniqueness remains to be proved. When \(S^{QP} = 0\), the left-hand side of (4.3.4) is \(\zeta(c_s - \ell_s) \geq 0\) whereas the right-hand side is 0. There will necessarily be a solution in the interval \([0, S_0]\) if the left-hand side evaluated at \(S^{QP} = S_0\), that is, \(\zeta(c_s - \ell_s) + \overline{p} - \ell_y\) is smaller than the right-hand side evaluated at the same point, that is, \(M(S_0)\). This condition is exactly \(c_s \leq c_{sm}\). We have therefore existence and uniqueness in this case.
(iii) As proved above, the function $h(\cdot)$ is decreasing, and its value at $S = S_{\bar{y}}$ is strictly positive if $c_s > c_{sm}$. Therefore, this function has no zero, that is, Equation (4.3.4) has no solution.

Lemma B.3. Assume that $c_\ell \leq c_s \leq c_{sm}$ and that $u'(\cdot)$ is convex. Then the unique solution S^{QP} of Equation (B.0.7) in the interval $[0, S_{\bar{y}}]$ is an increasing function of c_s, and the term

$$\phi(c_s) := \frac{\rho + \beta}{\rho}(c_s - \bar{c}_s) + \frac{1}{\zeta}\left(p - u'(\bar{x} - \frac{\beta}{\zeta}S^{QP})\right)$$

is positive.

Proof. Denote with $\sigma(c_s)$ the solution S^{QP} of Equation (B.0.7). By implicit differentiation with respect to c_s, we get

$$\zeta + \frac{\beta}{\zeta}u''(\bar{x} - \frac{\beta}{\zeta}\sigma(c_s)) = \sigma'(c_s) M'(\sigma(c_s))$$

hence

$$\sigma'(c_s) = \zeta \left(M'(\sigma(c_s)) - \frac{\beta}{\zeta}u''(\bar{x} - \frac{\beta}{\zeta}\sigma(c_s))\right)^{-1}.$$

The denominator is $-M'(\sigma(c_s))$ in the notation of the proof of Lemma B.2. It is therefore positive, and it has been proved that

$$M'(\sigma(c_s)) - \frac{\beta}{\zeta}u''(\bar{x} - \frac{\beta}{\zeta}\sigma(c_s)) \geq -\frac{\beta}{\zeta} \frac{\rho + \beta}{\rho + 2\beta} u''(\bar{x} - \frac{\beta}{\zeta}S).$$

Therefore, σ' is positive and σ is increasing. Moreover,

$$\sigma'(c_s) \geq \zeta \left(-\frac{\beta}{\zeta} \frac{\rho + \beta}{\rho + 2\beta} u''(\bar{x} - \frac{\beta}{\zeta}\sigma(c_s))\right)^{-1}.$$

The function $\phi(c_s)$ is such that $\phi(0) = 0$ and

$$\phi'(c_s) = \frac{\rho + \beta}{\beta} + \frac{\beta}{\zeta} \sigma'(c_s) u''(\bar{x} - \frac{\beta}{\zeta}\sigma(c_s))$$

$$\geq \frac{\rho + \beta}{\beta} - \frac{\rho + \beta}{\rho + 2\beta}$$

$$= \frac{\beta^2}{(\rho + \beta)(\rho + 2\beta)} > 0.$$

The function $\phi(\cdot)$ is therefore increasing, and it is positive. \qed
Appendix C

Auxiliary problems

We gather in this appendix several “auxiliary” problems which provide complementary arguments in different parts of our analysis.

In Section C.1, we develop the finite-horizon approach, which is related with the backwards solution of infinite-horizon problems, and therefore provides an alternate source of results. In particular, we examine in Section C.1.3 the problem of optimizing the consumption while being constrained to stay at the pollution ceiling $Z = \bar{Z}$.

In Section C.2, we discuss the representative agent’s optimization problem, and we use the results to argue that there are more solutions to the problem than those identified in Chapter 4.

C.1 Finite-horizon problems

The fact that final phases can be identified opens the way to a finite-horizon approach to determine the optimal trajectories. From initial points located on the boundary $Z = \bar{Z}(s)$, the optimal trajectory and the value function are known. There remains to determine the optimal junction point starting from an initial state located in the interior. Neither the “final” state nor the final time are known a priori.

We investigate this possibility here. We state in Section C.1.1 a sufficient theorem related to this situation. We do this essentially for completeness since we do not exploit it. However, we do exploit in Section C.1.2 some of the conditions in order to “guess” the properties of optimal trajectories in various situations.

C.1.1 Sufficient conditions for free finite-horizon problems

As said above, another way to find optimal trajectories of our problem in specific situations, is to use a finite-horizon approach. The following result gives appropriate sufficient condition for optimality in this context. The statement is that of Seierstad & Sydsæter (1987, Theorem 13, p. 390) and Seierstad & Sydsæter (1987, Theorem 17, p. 398), without the provision for free initial conditions.

Theorem C.1 (Seierstad & Sydsæter (1987), Theorem 17). Consider the finite-horizon optimal control problem with free terminal time and scrap value:

$$\max_{u(t),t_1} \int_{0}^{t_1} f_0(x(t),u(t),t)dt + S_1(x(t_1),t_1)$$

where the state vector $x(t)$ belongs to \mathbb{R}^n, $0 \leq t_1 \leq T_1 \leq T_2$, the control vector $u(t)$ belongs to some fixed convex set $U \subset \mathbb{R}^n$, and $\dot{x} = f(x,u,t)$. Assume that admissible trajectories must satisfy the vector of s constraints:

$$g_j(x(t),u(t),t) \geq 0, j = 1, \ldots, s', \quad g_j(x(t),u(t),t) = g_j(x(t),t) \geq 0, j = s' + 1, \ldots, s,$$
as well as the initial condition $x(0) = x^0$ and terminal conditions

$$R^1_k(x_i(t_1), t_1) = 0, i = 1, \ldots, r^1_1, \quad R^1_k(x_i(t_1), t_1) \geq 0, i = r^1_1 + 1, \ldots, r_1.$$

Assume that:

a) f_0, f and g have derivatives w.r.t. x and u, and that these derivatives are continuous; S_1 and $(R^1_1, \ldots, R^1_{r_1})$ are C^1 functions;

b1) S_1 is a concave function of x;

b2) $\sum_{k=1}^{r_1} \gamma_k R^1_k$ is a quasi-concave function of x;

If, for each fixed $T \in [T_1, T_2]$, there exists an admissible pair $(x^T(t), u^T(t))$, together with a continuous and piecewise continuously differentiable vector function $p^T(t)$, a piecewise-continuous function $q^T(t)$ and vectors of numbers $\beta^T = (\beta^1_1, \ldots, \beta^1_{r_1})$ and $\gamma^T = (\gamma^1_1, \ldots, \gamma^1_{r_1})$ such that, defining

$$H(x, u, p, t) \equiv f_0(x, u, t) + p \cdot f(x, u, t),$$

$$L(x, u, p, q, t) \equiv H(x, u, p, t) + q \cdot g(x, u, t),$$

c) for virtually all $t \in [0, T]$, and all $u \in U$, $\frac{\partial L}{\partial x}(x^T(t), u^T(t), p^T(t), q^T(t), t) \cdot (u - u^T) \leq 0$.

d) for virtually all $t \in [0, T]$, $\dot{p}^T(t) = -\frac{\partial L}{\partial x}(x^T(t), u^T(t), p^T(t), q^T(t), t),$

e) the Hamiltonian is a concave function of (x, u), for all $t \in [0, T]$.

f) $q_j(t) \geq 0$ and $= 0$ if $g_j(x^T(t), u^T(t), t) > 0$, for all t and $j = 1, \ldots, s$,

g) g_j is a quasi-concave function of (x, u), for all $t \in [0, T]$ and $j = 1, \ldots, s$,

h) for each $i = 1, \ldots, n$,

$$p_i(T) = \sum_{j=1}^{s} \beta^1_j \frac{\partial g_j}{\partial x_i}(x^T(T), u^T(T), T) + \frac{\partial S^1}{\partial x_i}(x^T(T), T) + \sum_{k=1}^{r_1} \gamma^1_k \frac{\partial R^1_k}{\partial x_i}(x^T(T), T), \quad (C.1.1)$$

i) $\beta_j = 0$ for $j = 1, \ldots, s'$, $\beta_j \geq 0$ for $j = s' + 1, \ldots, s$ and $= 0$ if $g_j(x^T(T), u^T(T), T) > 0$.

j) for $k = r^1_1, \ldots, r_1$, $\gamma_k \geq 0$ and $= 0$ if $R^1_k(x^T(T), T) > 0$.

k) $u^T(t)$ and $q^T(t)$ take values in fixed, bounded subsets of \mathbb{R}^n and \mathbb{R}^s, respectively.

l) the function $T \mapsto x^T(T)$ is Lipschitz continuous, the functions $T \mapsto \beta^T$ and $T \mapsto \gamma^T$ are piecewise continuous.

m) for all T, $u^T(T)$ belongs to the closure of the set $\{u \in U, g_j(x^T(T), u^T(T), T) > 0 \text{ for all } j \leq s'\}$.

n) the function

$$F(T) = H(x^T, u^T, q^T, p^T) + \beta^T \frac{\partial g_j}{\partial t}(x^T, u^T, T) + \frac{\partial S^1}{\partial t}(x^T, T) + \gamma^T \frac{\partial R^1_k}{\partial t}(x^T, u^T, T)$$

where functions are evaluated at T, has the property that there exists some $T^* \in [T_1, T_2]$ such that $F(T) \geq 0$ for $T < T^*$ and $F(T) \leq 0$ for $T > T^*$.

then the pair $(x^{T^*}(t), u^{T^*}(t))$ and the final time $t_1 = T^*$ are optimal.
In problems, such as ours, where:

\[f_0(x,u,t) = f_0(x,u)e^{-\rho t}, \quad f(x,u,t) = f(x,u), \quad S_1(x^T,t) = V(x^T)e^{-\rho t} \]

and where constraints do not depend on time, Condition \(\eta \) of Theorem C.1 takes the following form in the literature:

\[\mathcal{J}_0(x(T^*),u(T^*)) + \lambda(T^*)f(x(T^*),u(T^*)) = \rho V(x(T^*)) \quad (C.1.2) \]

where \(\lambda(t) = e^{-\rho t}p(t) \). We shall use this form in the next section to identify the value of adjoint variables at \(T^* \).

C.1.2 The problem in finite horizon

Since all optimal trajectories eventually end up staying on the boundary \(Z = \hat{Z}(S) \) of the domain \(D \), a possible approach to the construction of optimal trajectories is to solve a finite-horizon problem with scrap value, constrained terminal state and free terminal time.

The problem is formulated as:

\[\max_{s(t) \geq 0, y(t) \geq 0} \int_0^T \left[u(x(t) + y(t)) - c_s s(t) - c_x x(t) - c_y y(t) \right] e^{-\rho t} dt + e^{-\rho T} V(S) \quad (C.1.3) \]

given the controlled dynamics (2.2.2):

\[
\begin{align*}
\dot{Z} &= -\alpha Z + \beta S + \zeta x - s \\
\dot{S} &= -\beta S + s
\end{align*}
\]

with the usual constraints on controls \(x(t), s(t) \) and \(y(t) \), and the constraint on state variables

\[R(S(t), Z(t)) := \hat{Z}(S(t)) - Z(t) \leq 0, \quad t \in [0, T]. \quad (C.1.4) \]

Initial and terminal conditions are:

\[S(0) = S^0, \quad Z(0) = Z^0, \quad R(S(T), Z(T)) = 0. \quad (C.1.5) \]

The scrap value \(V_S \) is the value function of the problem restricted to the curve \(Z = \hat{Z}(S) \). Its exact form varies depending on the value of \(c_s \), but since in Phase L, \(x(t) = s(t) = 0 \) and \(y(t) = \hat{y} \), we always have the relationship when \(S \geq S_m : \)

\[V(S) = \frac{1}{\rho} (u(\hat{y}) - c_y \hat{y}) (1 - e^{-\rho t(S)}) + e^{-\rho t(S)} V(S_m) , \]

where \(\tau(S) = -\beta^{-1} \log(S/S_m) \) is the time it takes to go from \(S \) to \(S_m \) when in Phase L.

Applying Theorem C.1 \(b \), a sufficient condition for an optimal trajectory is the existence of continuous adjoint variables \(\lambda_S \) and \(\lambda_Z \) (written in current value) and real numbers \(\beta \geq 0 \) and \(\gamma \), such that, \(T^* \) being the final optimal time:

\[\lambda_S(T^*) = \beta \frac{\partial R}{\partial S}(S(T^*),Z(T^*)) + V'(S(T^*)) + \gamma \frac{\partial R}{\partial S}(S(T^*),Z(T^*)) \]

\[\lambda_Z(T^*) = \beta \frac{\partial R}{\partial Z}(S(T^*),Z(T^*)) + \gamma \frac{\partial R}{\partial Z}(S(T^*),Z(T^*)) \]

These two conditions are satisfied if

\[\lambda_S(T^*) = V'(S(T^*)) - \hat{Z}'(S(T^*)) \lambda_Z(T^*). \quad (C.1.6) \]
Given the definition of $\tilde{Z}(\cdot)$ in (2.3.27), this last condition is in turn refined into:

$$\lambda_S(T^*) = \begin{cases} V'(S(T^*)) & \text{if } S(T^*) \leq S_m \\ V'(S(T^*)) - Z'_M(S(T^*))\lambda_Z(T^*) & \text{if } S(T^*) \geq S_m. \end{cases}$$

Moreover, it is easy to show that, on the one hand,

$$Z'_M(S) = \frac{\alpha Z_M(S) - \beta S}{\beta S},$$

and on the other hand,

$$V'(S) = \frac{1}{\beta S} e^{-\rho(S)} (u(\tilde{y}) - c_y \tilde{y} - \rho V(S_m)).$$

Combining these with (C.1.6), we get the identity, when $S(T^*) \geq S_m$:

$$\beta S(T^*) \lambda_S(T^*) + (\alpha Z_M(S(T^*)) - \beta S(T^*)) \lambda_Z(T^*) = e^{-\rho(S(T^*))} (u(\tilde{y}) - c_y \tilde{y} - \rho V(S_m)) \cdot \tag{C.1.7}$$

Next, since the terminal time is free, Condition (C.1.2) amounts to requiring:

$$u(x(T^*) + y(T^*)) = c_x s(T^*) - c_x x(T^*) - c_y y(T^*) \tag{C.1.8}$$

$$+ \lambda_S(T^*) (\beta S(T^*) + s(T^*)) + \lambda_Z(T^*) (\alpha Z(T^*) + \beta S(T^*) + \zeta x(T^*) - s(T^*)) = \rho V(S),$$

where $Z(T^*) = \tilde{Z}(S(T^*))$ because of the terminal condition.

C.1.2.1 Junction with $Z = \overline{Z}$

Assume in this section that $Z(T^*) = \overline{Z}$, so that $\tilde{Z}'(S(T^*)) = 0$. In that case, (C.1.6) determines directly $\lambda_S(T^*)$ as

$$\lambda_S(T^*) = V'(S(T^*)).$$

C.1.2.2 Junction with $Z = Z_M(S)$

Assume in this section that $S(T^*) \geq S_m$ and $Z(T^*) = Z_M(S(T^*))$: the final point is on the boundary curve $Z = Z_M(S)$. With (C.1.7) and the definition of $V(S)$, (C.1.8) reduces to:

$$(u(x(T^*) + y(T^*)) - c_x s(T^*) - c_x x(T^*) - c_y y(T^*)$$

$$+ \lambda_S(T^*) (\beta S(T^*) + s(T^*)) + \lambda_Z(T^*) (\alpha Z(T^*) - s(T^*))$)$

$$= (u(\tilde{y}) - c_y \tilde{y}) (1 - e^{-\rho(S)}) + e^{-\rho(S)} V(S_m)$$

$$(u(x(T^*) + y(T^*)) - c_x s(T^*) - c_x x(T^*) - c_y y(T^*)$$

$$+ \lambda_S(T^*) (\beta S(T^*) + s(T^*)) + \lambda_Z(T^*) (\alpha Z(T^*) - s(T^*)) = u(\tilde{y}) - c_y \tilde{y}. \tag{C.1.9}$$

The set of conditions:

$$y(T^*) = 0, \quad x(T^*) = \tilde{y}, \quad s(T^*) = 0, \quad \lambda_Z(T^*) = \frac{c_y - c_x}{\zeta}$$

turns out to satisfy this equation, independently of the value of $\lambda_S(T^*)$. Assuming the continuity of controls, these conditions correspond to Phase A.

C.1.2.3 Junction at (S_m, \overline{Z}) in Phase S

Assume that trajectories are required to stop at time T in state (S_m, \overline{Z}) and continue in Phase S. Then the total gain on this trajectory, evaluated from instant T on, is, since the control is $x = \overline{x}$ and $s = \zeta \overline{x}$,

$$V_S = \int_0^\infty e^{-\rho t} (u(x) - (c_x + \zeta c_s) \overline{x}) \, dt = \frac{1}{\rho} (u(x) - (c_x + \zeta c_s) \overline{x}), \tag{C.1.10}$$

94
In that case, Condition (C.1.2) is:

\[
 u(x(T^*) + y(T^*)) - c_s s(T^*) - c_x x(T^*) - c_y y(T^*) + \lambda_S(T^*)(-\beta S_m + s(T^*)) + \lambda_x(T^*)(\zeta(T^*) - s(T^*)) = u(x) - (c_x + \zeta c_s) \cdot \tag{C.1.11}
\]

The set of conditions

\[
 y(T^*) = 0, \quad x(T^*) = \bar{x}, \quad s(T^*) = \zeta \bar{x},
\]

turns out to solve this equation, independently of the values of \(\lambda_S(T^*)\) and \(\lambda_x(T^*)\). Assuming the continuity of controls, we see that this set of controls correspond to Phase B since \(s = \zeta \bar{x}\). Inside Phase B, the value of the consumption \(x(t)\) is given by: \(x(t) = q^t(c_x + \zeta c_s - \zeta \lambda_x(t))\). The continuity of controls is then equivalent to the continuity of \(\lambda_S(\cdot)\). The value of \(\lambda_x(T^*)\) remains undetermined, except that it must satisfy some inequality as in Corollary 3.1.

C.1.3 Optimization on the ceiling

We derive here the optimal control when the constraint \(Z = \bar{Z}\) is enforced. This analysis is used in Section 3.4.5.3 (page 68) to discuss that such trajectories cannot be optimal when \(c_s < \hat{c}_s\).

Since the situation corresponds to what we have called Phase Q, this solution can be obtained from Section 3.5.2, but we quickly re-derive it here.

Imposing \(Z = \bar{Z}\) to the problem of this chapter reduces it to the following optimal control problem. Since \(\bar{Z} = 0 = -\alpha \bar{Z} + \beta S + \zeta x - s\), we have \(\beta S - s = \alpha \bar{Z} - \zeta x = \zeta (\bar{x} - x)\), then \(\bar{s} = \zeta (x - \bar{x})\). The scrap value is given by (C.1.10). The reduced problem can therefore be stated as:

\[
 \max_{x(t),y(t)} \int_0^T [u(x(t)) - c_x x(t) - c_y y(t)]e^{-\rho \theta} dt + e^{-\rho T} \left(u(\bar{x}) - (c_x + \zeta c_s) \bar{x} \right) \tag{C.1.12}
\]

given the controlled dynamics \(\bar{s} = \zeta (x - \bar{x})\), the constraints on controls \(x \geq 0\) and \(y \geq 0\), and the terminal condition \(S(T) = S_m\). The former constraint on control \(s\), \(\zeta x - s \geq 0\), becomes here a constraint on the state: \(S \leq S_m\). This constraint is superseded by the terminal constraint for \(S\) and is therefore omitted.

Naming \(\mu_S\) the adjoint variable for state \(S\), the Lagrangian for the problem writes as:

\[
 L(y, x, Z, S) = u(x + y) - (c_x + \zeta c_s)x - c_y y + \zeta c_s \bar{x} - \beta c_s S + \mu_S (\bar{x} - x) + \gamma_x x + \gamma_y y.
\]

The first-order equations are:

\[
 0 = u'(x + y) - c_x - \zeta c_s + \zeta \mu_S + \gamma_x
\]

\[
 0 = u'(x + y) - c_y + \gamma_y
\]

\[
 \dot{\mu}_S = \rho \mu_S + \beta c_s.
\]

In addition, the optimality condition (C.1.2) for the terminal time \(T\) is, taking into account the fact that \(S(T) = S_m\),

\[
 u(x(T) + y(T)) - (c_x + \zeta c_s)x(T) - c_y y(T) + \mu_S(T) (\zeta x(T) - \bar{x}) = u(x) - (c_x + \zeta c_s) \cdot
\]

This equation is clearly satisfied with \(x(T) = \bar{x}\) and \(y(T) = 0\). We actually expect the solution to be such that \(y = 0\) and \(x > 0\), hence \(\gamma_x = 0\). Solving the equations under this assumption and the terminal condition \(x(T) = \bar{x}\), we arrive at:

\[
 x(t) = q^t(c_x + \zeta c_s - \zeta \lambda_S(t)) \tag{C.1.13}
\]

\[
 \mu_S(t) = \left(\lambda^S_S + \frac{\beta c_s}{\rho} \right) e^{\theta t} - \frac{\beta c_s}{\rho}, \tag{C.1.14}
\]

where \(\lambda^S_S\) is the value defined, e.g., on page 68.
C.2 The representative agent’s problem

Following the decentralization principle, the socially optimal trajectory obtained by the regulator can be implemented by imposing taxes on the representative agent. We discuss here this implementation, in the case analyzed in most of Chapter 4: infinite stock of carbon, absence of limits on sequestered stock S or on renewable energy consumption y.

Accordingly, consider the problem of the representative agent, which faces a unitary tax θ_x on consumption and a unitary tax θ_s on sequestration (this “tax” may actually be negative, resulting in an incentive). Both taxes are possibly depending on time. The representative agent is not constrained by the value of the stocks S or Z. It must therefore solve:

$$\max_{s(t),x(t),y(t)} \int_0^\infty [u(x(t) + y(t)) - (c_s + \theta_s(t))s(t) - (c_x + \theta_x(t))x(t) - c_y y(t)]e^{-\rho t} dt$$ \hspace{1cm} (C.2.1)

given the constraints on controls: $y \geq 0$ and $0 \leq s \leq \zeta x$. There is no state variable nor dynamics to consider in this problem.

Modifying the analysis of Section 2.3.1, we find the first-order conditions:

$$c_s + \theta_s = \delta_y - \delta_{sx}$$
$$u'(x+y) = c_x + \theta_x - \zeta \delta_{sx}$$
$$u'(x+y) = c_y - \delta_y,$$

where we have used δ_y, δ_s and δ_{sx} as Lagrange multipliers for the constraints on controls. Identifying these with the first-order conditions for the regulator’s problem (2.3.2)–(2.3.4), we find the value that should be given to the taxes:

$$\theta_s(t) = -\zeta \lambda_z(t) \hspace{1cm} \theta_s(t) = \lambda_S(t) - \lambda_S(t),$$

where λ_S and λ_Z are the adjoint variables for the socially optimal trajectory. If these values are used, then the socially optimal control also solves the representative agent’s optimization problem, and the respective Lagrange multipliers $\gamma_s, \gamma_{sx}, \gamma_y, \delta_y, \delta_{sx}$ coincide.

This choice is not the unique possibility however. Assume instead that

$$\theta_s(t) = -\zeta \tau(t) \hspace{1cm} \theta_s(t) = \tau(t) - \lambda_S(t).$$

Replacing these values in the representative agent’s first-order conditions and rearranging, we have:

$$\tau + \delta_{sx} = \lambda_S + \delta_s - c_s$$

As a consequence, as long as $\tau + \delta_{sx} = \lambda_S + \gamma_{sx}$, the socially optimal trajectory is still a solution to the agent’s problem, using the remaining multipliers $\delta_y = \gamma_y$ and $\delta_s = \gamma_s$. Since we must have $\delta_{sx} \geq 0$, the constraint on the function τ is just: $\tau(t) \leq \lambda_Z(t) + \gamma_{sx}(t)$.

Consider now the particular situation where the initial state of the system is (S_m, Z), in the case where $c_s < \tilde{c}_s$. The socially optimal trajectory for this situation is identified in Lemma 4.2 on page 34: this trajectory is stationary. In particular, $\gamma_s = 0$ and

$$\lambda_S = \frac{\rho + \beta}{\beta} \left(c_s + \frac{c_x - \bar{p}}{\zeta} \right) \hspace{1cm} \lambda_S = c_s + \frac{c_x - \bar{p}}{\zeta}$$

$$\gamma_{sx} = \frac{\rho + \beta}{\beta} (\tilde{c}_s - c_s) \hspace{1cm} \gamma_y = c_y - \bar{p}.$$

According to the observation above, any choice of taxes with

$$\theta_x \geq \bar{p} - c_x \hspace{1cm} \theta_s = -\frac{1}{\zeta} \theta_x - c_s - \frac{c_x - \bar{p}}{\zeta}$$

96
will result in the representative agent finding this stationary trajectory optimal as well.

Returning to the social planner’s problem, this suggests that the solution computed in Lemma 4.2 is not the unique solution to the problem. Any solution with a costate variable λ_Z satisfying

$$\lambda_Z + \gamma_{\text{ax}} = \frac{C_x - P_x}{\zeta}$$

should also work. The value of λ_Z is not uniquely defined in this situation. By extension, when considering a trajectory that starts in a different state (S^0, Z^0) but ends up in state (S_m, Z), the value of λ_Z when the terminal state has been reached, is not uniquely defined either. We can use as terminal value for λ_Z the value it takes just before entering the terminal state, thereby avoiding a jump in this function.
Appendix D

Local analysis of trajectories at junction points

This section contains a local analysis of optimal curves when they connect to the boundary $Z = \bar{Z}(S)$; this part is useful to assess the global consistency of the family of optimal curves.

The following analysis gives indications on several features of the state trajectory and the consumption when the system is in Phase A (Section D.1) or Phase B (Section D.2), at particular junction points. We obtain in particular the direction of variation of $x(t)$, $S(t)$ and $Z(t)$, as well as geometric properties such as tangency of trajectories with the line $Z = \bar{Z}$.

D.1 Phase A

We are interested in the variations of $x(t)$ and in the local expansions of state variables at junction points, when the system is in Phase A. The state and adjoint trajectories are solution to:

\[
\begin{align*}
\dot{Z} &= -\alpha Z + \beta S + \zeta x \\
\dot{S} &= -\beta S \\
\dot{\lambda}_Z &= (\rho + \alpha)\lambda_Z \\
\dot{\lambda}_S &= (\rho + \beta)\lambda_S - \beta \lambda_Z
\end{align*}
\]

and $x(t) = q^d(c_x - \zeta \lambda Z)$. Obviously, S is always decreasing. It follows from these equations that

\[
\ddot{S} = -\beta \dot{S} = \beta^2 S \\
\ddot{\lambda}_S = -\beta \dot{\lambda}_S = -\beta^2 \lambda_S,
\]

and

\[
\begin{align*}
\ddot{Z} &= -\alpha \dot{Z} + \beta \dot{S} + \zeta \dot{x} \\
&= \alpha^2 Z - \beta (\alpha + \beta) S - \alpha \zeta x + \zeta \dot{x} \\
\ddot{\lambda}_Z &= -\alpha \dot{\lambda}_Z + \beta \dot{\lambda}_S + \zeta \dot{x} \\
&= -\alpha^2 Z + \beta (\alpha^2 + \alpha \beta + \beta^2) S + \alpha^2 \zeta x - \alpha \zeta \dot{x} + \zeta \dot{x}.
\end{align*}
\]

Finally, from the specific form of $x(t)$, we have:

\[
\begin{align*}
\dot{x} &= -\zeta \lambda_Z (q^d)'(c_x - \zeta \lambda_Z) = -\zeta (\rho + \alpha) \lambda_Z (q^d)'(c_x - \zeta \lambda_Z) \\
\dot{y} &= -\zeta \lambda_Z (q^d)'(c_x - \zeta \lambda_Z) + \zeta (\dot{\lambda}_Z)^2 (q^d)''(c_x - \zeta \lambda_Z).
\end{align*}
\]

By assumption, $q^d(\cdot)$ and $(q^d)'(\cdot)$ are decreasing: $(q^d)' < 0$. There is no assumption on the sign of $(q^d)''$. The analysis shows that $\lambda_Z < 0$ so that $\dot{\lambda}_Z < 0$ and $\dot{\lambda}_Z < 0$. Finally, $\dot{x} < 0$ but the sign of \dot{y} is not determined a priori. In the LQ case (see Appendix E), $(q^d)'' = 0$ and $\dot{y} < 0$.
D.1.1 Junction with \(Z = \overline{Z} \).

Assume that the trajectory hits the state \((S, \overline{Z}) = (\overline{Z}, S_0)\) at time \(t = 0 \). Then we have the Taylor expansion for \(Z \):

\[
Z(t) = \overline{Z} + t(\beta(S_0 - S_m) + \zeta x(0)) + \frac{t^2}{2} (\alpha \beta S_m - \beta(\alpha + \beta)S_0 - \alpha \zeta x(0) + \zeta \dot{x}(0)) + O(t^3) .
\]

When the junction occurs in Phase P with continuity of \(\lambda_Z \), we have from (4.1.1):

\[
\lambda_Z(0) = \frac{1}{\zeta} \left(c_x - u' (\overline{x} - \frac{\beta}{\zeta} S_0) \right),
\]

or equivalently, \(\zeta x(0) = \zeta \eta (u'(\overline{x} - \frac{\beta}{\zeta} S_0)) = \zeta \overline{x} - \beta S_0 \) (see for instance Figure 4.1, top, on page 44).

Replacing in the development, we get:

\[
Z(t) = \overline{Z} + \frac{t^2}{2} (\alpha \beta S_m - \beta(\alpha + \beta)S_0 - \alpha \zeta x + \alpha \beta S_0 + \zeta \dot{x}(0)) + O(t^3)
\]

\[
= \overline{Z} + \frac{t^2}{2} (-\beta^2 S_0 + \zeta \dot{x}(0)) + O(t^3) .
\]

We have seen above that \(t < 0 \) in general, so that in fact, \(\frac{d}{dt} Z < 0 \). On the other hand, the development for \(S \) is just:

\[
S(t) = S_0 - \beta t S_0 + \frac{t^2}{2} \beta^2 S_0 + O(t^3) .
\]

The conclusion is: at the junction of phases \(A | P \), the trajectory is tangent to the line \(Z = \overline{Z} \), coming from below and from the right.

When the junction occurs in Phase R, we have from (4.2.6),

\[
\lambda_Z(0) = - \frac{c_y - c_x}{\zeta} , \text{ or equivalently } x(0) = \tilde{y} .
\]

The development can be expressed as:

\[
Z(t) = \overline{Z} + t(\beta S_0 + \zeta (\tilde{y} - \overline{x})) + O(t^2) = \overline{Z} + t(\beta S_0 - S_\beta) + O(t^2) .
\]

Then, the trajectory hits the ceiling at an angle of direction \((-\beta S_0, S_\beta)\). At the triple point of phases A, R and P, we have \(S_0 = S_\beta \), and this direction is tangent to the line \(\overline{Z} = \overline{Z} \), in accordance with the junction in phase P, see above. At any other point \(S_\beta < S_0 \leq S_m \), this angle is sharp.

When junction occurs in Phase Q, then according to (4.2.3) we have: \(s(0) = \zeta x(0) - \beta (S_m - S_0) = \zeta (x(0) - \overline{x}) + \beta S_0 \). Replacing in the development of \(Z \), we get:

\[
Z(t) = \overline{Z} + ts(0) + O(t^2) ,
\]

and again, the trajectory hits the line \(Z = \overline{Z} \) with an angle of direction \((-\beta S_0, s(0))\). As the junction point \(S_0 \) moves from \(S_0^{QP} \) to \(S_0^{QR} \), this angle moves continuously between the tangent to \(Z = \overline{Z} \) to the same angle as in Phase R.

D.1.2 Junction on the curve \(Z = Z_M(S) \).

When an optimal trajectory joins the boundary curve at some point \((S, Z_M(S))\), its tangent vector is \((-\beta S_m - \alpha Z + \beta S + \zeta \dot{x})\). The tangent vector to the boundary itself, since the curve is a “free” trajectory: \(-\beta S_m - \alpha Z + \beta S\). The tangent vector of the optimal trajectory is therefore pointing “outwards” as required.

When the junction point is close to \(S = S_m \), the tangent vector tends to \((-\beta S_m, \tilde{y})\). This is the same limit as in Phase R: according to what was said above, the tangent vector in Phase R close to \(S = S_m \) has the direction: \((-\beta S_m, \beta (S_m - S_\beta))\) = \((-\beta S_m, \tilde{y})\) (see page 31). There is therefore continuity of directions at that point.
D.2 Phase B

We are interested here in the sign of \(\dot{x} \) and in asymptotic expansions of \(S(t) \) and \(Z(t) \) when in Phase B. We start with generic formulas, then specialize them when a junction with line \(Z = \overline{Z} \) takes place. In Section D.2.2, we perform a detailed local analysis of the state close to point \((S_m, \overline{Z})\).

When in Phase B, the state and adjoint trajectories are solution to:

\[
\begin{align*}
\begin{aligned}
\dot{Z} &= -\alpha Z + \beta S \\
\dot{S} &= -\beta S + \zeta x
\end{aligned}
\end{align*}
\begin{align*}
\begin{aligned}
\dot{\lambda}_Z &= (\rho + \alpha)\lambda_Z \\
\dot{\lambda}_S &= (\rho + \beta)\lambda_S - \beta \lambda_Z
\end{aligned}
\end{align*}
\]

and \(x(t) = q^4(c_x + \zeta c_s - \zeta \lambda_S) \). It follows that:

\[
\begin{align*}
\dot{Z} &= -\alpha \dot{Z} + \beta \dot{S} \\
&= \alpha^2 Z - \beta (\alpha + \beta) S + \beta \zeta x \\
\dot{S} &= -\beta \dot{S} + \zeta \dot{x} \\
&= \beta^2 S - \beta \zeta x + \zeta \dot{x},
\end{align*}
\]

and

\[
\begin{align*}
\dot{\dot{Z}} &= -\alpha \dot{Z} + \beta \dot{S} \\
&= -\alpha^3 Z + \beta (\alpha^2 + \alpha \beta + \beta^2) S - \beta (\alpha + \beta) \zeta x + \beta \zeta \dot{x} \\
\dot{\dot{S}} &= -\beta \dot{S} + \zeta \dot{x} \\
&= -\beta^3 S + \beta \zeta x - \beta \zeta \dot{x} + \zeta \ddot{x}.
\end{align*}
\]

Finally, from the specific form of \(x(t) \), we have:

\[
\begin{align*}
\dot{x} &= -\zeta \lambda_S (q^4(c_x + \zeta c_s - \zeta \lambda_S)) \\
\dot{y} &= -\zeta \lambda_S (q^4(c_x + \zeta c_s - \zeta \lambda_S) + \zeta (\lambda_s)^2 (q^4)''(c_x + \zeta c_s - \zeta \lambda_S)).
\end{align*}
\]

We conclude that the sign of \(\dot{y} \) is the same as the sign of \(\lambda_S \), but the latter can be \(+\) or \(-\) in Phase B. A more precise analysis in function of \(c_s \) is necessary.

D.2.1 Junction with \(Z = \overline{Z} \).

The analysis which follows suggests that only two possibilities occur for a junction in phase B: 1) either \(c_s < \overline{c}_s \) and the trajectory may actually leave the line \(Z = \overline{Z} \) to enter phase B; 2) the trajectory hits \((S_m, \overline{Z})\) in phase B.

When the trajectory hits the point \((S^0, \overline{Z})\), the Taylor developments of the state variables are generally:

\[
\begin{align*}
Z(t) &= Z + t\beta(S^0 - S_m) + \frac{t^2}{2}(\alpha \beta S_m - \beta(\alpha + \beta)S^0 + \beta \zeta x(0)) + O(t^3) \quad \text{(D.2.1)} \\
S(t) &= S^0 + t(\zeta x(0) - \beta S^0) + \frac{t^2}{2}(\beta^2 S^0 - \beta \zeta x(0) + \zeta \dot{x}(0)) + O(t^3). \quad \text{(D.2.2)}
\end{align*}
\]

Assume first that \(S^0 < S_m \). Then clearly \(\dot{Z}(0) < 0 \) and the trajectory cannot arrive at the line \(Z = \overline{Z} \): it must be leaving. Its direction is \((\zeta x(0) - \beta S^0, S^0 - S_m)\).

Assume next that \(S^0 = S_m \). Then the development is simplified into:

\[
\begin{align*}
Z(t) &= Z + \frac{t^2}{2}(\alpha \beta S_m - \beta(\alpha + \beta)S_m + \beta \zeta x(0)) + O(t^3) \\
&= Z + \frac{t^2}{2}\beta(\zeta x(0) - x) + O(t^3) \quad \text{(D.2.3)}
\end{align*}
\]

100
\[S(t) = S_m + t\zeta(x(0) - \bar{x}) + \frac{t^2}{2}(\beta\bar{x} - \beta\zeta x(0) + \zeta\dot{x}(0)) + O(t^3). \quad \text{(D.2.4)} \]

If \(x(0) \neq \bar{x} \), by elimination of the time variable, one gets that
\[t \sim \frac{S(t) - S_m}{\zeta(x(0) - \bar{x})} \]
so that the trajectory is, asymptotically,
\[Z = \bar{Z} + \frac{1}{2}\beta\zeta(x(0) - \bar{x}) \left(\frac{S - S_m}{\zeta(x(0) - \bar{x})} \right)^2 + \alpha(S - S_m)^2 \]
\[= \bar{Z} + \frac{1}{2} \frac{\beta(S - S_m)^2}{\zeta x(0) - \bar{x}} + O((S - S_m)^2). \]

On the condition that \(x(0) < \bar{x} \), this trajectory is tangent to the line \(Z = \bar{Z} \) and arrives from below and from the right. If \(x(0) > \bar{x} \), the trajectory arrives from above, which is not consistent.

However, if \(x(0) = \bar{x} \), then we have \(\dot{S} = \ddot{Z} = \bar{Z} = 0 \), and the development of \(Z(t) \) has to be refined to get, using the formula \(\bar{Z} - \alpha\bar{Z}^\beta + \beta S \):
\[Z(t) = \bar{Z} + \frac{t^2}{6}\beta\zeta x(0) + O(t^4) \quad \text{(D.2.5)} \]
\[S(t) = S_m + \frac{t^2}{2}\zeta\dot{x}(0) + O(t^3). \quad \text{(D.2.6)} \]

If \(\dot{x}(0) > 0 \), which happens when \(\lambda_S > 0 \), then the trajectory is tangent to the line \(Z = \bar{Z} \) and approaches it from below and from the right. In the case \(\dot{x}(0) < 0 \), it approaches it from above, and this is not consistent. In the first case, eliminating the time variable gives (remembering that \(t \leq 0 \)):
\[t \sim -\left(\frac{2(S(t) - S_m)}{\zeta\dot{x}(0)} \right)^{1/2} \]
so that the trajectory is, asymptotically,
\[Z = \bar{Z} - \frac{1}{6}\zeta\dot{x}(0) \left(\frac{2(S - S_m)}{\zeta\dot{x}(0)} \right)^{3/2} + o((S - S_m)^{3/2}) \]
\[= \bar{Z} - \frac{3}{2}\frac{(S - S_m)^{3/2}}{(\zeta\dot{x}(0))^{3/2}} + o((S - S_m)^{3/2}). \]

D.2.2 Local analysis around \((S_m, Z)\)

This section is devoted to a proof that the general scheme of Figure 4.4 page 53 is correct, at least for a set of trajectories “close” to the point \((S_m, Z)\). The result is stated as Lemma D.1 next. As a corollary, we state in Lemma 4.15 (page 52) that some optimal trajectories consist in a Phase B followed by the Phase S.

This lemma describes a property of the dynamical system of Phase B around particular initial values. It does not depend on costs. The fact that it describes optimal trajectories holds however only for \(c_s < \hat{\lambda}_s \). The critical value \(\lambda_S^{(S)} = c_s + (c_x - c_y) / \zeta \) is central in the analysis.

Lemma D.1. Consider the dynamical system characteristic of Phase B, under Assumption 1 and assuming that \(u(\cdot) \) has a bounded third derivative. There exists a constant \(\bar{t} \) such that, for all \(\ell \in (0, \bar{t}] \), the trajectories which terminate at \(S(T) = S_m, Z(T) = Z \), \(\lambda_S(T) = \lambda_S^{(S)} \) and \(\lambda_Z(T) = \lambda_Z^{(S)} - \ell \), have the following property: there exist \(\tau_1 < \tau_2 < \tau_3 < \tau_4 < \tau_5 < \tau_6 < T \) such that the table of variation in Table D.1 holds.
The time instants τ_i are illustrated in Figure 4.4 on page 53. The proof uses in part the following intermediate result:

Lemma D.2. Consider the dynamical system characteristic of Phase B, under Assumption 1, assuming that $u(t)$ has a bounded third derivative. There exist constants, C_1, C_2, C_3 and l such that, for all $t \in (0, l]$, the trajectories which terminate at $S(T) = S_m$, $Z(T) = Z$, $\lambda_S(T) = \lambda_S(S)$ and $\lambda_Z(T) = \lambda_Z(S) - l$, are such that:

\[
\begin{align*}
\zeta_x(T - C_1 t) &> \beta S(T - C_1 t) \\
\alpha Z(T - C_2 t) &> \beta S(T - C_2 t) \\
\alpha Z(T - C_2 t) &> \alpha Z .
\end{align*}
\]

Proof. The proof consists in computing Taylor expansions of the three different functions $\zeta_x(t)$, $\beta S(t)$ and $\alpha Z(t)$ around $t = T$, while at the same time considering $\lambda_Z(T) = \lambda_Z(S) - l$. In a second phase, the value of l is linked appropriately to the time parameter in the expansion.

We start with $\lambda_S(t)$, the formula of which is given in (3.2.5). Using the boundary conditions, and the fact that $\beta \lambda_S^S = (p + \beta) \lambda_S^S$, we have:

\[
\begin{align*}
\lambda_S(T + u) & = \lambda_S^S e^{(p+\beta)u} - \frac{1}{\alpha - \beta} \left((p + \beta) \lambda_S^S - \beta \ell \right) \left(e^{(p+\beta)u} - e^{(p+\beta)u}\right) \\
& = \lambda_S^S + u \beta \ell + \frac{1}{2} u^2 + O(u^3),
\end{align*}
\]

where we have used the shorthand notation $A := \beta \ell (p + \alpha + \beta) - (p + \alpha) (p + \beta) \lambda_S^S$. The function $O(u^2)$ in this expansion is bounded by $M u^2$, for some constant M, uniformly for ℓ in any compact containing 0. Next, consider the expansion of $x(t)$:

\[
\begin{align*}
x(T + u) & = q^l(c_x + \zeta x - \zeta \lambda_S(T + u)) = q^l(\bar{p} + \zeta(\lambda_S^S - \lambda_S(T + u))) \\
& = \bar{p} + (q^l(\bar{p}) \zeta(\lambda_S^S - \lambda_S(T + u))) + \frac{1}{2}(q^l)'(\bar{p}) \zeta^2(\lambda_S^S - \lambda_S(T + u))^2 + O(\lambda_S^S - \lambda_S(T + u)^2) \\
& = \bar{p} - (q^l)'(\bar{p}) \zeta \left(\beta \ell + \frac{1}{2} u A\right) u + \frac{1}{2}(q^l)'(\bar{p}) \zeta^2 \beta \ell^2 u^2 + O(u^3).
\end{align*}
\]

Again, the “$O(u^2)$” term is uniform for ℓ in a compact, assuming that q^l admits a bounded third derivative. The expansion for $S(t)$ is derived from that of x, through the integral formula (3.4.8). After a change of variables:

\[
\begin{align*}
S(T + u) & = S_m e^{-\beta u} + \zeta e^{-\beta u} \int_0^u e^{\beta w} x(T + w) dw \\
& = e^{-\beta u} \left(S_m + \frac{\zeta}{\beta} \frac{e^{\beta u} - 1}{\beta} - \zeta^2 \beta (q^l)'(\bar{p}) \int_0^u w e^{\beta w} dw \right).
\end{align*}
\]
\[-\frac{1}{2} C^2 \left((q^d)'(\ddot{p}) \lambda - (q^d)'''(\ddot{p}) \kappa \beta \ell^2 \right) \int_0^\ell \, 2w^2 e^{\beta w} \, dw + \int_0^\ell O(w^3) e^{\beta w} \, dw \]

\[= e^{-\beta u} \left(S_m e^{\beta u} - \frac{1}{2} (q^d)'(\ddot{p}) \kappa^2 \beta u^2 - \frac{1}{3} (q^d)'(\ddot{p}) \kappa^2 \beta \ell^2 \right) \]

\[-\frac{1}{6} (q^d)'(\ddot{p}) \kappa^2 A u^3 + \frac{1}{6} (q^d)''(\ddot{p}) \kappa^2 \beta \ell^2 u^3 \right) + O(u^4). \]

Finally, the expansion for \(Z(\cdot) \) follows from (3.4.7):

\[Z(T + u) = Ze^{-\alpha u} + \beta e^{-\alpha u} \int_0^\ell e^{\alpha w} S(T + w) \, dw \]

\[= Ze^{-\alpha u} + \beta e^{-\alpha u} \int_0^\ell e^{\alpha w} S_m \, dw \]

\[-e^{-\alpha u} \int_0^\ell e^{-\beta w} (q^d)'(\ddot{p}) \kappa^2 w^2 \left(\frac{1}{2} \beta \ell + \frac{1}{2} A + \tilde{O}(w) + O(w^2) \right) \, dw \]

\[= Z - (q^d)'(\ddot{p}) \kappa^2 \beta \left(\frac{1}{6} \beta \ell - \frac{1}{24} (\rho + \alpha)(\rho + \beta) \lambda_S^{(S)} u \right) u^3 + \tilde{O}(u^4) + O(u^5). \]

If we choose now to set \(u = -\tilde{C} \ell \) for some positive constant \(C \), we get the expansions:

\[x(T - \tilde{C} \ell) = x + (q^d)'(\ddot{p}) \kappa C \left(\beta + \frac{1}{2} C(\rho + \alpha)(\rho + \beta) \lambda_S^{(S)} \right) \ell^2 + O(\ell^3) \]

\[S(T - \tilde{C} \ell) = S_m - (q^d)'(\ddot{p}) \kappa^2 C^2 \left(\frac{1}{2} \beta + \frac{1}{6} C(\rho + \alpha)(\rho + \beta) \lambda_S^{(S)} \right) \ell^2 + O(\ell^4) \]

\[Z(T - \tilde{C} \ell) = Z - (q^d)'(\ddot{p}) \kappa^2 C^2 \beta \left(\frac{1}{6} \beta + \frac{1}{24} C(\rho + \alpha)(\rho + \beta) \lambda_S^{(S)} \right) \ell^4 + O(\ell^5). \]

By assumption, \((q^d)' \ell < 0 \). If the constants \(C_1, C_2 \) and \(C_3 \) are chosen such that

\[C_1 > 2 C_0, \quad C_2 > 3 C_0, \quad C_3 > 4 C_0, \quad C_0 := \frac{\beta}{(\rho + \alpha)(\rho + \beta)} \frac{1}{\lambda_S^{(S)}}, \]

then the different orders of the expansions allow to conclude that for \(\ell \) sufficiently close to 0, \(\kappa \ell x(T - \tilde{C} \ell) > \beta S(T - \tilde{C} \ell) > \alpha Z(T - \tilde{C} \ell) \) and \(\alpha Z(T - \tilde{C} \ell) > \alpha \tilde{Z} \).

Proof of Lemma D.1. We begin with \(x(t) \) and its related function \(\lambda_S(t) \), since \(x(t) = q^d(c_x + \xi_\kappa - \xi_\lambda \lambda_S(t)) \). Using the results of Section 3.2, it is straightforward to show that there exists \(\tau_0 < T \) such that \(\lambda_S(\tau_0) = 0 \). Indeed, \(\lambda_S(t) = 0 \) iff \(\rho + \beta) \lambda_S(t) = \beta \lambda_Z(t) \), and from the observations in Section 3.2.2, the ratio \(r_\lambda = \lambda_S/\lambda_Z \) is decreasing on the interval \(t \in (0, \infty) \). There exists therefore a unique \(\tau_0 \) where \(\lambda_S(\tau_0) \) is minimal: \(\lambda_S(t) \) is decreasing up to \(\tau_0 \), then increasing.

Next, we have

\[M(t) = -\xi_\lambda \kappa \left(q^d(c_x + \xi_\kappa - \xi_\lambda \lambda_S) \right) \]

and since \((q^d)' \ell < 0 \) under Assumption 1, the variation of \(\xi_\lambda \kappa \) as in Table D.1. When \(t \rightarrow \infty \), \(\lambda_S(t) \rightarrow \ell \) so that \(x(t) \rightarrow q^d(c_x + \xi_\kappa) \). Under the assumption that \(c_x < \xi_\kappa \), we find that \(q^d(c_x + \xi_\kappa) \geq 0 \). This implies the existence of \(\tau_0 < \tau_0 \) such that \(x(\tau_0) = 0 \). The variation of \(\kappa x(t) \) is therefore as claimed in Table D.1.

Consider now the function \(\lambda_S(t) \). According to the development close to \(t = T \) computed in the proof of Lemma D.2 (see also Section D), \(\beta S(t) > \beta S_m = \kappa \tilde{x} > \kappa x(t) \) for \(t \) sufficiently close to \(T \). On the other hand, from Lemma D.2, there exists \(\tilde{T} \) such that for all \(\ell \in (0, \tilde{T}) \), there is a time \(\tau \) such that \(\kappa \lambda_S(\tau) < \kappa \tilde{x} \). By continuity, this implies the existence of at least one \(\tau_0 \) such that \(\beta S(\tau_0) = \kappa \tilde{x} \). Let \(\tau_0 \) be the largest of them. Necessarily, \(x(\tau_0) > \tilde{x} \) because \(\tilde{S}(\tau_0) = -\beta S(T_0) > \beta S(T_0) - \kappa x(\tau_0) = 0 \), and because \(\beta S(\tau_0) > 0 \) for \(t \in (t_1, T) \) implies \(\tilde{S}(\tau_0) > S_m \). From the variation of \(x(t) \), this implies in turn that \(\tau_0 < \tau_0 \).
We argue now that $\dot{S}(t) > 0$ for all $t < \tau_1$, so that the variation of S is as claimed in Table D.1. Assume by contradiction that $\dot{S}(\tau) = 0$ for some $\tau < \tau_1$, and consider the largest of such values. Then $\dot{S}(t) > 0$ for all t in the interval (τ, τ_1). Then, since $\dot{S} = -\beta \dot{S} + \zeta \dot{\tau}$, and since $\dot{\tau}(t) < 0$ on the interval, according to the variation of $\dot{\tau}$, we conclude that $\dot{S}(t) < 0$ over the interval. We reach a contradiction with the fact that $\dot{S} = 0$ at both extremities.

Finally, according again to Lemma D.2, there exists a τ such that $\beta S(\tau) < \alpha Z(\tau)$. Similarly as above, this implies the existence of a unique τ_2 such that $\beta S(\tau_2) = \alpha Z(\tau_2)$. Clearly, Z is increasing on the interval $[\tau_2, T]$ so that $\beta S(\tau_2) = \alpha Z(\tau_2) < \alpha Z(T) = \alpha Z = \beta S_m$. This implies in turn: on the one hand that $\tau_2 < \tau_1$, and on the other hand that there exists τ_3 such that $S(\tau_3) = S_m$ and $\tau_2 < \tau_3 < \tau_1$. This concludes the proof that the variation of S is as in Table D.1.

There remains to complete the analysis of $Z(t)$. By the same convexity argument, $\alpha Z(t)$ cannot cross twice $\beta S(t)$ because $\ddot{Z} = -\alpha \dot{Z} + \beta \dot{S}$ is positive on any interval ending at τ_2. Therefore, \dot{Z} cannot vanish on interval $(-\infty, \tau_2)$ and the variation of \dot{Z} is as shown in Table D.1.

Using Lemma D.2 a last time, we conclude that there exists a value τ_1 such that $Z(\tau_1) = Z$. The function $Z(\cdot)$ therefore evolves as described in Table D.1. This concludes the proof. \qed
Appendix E

The Linear-Quadratic case

In this section, we develop explicit formulas for the case where \(u(\cdot) \) is quadratic, in the situation where \(X \) is infinite. The relationship between critical parameter values becomes clear in this case. A numerical example is developed using these formulas.

E.1 Relationships between parameters

In that case, \(u'(\cdot) \) is linear. Let \(-W\) denote its slope, with \(W > 0 \). Let us choose the form:

\[
\begin{align*}
 u'(x) &= \bar{p} - W(x - \bar{x}) \quad \text{(E.1.1)} \\
 u(x) &= u(\bar{x}) + p(x - \bar{x}) - \frac{1}{2} W(x - \bar{x})^2 \quad \text{(E.1.2)} \\
 q'(p) &= \bar{x} - \frac{1}{W}(\bar{p} - p). \quad \text{(E.1.3)}
\end{align*}
\]

Since \(c_y = u'(\bar{y}) \), and \(c_x = u'(\bar{x}) \), we have the alternate forms for \(W \):

\[
W = \frac{\bar{p} - c_y}{\bar{y} - \bar{x}} = \frac{\bar{p} - c_x}{\bar{x} - \bar{y}} = \frac{c_y - c_x}{\bar{y} - \bar{x}} = \frac{c_y - \bar{p}}{\bar{y} - \bar{x}} \frac{\zeta}{\beta}. \quad \text{(E.1.4)}
\]

Other formulas linking \(W \) and previously introduced quantities are:

\[
\begin{align*}
\hat{c}_s &= \frac{\rho}{\rho + \beta} \frac{\bar{x} - \bar{x}}{\zeta W} \quad \text{(E.1.5)} \\
\bar{c}_s &= \frac{\rho}{\rho + \beta} \frac{\bar{x} - \bar{y}}{\zeta W}. \quad \text{(E.1.6)}
\end{align*}
\]

\[
\hat{c}_s - \bar{c}_s = \frac{\rho}{\rho + \beta} \frac{\bar{y} - \bar{x}}{\zeta W}. \]

E.2 Phase P

The functions \(M(\cdot) \) and \(L(\cdot) \) are respectively given by:

\[
\begin{align*}
M(S) &= -\frac{W}{\zeta} \frac{\beta^2 S}{\rho + 2\beta} \quad \text{(E.2.1)} \\
L(S) &= \frac{\beta}{\rho + \beta} (c_x - \bar{p}) - \frac{W}{\zeta} \frac{\beta^2 S}{\rho + 2\beta}. \quad \text{(E.2.2)}
\end{align*}
\]

The value \(S^{QP} \) solves equation \((4.3.3)\) or \((4.3.4)\), which gives:

\[
\zeta(c_s - \hat{c}_s) - \frac{W}{\zeta} S^{QP} = -\frac{W}{\zeta} \frac{\beta^2 S^{QP}}{\rho + 2\beta}
\]

105
\[S^{QP} = (c_s - \hat{c}_s) \frac{C^2}{W} \frac{\rho + 2\beta}{\beta(\rho + \beta)}. \]

(E.2.3)

One checks directly that \(S^{QP} < S_\eta \) when \(c_s < \hat{c}_s \). Indeed, we have:

\[
S^{QP} < S_\eta \quad \iff \quad (c_s - \hat{c}_s) \frac{C^2}{W} \frac{\rho + 2\beta}{\beta(\rho + \beta)} \leq (c_y - \bar{p}) \frac{\zeta}{\beta W}
\]

\[
\iff \quad c_s - \hat{c}_s \leq \frac{\rho + \beta}{\rho + 2\beta} \frac{c_y - \bar{p}}{\zeta} = \frac{\rho + \beta}{\rho + 2\beta} (\hat{c}_s - \hat{c}_s)
\]

\[
\iff \quad c_s \leq \frac{\rho + 2\beta}{\rho + 2\beta} \hat{c}_s + \frac{\rho + \beta}{\rho + 2\beta} \bar{c}_s.
\]

The right-hand side is a convex combination of \(\hat{c}_s \) and \(\bar{c}_s \), and since \(\hat{c}_s < \bar{c}_s \), it lies between these two values.

The adjoint variables in phase P are given by (4.1.1) and \(\lambda^{(P)}_S(t) = L(S(t))/\zeta \). Therefore we have the formulas expressed as a state feedback:

\[
\lambda_Z = \frac{1}{\zeta} \left(c_x - u' \left(x - \frac{\beta}{\zeta} S \right) \right)
\]

\[
= \frac{c_x - \bar{p}}{\zeta} + W \left(x - \frac{\beta}{\zeta} S - x \right)
\]

\[
= \frac{c_x - \bar{p}}{\zeta} - W \frac{\beta S}{\zeta^2}
\]

(E.2.4)

\[
\lambda_S = \frac{\beta}{\rho + \beta} \frac{c_x - \bar{p}}{\zeta} - \frac{W}{\beta^2} \frac{\rho + 2\beta}{\rho + 2\beta}
\]

\[
= \frac{\beta}{\rho + \beta} \frac{c_x - \bar{p}}{\zeta} - \frac{\beta}{\rho + 2\beta} \left(\frac{c_x - \bar{p}}{\zeta} - \lambda_Z \right)
\]

\[
= \frac{c_x - \bar{p}}{\zeta} - \frac{\beta^2}{(\rho + \beta)(\rho + 2\beta)} c_y - \frac{\beta}{\rho + 2\beta} \bar{c}_s.
\]

(E.2.5)

(E.2.6)

According to this last formula, the trajectory of \((\lambda_Z(t), \lambda_S(t)) \) in the \(\lambda_Z - \lambda_S \) plane is a straight line with a slope that does not depend on \(W \).

When \(S \to 0 \), the point tends to the point \(P_\infty \) defined in (4.1.9) on page 33. When \(S \to S_\eta \), it tends to:

\[
(\lambda_Z(S_\eta), \lambda_S(S_\eta)) = \left(\frac{c_x - c_y}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - \bar{p}}{\zeta} - \frac{\beta}{\rho + 2\beta} c_y - \bar{p} \right)
\]

\[
= \left(\frac{c_x - c_y}{\zeta}, \frac{\beta}{\rho + \beta} \frac{c_x - c_y}{\zeta} + \frac{\beta^2}{(\rho + \beta)(\rho + 2\beta)} c_y - \bar{p} \right).
\]

(E.2.7)

Value of \(c_{sm} \). By definition of \(c_{sm} \), the point given by (E.2.7) is on the line \(\lambda_S = \lambda_Z + c_{sm} \)

because Phase Q occurs just at \(S = S_\eta \). Therefore, it follows that:

\[
c_{sm} = \frac{\rho}{\rho + \beta} \frac{c_y - c_x}{\zeta} + \frac{\beta^2}{(\rho + \beta)(\rho + 2\beta)} \frac{c_y - \bar{p}}{\zeta}
\]

(E.2.8)

\[
= \bar{c}_s + \frac{\beta^2}{(\rho + \beta)(\rho + 2\beta)} \frac{c_y - \bar{p}}{\zeta}.
\]

As expected, it follows from the last line that \(c_{sm} > \bar{c}_s \).

Alternately, when \(c_s = c_{sm} \), we must have \(S^{QP} = S_\eta \). Accordingly, using (E.2.3) and (E.1.4) and simplifying, we get the second identity:

\[
c_{sm} = \hat{c}_s + \frac{\rho + \beta}{\rho + 2\beta} \frac{c_y - \bar{p}}{\zeta}.
\]

(E.2.9)
Value function. Finally, the value function $V_p(S)$ is computed directly from its definition as:

\[
V_p(S) = \int_0^\infty e^{-\rho v} \left(\bar{x} - \frac{\beta}{\zeta} S e^{-\beta v} - c_x \left(\bar{x} - \frac{\beta}{\zeta} S e^{-\beta v} \right) \right) dv
\]

\[
= \int_0^\infty e^{-\rho v} \left(\bar{x} + \frac{\beta}{\zeta} S e^{-\beta v} - W \frac{\beta^2 S^2}{2} \frac{1}{\rho + \beta} \right) dv - \frac{c_x \bar{x}}{\rho} + \frac{c_x S}{\rho} \frac{1}{\zeta} + \frac{c_x \beta S}{\rho + \beta}
\]

(E.2.10)

It is possible to check the Hamilton-Jacobi-Bellman identity from (E.2.10), as well as the identity $V_p = \lambda_S$ from (E.2.10) and (E.2.5). Also, it is verified that $H(S^{(P)}(\rho^0), Z, \lambda_S^{(P)}(\rho^0), \lambda_{QZ}(\rho^0)) = \rho V_p(S^{(P)}(\rho^0))$.

E.3 Phase Q

The value of λ_Z is expressed from (4.3.7) and the value of S^{QZ} in (E.2.3) as:

\[
\lambda_Z(t) = e^{(t-t_0^{QZ})} \left[\frac{\rho + \beta}{\rho} (c_x - \bar{x}) + \frac{W}{\zeta} \left(-\frac{\beta}{\zeta} S^{QZ} \right) \right] - \frac{\rho + \beta}{\rho} c_x
\]

\[
= e^{(t-t_0^{QZ})} \left[\frac{\rho + \beta}{\rho} (c_x - \bar{x}) - \frac{W}{\zeta^2} (c_x - \bar{x}) \left(-\frac{\beta}{\rho + \beta} \right) \right] - \frac{\rho + \beta}{\rho} c_x
\]

\[
= e^{(t-t_0^{QZ})} (c_x - \bar{x}) \left[\frac{\rho + \beta}{\rho} - \frac{\rho + 2\beta}{\rho + \beta} \right] - \frac{\rho + \beta}{\rho} c_x
\]

\[
= e^{(t-t_0^{QZ})} (c_x - \bar{x}) \left(\frac{\beta^2}{\rho} \right) - \frac{\rho + \beta}{\rho} c_x.
\]

(E.3.1)

Next, the value of $x^{(Q)} = \hat{q}^{(t-t_0^{QZ})}(c_x - \zeta \lambda_Z)$ is, using (E.1.3),

\[
x^{(Q)}(t) = \bar{x} - \frac{1}{W} \left(c_x - \zeta e^{(t-t_0^{QZ})}(c_x - \bar{x}) \frac{\beta^2}{\rho + \beta} + \zeta \frac{\rho + \beta}{\rho} c_x - \bar{p} \right)
\]

\[
= \bar{x} - \frac{1}{W} \left(\zeta \frac{\rho + \beta}{\rho} (c_x + \frac{\rho + \beta}{\rho + \beta} c_x - \bar{p}) \right) - \zeta e^{(t-t_0^{QZ})}(c_x - \bar{x}) \frac{\beta^2}{\rho + \beta}
\]

\[
= \bar{x} - \frac{\zeta}{W} (c_x - \bar{x}) \left(\rho + \beta - e^{(t-t_0^{QZ})} \frac{\beta^2}{\rho + \beta} \right).
\]

(E.3.2)

As a particular value, we can evaluate $x^{(Q)}(t_0^{QZ})$, see Figure 4.1. We have:

\[
x^{(Q)}(t_0^{QZ}) = \bar{x} - \frac{\zeta}{W} (c_x - \bar{x}) \left(\rho + \beta - \frac{\beta^2}{\rho + \beta} \right) = \bar{x} - \frac{\zeta}{W} (c_x - \bar{x}) \frac{\rho + 2\beta}{\rho + \beta}
\]

\[
= \bar{x} - \frac{\beta}{\zeta} S^{QZ},
\]

where we have used the value of S^{QZ} obtained in (E.2.3). This is of course consistent with the general relationship which prevails in Phase P: $x = \bar{x} - \beta S/\zeta$. Next, the dynamics of $S(t)$ are integrated with (4.3.1) as:

\[
S^{(Q)}(t) = S^{QZ} - \zeta \int_t^{t_0^{QZ}} (x^{(Q)}(t) - \bar{x}) \, dt
\]

\[
= S^{QZ} + \frac{\zeta^2}{W} (c_x - \bar{x}) \int_t^{t_0^{QZ}} \left(\rho + \beta - e^{(t-t_0^{QZ})} \frac{\beta^2}{\rho + \beta} \right) \, dt
\]
\[\begin{align*}
&= S^Q + \frac{c^2}{W}(c_s - \hat{c}_s)\frac{\rho + \beta}{\rho}(\tilde{t}^Q - t) - \frac{\beta^2 c^2}{\rho(\rho + \beta)W}(c_s - \hat{c}_s)\int_t^{\tilde{t}^Q} e^{\rho(u - \tilde{t}^Q)} \, du \\
&= S^Q + \frac{c^2}{W}(c_s - \hat{c}_s)\frac{\rho + \beta}{\rho}(\tilde{t}^Q - t) - \frac{\beta^2 c^2}{\rho^2(\rho + \beta)}(c_s - \hat{c}_s) \frac{1 - e^{\rho(t - \tilde{t}^Q)}}{\rho^2(\rho + \beta)}.
\end{align*} \tag{E.3.3} \]

Comparing Equation (E.3.2) for \tilde{t}^Q and Equation (E.3.3) for S^Q, we see that the optimal control is not an affine function of the state.

The value t^RQ satisfies $\lambda^Q(t^RQ) = (c_x - c_y)/\zeta$. Accordingly, from (E.3.1) (see also (4.3.13)), we have:

\[t^RQ - t^Q = \frac{1}{\rho} \log \left[\frac{\rho + \beta}{\rho} \frac{c_s - \hat{c}_s}{(c_s - \hat{c}_s) \frac{\rho}{\rho + \beta}} \right] = \frac{1}{\rho} \log \left[\frac{\rho + \beta}{\rho} \frac{c_s - \hat{c}_s}{(c_s - \hat{c}_s) \frac{\rho}{\rho + \beta}} \right] \tag{E.3.4} \]

It is easy to check with identities (E.2.8) and (E.2.9) that when $c_s = c_{sm}$, this quantity reduces to 0. This is of course consistent with the fact that Phase Q vanishes in that situation.

When Equation (E.3.3) is evaluated at $t = t^RQ$, Equations (E.3.4) for $t^RQ - t^Q$ and (E.2.3) for S^Q allow to obtain the value of $S^RQ = S(t^RQ)$:

\[S^RQ = \frac{c^2}{W}(c_s - \hat{c}_s)\frac{\rho + \beta}{\rho^2} \log \left[\frac{\rho + \beta}{\beta} \frac{c_s - \hat{c}_s}{c_s - \hat{c}_s} \right] + \frac{c^2}{W \rho} \left[\frac{\rho + \beta}{\beta} \frac{c_s - \hat{c}_s}{(c_s - \hat{c}_s) \frac{\rho}{\rho + \beta}} \right]. \tag{E.3.5} \]

Again, it can be checked that when $c_s = c_{sm}$, this formula reduces to S^Q. The value of $c_{sm}Q$ is obtained when solving $S^RQ = S_m$.

E.4 Phase A

Assuming that the system is in state $S^0 = S(t^0)$ at some arbitrary time instant t^0, we have: $X^A(t) = \lambda^0_Z e^{(\rho + \alpha)(t - t^0)}$ and consequently, since $x^A(t) = \rho(t, c_x - \zeta \lambda_Z)$,

\[x^A(t) = \tilde{x} - \frac{c_x - \tilde{c}}{W} + \frac{c_x - \tilde{c}}{W} \lambda^0_Z e^{(\rho + \alpha)(t - t^0)} = \tilde{x} + \frac{c_x - \tilde{c}}{W} \lambda^0_Z e^{(\rho + \alpha)(t - t^0)}, \tag{E.4.1} \]

where we have used, from (E.1.4): $(c_x - \tilde{c})/W = \tilde{x} - \tilde{x}$. Next, according to (3.4.3),

\[\begin{align*}
Z(t) &= Z^0 e^{-\alpha(t - t^0)} + S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\lambda(t - t^0)} - e^{-\alpha(t - t^0)} \right) + \zeta \int_{t^0}^t e^{-\lambda(u - t^0)} X^A(u) \, du \\
&= Z^0 e^{-\alpha(t - t^0)} + S^0 \frac{\beta}{\alpha - \beta} \left(e^{-\lambda(t - t^0)} - e^{-\alpha(t - t^0)} \right) \\
&+ \zeta Z \frac{1 - e^{-\alpha(t - t^0)}}{\alpha} + \frac{c^2}{W} \lambda^0_Z \frac{e^{(\rho + \alpha)(t - t^0)} - e^{-\alpha(t - t^0)}}{\rho + 2\alpha}.
\end{align*} \tag{E.4.2} \]

Using the dynamics of S: $S^A(t) = S^0 e^{-\lambda(t - t^0)}$, it is possible to eliminate the time variable so as to obtain the equation of the trajectory in the (S, Z) space:

\[Z = Z_M(S) + \frac{c^2}{\alpha} \left(1 - \left(\frac{S}{S^0} \right)^{\alpha/\beta} \right) + \frac{c^2}{W} \frac{\lambda^0 Z}{\rho + 2\alpha} \left(\left(\frac{S}{S^0} \right)^{-\lambda/\beta} - \left(\frac{S}{S^0} \right)^{\alpha/\beta} \right). \tag{E.4.3} \]

108
E.5 Phase B

Assume that the system is in Phase B at time t^*, with corresponding values λ^*_x and λ^*_z for the costate variables. Since $x^B = q^*(c_x + c_z - C^*_z)$, we get:

$$x^B(t) = \tilde{x} - \frac{\zeta c_x}{W} + \frac{\zeta}{W} \left(\lambda^*_x e^{(\rho + \beta)(t - t^*)} - \frac{\beta}{\alpha - \beta} \lambda^*_z \left(e^{(\rho + \alpha)(t - t^*)} - e^{(\rho + \beta)(t - t^*)} \right) \right).$$

Integrating Equations (3.4.8) then (3.4.7), with terminal conditions $S(0) = S_m$ and $Z(0) = Z$, we get:

$$S^B(t) = S_m e^{-\beta t} + \frac{\zeta}{\beta} (\tilde{x} - \zeta c_x / W) (1 - e^{-\beta t})$$

$$+ \frac{\zeta^2}{W^2} (\lambda^*_x + \lambda^*_z - \beta) \left(\frac{1}{\rho + 2\beta} (e^{(\rho + \beta)t} - e^{-\beta t}) \right)$$

$$- \frac{\zeta^2}{W^2} \lambda^*_z \frac{1}{\alpha - \beta \rho + \alpha + \beta} (e^{(\rho + \alpha)t} - e^{-\beta t})$$

(E.5.1)

$$Z^B(t) = \zeta (\tilde{x} - \zeta c_x / W) / \beta$$

$$+ e^{-\alpha t} \left(\bar{Z} \frac{1}{\alpha - \beta} S_m + \beta (\tilde{x} - \zeta c_x / W) / (\alpha - \beta) \right)$$

$$+ \frac{\zeta^2}{W} (\lambda^*_x + \lambda^*_z - \beta) \left(\frac{1}{\rho + 2\beta} (e^{(\rho + \beta)t} - e^{-\beta t}) \right)$$

$$- \frac{\zeta^2}{W} \lambda^*_z \frac{1}{\alpha - \beta \rho + \alpha + \beta} (e^{(\rho + \alpha)t} - e^{-\beta t})$$

$$+ \frac{\zeta^2}{W^2} \lambda^*_z \frac{1}{\alpha - \beta \rho + \alpha + \beta} \beta (\rho + 2\beta) (\rho + \alpha + \beta) e^{(\rho + \beta)t}$$

$$- \frac{\zeta^2}{W^2} \lambda^*_z \frac{1}{\alpha - \beta \rho + \alpha + \beta} \beta (\rho + 2\beta) (\rho + \alpha + \beta) e^{(\rho + \alpha)t}. \quad \text{(E.5.2)}$$

$$= \bar{Z} e^{-\alpha t} + \frac{\beta S_m}{\alpha - \beta} (e^{-\beta t} - e^{-\alpha t}) + \frac{\zeta}{\alpha} (\tilde{x} - \zeta c_x / W) \left(1 + \frac{\beta}{\alpha - \beta} e^{-\alpha t} - \frac{\alpha}{\alpha - \beta} e^{-\beta t} \right)$$

$$+ \frac{\zeta^2}{W} \lambda^*_x \frac{1}{\alpha - \beta \rho + \alpha + \beta} \left(e^{-\alpha t} - \frac{\rho + \alpha + \beta}{\rho + 2\beta} e^{-\beta t} + \frac{\alpha - \beta}{\rho + 2\beta} e^{(\rho + \beta)t} \right)$$

$$+ \frac{\zeta^2}{W^2} \lambda^*_z \frac{1}{(\alpha - \beta \rho + \alpha + \beta)^2} \left(e^{-\alpha t} - \frac{\rho + \alpha + \beta}{\rho + 2\beta} e^{-\beta t} - \frac{\alpha - \beta}{\rho + 2\beta} e^{(\rho + \beta)t} \right) + \frac{\alpha - \beta}{\rho + 2\beta} e^{(\rho + \beta)t} \left. \right). \quad \text{(E.5.3)}$$

E.6 Numerical Example

Figure E.1 represents the value function (left) and the optimal consumption x (right) in a parameter configuration "c_x small". The origin value $(S, Z) = (0, 0)$ is placed at the back of the figure, so that the behavior of the function at the boundary $Z = \bar{Z}(S)$ becomes more visible.
The values given to the model parameters are as follows:

\[Z = 1, \quad \alpha = 1, \quad \beta = 1/2, \quad \rho = 5, \quad \xi = 1/2, \quad c_x = 1, \quad c_y = 9, \quad c_b = 1. \quad \text{(E.6.1)} \]

The utility function \(u(\cdot) \) is given as in (E.1.2) with \(p = 8 \) and \(W = 1 \). For these values, we have \(\hat{s}_0 \approx 12.73 \). We are therefore indeed in the "(c) small situation". Other special values are: \(S_m = 2, \quad S_M = 4, \quad x = 2 \) and \(y = 1 \).

Trajectories starting with a large value of \(S \) run from left to right, then (for some of them) experience the change of phase, from Phase A to Phase B. At this point, a sharp decrease occurs, both for the value and for the consumption. The trajectory eventually approaches the limit of the domain \(Z = \hat{Z}(S) \). There, consumption of the nonrenewable resource drops to 0. The optimal trajectory then stays close to the boundary until it reaches the terminal state \((S_m, Z) = (2, 1)\).

Trajectories starting with a small initial \(S \) stay in Phase A with a relatively constant consumption until the ceiling \(Z = \hat{Z} \) is hit. They then follow the ceiling, but eventually leave it (the location is approximately \((\hat{S}, Z) = (1.1577, 1)\)) to enter the loop described in Section 4.4.3.2. Along this loop, the value and the consumption first sharply decrease, then increase again.

Figure E.1: Value function (left) and consumption of the nonrenewable resource (right) for parameter values as in (E.6.1)
Bibliography

Van der Zwaan, B. (2005), ‘Will coal depart or will it continue to dominate global power production during the 21st century?’, Climate Policy 5, 445–453.

Contents

1 Introduction 2
 1.1 The Economic Relevance of Carbon Storage and Sequestration 2
 1.2 Technical Challenges and Contribution 3

2 The Model 5
 2.1 Model and Assumptions 5
 2.1.1 Energy consumption and gross surplus 5
 2.1.2 The nonrenewable polluting resource 5
 2.1.3 Pollution stocks and leakage effects 5
 2.1.4 Atmospheric pollution damages 6
 2.1.5 The renewable clean energy 7
 2.2 The Social Planner problem 7
 2.2.1 Assumptions on costs and parameters 8
 2.2.2 Literature and particular cases 8
 2.3 Main elements for finding the solution of the social planner problem 9
 2.3.1 First order conditions 9
 2.3.2 Elimination of suboptimal controls 10
 2.3.3 Sufficient optimality conditions 11
 2.3.4 The admissible domain of \(S \) and \(Z \) 15
 2.3.5 On the lack of necessary conditions 17

3 Preliminary results 19
 3.1 Introduction to the solution 19
 3.2 The system in the interior 20
 3.2.1 Dynamics of the adjoint variables 21
 3.2.2 Dynamics of ratios 21
 3.2.3 Invariants 22
 3.3 Elimination of impossible phases 22
 3.4 Dynamics in interior phases 23
 3.4.1 Dynamics when capture is nil (Phase A) 23
 3.4.2 Dynamics when capture is maximal (Phase B) 24
 3.4.3 Dynamics with only renewable energy consumption (Phase L) 24
 3.5 Boundary Phases 25
 3.5.1 Dynamics in Phase P (constrained atmospheric stock, no capture) 25
 3.5.2 Dynamics in Phase Q (constrained atmospheric stock, free capture) 25
 3.5.3 Dynamics in Phase R (constrained atmospheric stock and renewable energy consumption) 26
 3.5.4 Dynamics in Phase S (constrained atmospheric stock and maximal capture) 28
 3.5.5 Dynamics in Phase T (exhausted nonrenewable resource) 28
 3.5.6 Dynamics in Phase U (no consumption of the nonrenewable resource) 29
4 Unexhaustible resources

4.1 Terminal phases
 4.1.1 Terminal P phase
 4.1.2 Terminal S phase
 4.1.3 Terminal Q phase
 4.1.4 Conclusion on terminal phases

4.2 Non-terminal Phases
 4.2.1 Phases A, B and L
 4.2.2 Phase Q
 4.2.3 Phase R
 4.2.4 Phase U

4.3 Optimal trajectories on the boundary of the domain
 4.3.1 Junction between phases on the boundary
 4.3.2 Synthesis on the boundary $\hat{Z}(S)$, large c_s

4.4 Junction with the boundary
 4.4.1 Evolution of adjoint variables
 4.4.2 Regular junctions
 4.4.3 Singular junctions

4.5 Description and classification of optimal trajectories
 4.5.1 Small c_s ($c_s < \hat{c}_s$)
 4.5.2 Medium-inf c_s ($\hat{c}_s < c_s < c_{sQ}$)
 4.5.3 Medium-sup c_s ($c_{sQ} < c_s < c_{sm}$)
 4.5.4 Large c_s ($c_s \geq c_{sm}$)
 4.5.5 Direct arguments for the case $c_s \leq \hat{c}_s$

4.6 Extensions and concluding remarks
 4.6.1 Finite storage capacity
 4.6.2 Bounded clean energy production capacity
 4.6.3 Storage costs
 4.6.4 Complements on capture costs
 4.6.5 Comparison with non-leaky reservoirs

A Synthetic description of the different phases
 A.1 Phase A (free extraction of the NRR; no sequestration)
 A.2 Phase B (free extraction of the NRR; maximal sequestration)
 A.3 Phase L (zero extraction of the NRR)
 A.4 Phase P (ceiling; no sequestration)
 A.5 Phase Q (ceiling; sequestration)
 A.6 Phase R (ceiling; no sequestration, double extraction)
 A.7 Phase S (ceiling for Z et S; maximal sequestration)
 A.8 Phase T (no NRR; extraction of the NRR; extraction of the RR)
 A.9 Phase U (no extraction of the NRR; extraction of the RR; NRR available)

B Properties of auxiliary functions L and M

C Auxiliary problems
 C.1 Finite-horizon problems
 C.1.1 Sufficient conditions for free finite-horizon problems
 C.1.2 The problem in finite horizon
 C.1.3 Optimization on the ceiling
 C.2 The representative agent’s problem
D Local analysis of trajectories at junction points

D.1 Phase A ... 98
 D.1.1 Junction with \(Z = \bar{Z} \) 99
 D.1.2 Junction on the curve \(Z = Z_M(S) \) 99

D.2 Phase B ... 100
 D.2.1 Junction with \(Z = \bar{Z} \) 100
 D.2.2 Local analysis around \((s_m, \bar{Z}) \) 101

E The Linear-Quadratic case

E.1 Relationships between parameters 105
E.2 Phase P ... 105
E.3 Phase Q ... 107
E.4 Phase A ... 108
E.5 Phase B ... 109
E.6 Numerical Example ... 109

Bibliography ... 111